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Abstract

Segmentation of 3D soft organs from complex volume im-
ages is a very important and challenging task. The objects
of interest may have inhomogeneous voxel intensities and
some object boundaries may be indistinct. Existing algo-
rithms are either sensitive to noise or computationally ex-
pensive. This paper presents a novel algorithm that over-
comes these shortcomings. The algorithm adopts a novel
flipping-free mesh deformation and registration method that
can easily incorporate geometric constraints to reduce sen-
sitivity to noise. It efficiently deforms the 3D model in large
displacements reducing total computational costs. These
properties are confirmed by comprehensive test results.

1. Introduction

Segmentation of 3D soft organs from CT and MR is a
very important and challenging task for medical image anal-
ysis. The objects may have inhomogeneous voxel intensi-
ties and some object boundaries may be indistinct. Segmen-
tation methods such as thresholding, region growing, wa-
tershed and classification work well on simple images with
homogeneous regions. Unfortunately, they are sensitive to
noise and produce severe over-segmentation when applied
to medical images with inhomogeneous regions.

Interactive segmentation algorithms such as Grab-
Cut [18] and random walks [7] achieve fairly good results
in 2D color images. However, they are computationally ex-
pensive in both time and space especially for 3D medical
data, which often contains more than512× 512× 200 vox-
els. The memory usage of graph cut, for instance, may ex-
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ceed 4GB for such data set, which is beyond the limit of
32-bit computers. Moreover, these algorithms may produce
foreground regions with undesirable topology. A recent im-
plementation [4] reduces the memory requirement slightly.

Deformable models have been successfully applied to
medical image segmentation. They can be represented ei-
ther implicitly or explicitly. Segmentation methods using
implicit models such as the level set method [20] and the
fast marching methods [21] represent a 3D surface as an
implicit function discretized into voxels, resulting in com-
putationally expensive algorithms. The level set method
can change the evolving surface’s topology to match highly
complex object surface. However, it often leaks out of the
object boundaries producing undesired segmentation.

In contrast, segmentation methods using explicit mod-
els [2, 16] represent a 3D surface as a mesh, which sig-
nificantly reduce the space complexity of the algorithms.
Deformation is accomplished by displacing the mesh ver-
tices. The problem of mesh-based methods is that the dis-
placements of vertices may cause self-intersections of the
mesh, which can be categorized asflipping or non-flipping.
Flipping self-intersection occurs locally if the displacement
vectors of neighboring mesh vertices cross in space. As a
result, the directions of some surface normals flip after de-
formation. This problem cannot be solved by simply reduc-
ing the deformation step size. As shown in Fig. 3, surface
flippings occur during mesh deformation towards a binary
volume data even with a very small deformation step size.
Non-flipping self-intersection occurs globally without flip-
ping the surface normals but causes penetration of different
parts of the mesh.

In summary, existing 3D deformable model-based algo-
rithms exhibit various weaknesses that need to be overcome.
To address these problems, we propose an algorithm for
segmenting 3D soft organs such as liver and spleen based



on mesh deformation. The algorithm is efficient, noise
resilient, topology preserving and free from flipping self-
intersection. Geometric constraints are easily incorporated
into the model to improve noise resilience and reduce the
likelihood of non-flipping self-intersection (Section 3).

2. Related Work

Segmentation methods based on mesh deformation can
be categorized according to their strategies for handling
self-intersections.

2.1. No Explicit Handling of Self-intersections

Deformable models such as active contour [12], mass
spring model [5] and Laplacian deformation [23] do not
explicitly handle self-intersections. They impose smooth-
ness constraints on the mesh, which can alleviate self-
intersections to some extent. Nevertheless, self-intersection
can still happen [10]. Active shape model [2] used by
many segmentation algorithm [6, 22, 24] generates new
shapes without self-intersection by varying the shape co-
efficients derived from PCA. However, a large number of
training samples are required to derive a complex model.
The method in [17] uses restricted Delaunay triangulation to
re-triangulate the mesh in each iteration based on extracted
image features. It is thus computationally expensive and
sensitive to noise.

2.2. Detection of Self-intersections

The T-snake model [15] discretizes the space underly-
ing the mesh into grids and detects self-intersections after
deformation by inspecting the local neighborhoods of the
grid points. It resolves self-intersections by falling back
to the non-intersecting state. The method in [14] imposes
proximity conditions between mesh vertices. By displac-
ing mesh with a very small step size, violation of proximity
conditions is detected, and the model is remeshed to remove
self-intersections. The methods in [3, 11, 26] detect self-
intersections based on collision detection and resolve them
by remeshing. In general, collision detection and remeshing
are computationally expensive, and they contribute to most
of the computational costs of the algorithms.

2.3. Avoidance of Self-intersections

Under Free-Form Deformation (FFD) [19], self-
intersections can be avoided by imposing injectivity con-
dition [1, 8] on the deformation function. The injectivity
condition confines the displacements of FFD control points
within regions that do not incur self-intersections. For seg-
mentation, directly displacing mesh vertices, as in Directly
Manipulated FFD [9], is preferred so that the mesh surfaces
can be accurately aligned to the target boundaries. Unfor-
tunately, it is nontrivial to derive the injectivity condition

of mesh vertices from that of the control points. More-
over, the injectivity condition limits the displacements of
control points to short ranges, resulting in very slow con-
vergence. Another approach is to compute a diffeomorphic
deformation function [13, 27]. As a diffeomorphic function
and its inverse are one-to-one and smooth, self-intersections
are avoided. However, computation of the diffeomorphic
function is expensive, especially when it is applied to the
segmentation of complex and noisy 3D volume images.

3. Segmentation by Deformable Registration

Our algorithm, as summarized in Algorithm 1, segments
a 3D object from an input volume by iteratively deforming a
3D mesh model to register it to extracted image features. In
each iteration, it searches for possible correspondence be-
tween mesh vertices and image features over long distances.
The detected correspondence is refined before deformation
to avoid flippings. To clarify the algorithm, we first intro-
duce the 3D quadrilateral mesh model.

3.1. 3D Quadrilateral Mesh

We define a 3D quadrilateral meshM on a cube whose
sides are aligned withx-, y- and z-axis (Fig. 1(a)). The
mesh is defined by 3 groupsGxy, Gyz, andGzx of closed
contours that are parallel to thexy-, yz- or zx-plane re-
spectively. The contours in a group areorthogonalto those
in the other groups. Each vertexui in M is an intersec-
tion of two contours, each from a different group. Thus, it
has exactly 4 connected neighboring vertices. The cubical
quadrilateral mesh can be mapped to a spherical quadrilat-
eral mesh (Fig. 1(b)) by projecting its mesh vertices onto a
concentric spherical surface along the radius directions.

The proposed mesh has the advantage that a linear or-
dering of the mesh vertices can be defined along any closed
contour. As will be discussed in Section 3.5, the linear
ordering simplifies the avoidance of possible flippings. In
comparison, avoidance of flippings in a triangular mesh is
much more difficult to achieve because it is difficult to de-
fine linear ordering of all the vertices.

3.2. Image Feature Extraction

Our segmentation algorithm can work with any feature
including, but not restricted to, intensity, gradient, edge,

Algorithm 1 Segmentation by deformable registration.
Extract image features from target volume (Section 3.2).
Repeatuntil convergence:

Search for correspondence (Section 3.3).
For eachcontour in each group

Detect possible flippings (Section 3.4).
Avoid possible flippings (Section 3.5).

Perform mesh deformation (Section 3.6).



(a) (b) (c) (d) (e) (f)
Figure 1. The cubical quadrilateral mesh (a) is projected onto a spherical surface to generate (b) a spherical quadrilateral mesh. Registration
of (b) to concave target volumes (c, e) produces (d, f). Checker board patterns are added for visual clarity.

texture, etc. We proposed to use voxel intensity distribution
because the objects have inhomogeneous voxel intensities
and some object boundaries are indistinct. Intensities of the
foreground object are modeled as a mixture of Gaussians:

g(x) =
∑

i

aifi(x), (1)

wherex is the voxel intensity,ai are coefficients, such that
∑

i ai = 1, andfi(x) are Gaussian distributions with pa-
rameters(µi, σi). The number of Gaussians is determined
by the input images and target organs. Parametersai, µi and
σi can be estimated by Expectation Maximization (EM). To
smooth out noise, anisotropic filtering is applied to the input
image as a pre-processing step.

3.3. Correspondence Search

This stage searches for correspondence between the
modelM and the targetT . For each vertexui on M , the
algorithm searches along the projection lineP (ui), which
can be defined as the surface normal atui, for a possible
corresponding pointvi on the surface ofT . The pointvi

is the intersection ofP (ui) and the face of a feature voxel
on the surface ofT . Eachvi serves as a target location
for ui. In general,P (ui) may be defined along other ap-
propriate directions.ui is labeled as asolitary vertex if its
corresponding point cannot be found.

The problem of finding correspondenceuj for ui along
P (ui) is formulated as finding the minimumj such that

j+N
∑

i=j

h(ui) = 0, h(ui) =

{

0 g(xi) < Γ
1 otherwise

, (2)

wherexi is the intensity ofui andΓ is a pre-defined thresh-
old. uj that satisfies Eq. (2) is likely on the boundary of the
target object, since all(N + 1) consecutive voxels along
P (ui) starting formuj have low probabilities of belonging
to the foreground. In our current implementation,N = 3.

3.4. Flip Detection

The flipping of a mesh cell after mesh deformation is
characterized by the flipping of at least one of its edges.
Therefore, surface flipping can be identified by detecting

(a) (b) (c)

Figure 2. Folding problem. (a) Displacing non-flipping vertices
(dots) around solitary vertices (circle) may cause (b) folding of the
mesh, and in the extreme case, (c) non-flipping self-intersection.

edge flipping. Letui anduj denote two non-solitary neigh-
bors on a closed contour, andvi andvj denote their respec-
tive corresponding points on the target. Then, edge flip-
ping occurs when the orientations of the edgesui − uj and
vi − vj differ significantly:

ui − uj

‖ui − uj‖
·

vi − vj

‖vi − vj‖
≤ τ, (3)

whereτ ∈ [0, 1) is a predefined threshold. The vertices
ui anduj that form a flipping edge are labeled asflipping
vertices; otherwise,non-flippingvertices.

As each vertexui is an intersection of two orthogonal
closed contours onM , flipping may occur along both con-
tours Therefore, eachui will undergo flip detection along
both contours when the algorithm iterates.

3.5. Flip Avoidance

Our method avoids flippings by discarding the point cor-
respondences of flipping vertices. Letui, ui+1, . . . ,un de-
note a consecutive sequence of flipping vertices on a closed
contour, excluding solitary vertices, such thatui−1 and
un+1 are non-flipping. The method identifies the middle
flipping vertexum of the sequence, labels it as non-flipping,
and labels the other flipping vertices as solitary, i.e., discard-
ing their correspondences. After repeating this process for
every closed contour, only non-flipping vertices have point
correspondences. Thereafter, deforming the mesh accord-
ing to these correspondences does not result in flipping.

3.6. Deformation

During mesh deformation, if non-flipping vertices are
displaced to their target locations while solitary vertices re-
main undisplaced (Fig. 2(a)), the mesh may fold around



solitary vertices (Fig. 2(b)), and in an extreme case, re-
sults in non-flipping self-intersections (Fig. 2(c)). To tackle
this problem, the displacement vectors of non-flipping ver-
tices are propagated to neighboring solitary vertices, turning
them into non-flipping vertices, by iterative local averaging
of displacement vectors. This process is analogous to the
diffusion of gradient vectors in [25]. It also smoothens the
variation of displacement vectors among neighboring non-
flipping vertices, thus improving noise resilience.

The Laplacian method [23] is adopted for mesh defor-
mation because it is very efficient, easy to use, and easy
to incorporate geometric constraints. During deformation,
non-flipping vertices are displaced towards their target lo-
cations, which are regarded aspositional constraints. The
other mesh vertices are displaced according to geometric
constraints including the preservation of Laplacians (i.e.,
curvature normals) anduniform vertex distribution. The de-
formation problem is formulated as minimizing the energy

E = EL + λpEp + λuEu (4)

whereEL, Ep andEu are energies for Laplacian preserva-
tion, positional and uniform vertex distribution, andλp and
λu are weighting parameters.EL is defined as:

EL =
∑

i

‖L(ui) − L(u′
i)‖

2
2, (5)

whereu
′
i denotes the position of vertexui after deforma-

tion. L denotes the Laplacian operator,

L(ui) = ui −
1

|N (i)|

∑

uj∈N (i)

uj , (6)

whereN (i) denotes neighboring vertices ofui and|N (i)|
denotes the number of the neighboring vertices. Minimiz-
ingEL results in local shape preservation and mesh smooth-
ness. The positional energyEp imposes the positional con-
straint, and is defined as:

Ep =
∑

i

di

d̄
‖ui − pi‖

2
2, (7)

wherepi denotes the target position (positional constraint)
of ui, di is the distance fromui to pi, d̄ is the average of
di for ui of M . Minimizing Ep displaces mesh vertices
towards their designated locations. In addition, positional
constraints are weighted according to the distance between
ui andpi, i.e.,di/d̄. The further the corresponding point,
the larger is the weight. This weighting scheme ensures that
the mesh vertices are displaced mainly along the surface
normals so that the model can deform towards the target
surface quickly.Eu is defined as:

Eu =
∑

C

uj∈N (i)
∑

ui,uj∈C

‖(ui − uj) −
l̄

lij
(u′

i − u
′
j)‖

2
2, (8)

(a) (b) (c) (d)
Figure 3. Comparison of naive and flipping-free registration. (a)
Initialization for a binary volume image. (b) Naive method with
λ = 0.3 and 4 iterations. (c) Naive method withλ = 0.01 and
100 iterations. In (b, c), surface flippings cause discontinuities. (d)
Proposed algorithm withλ = 0.3 and 20 iterations.

wherel̄ is the estimated average distance betweenu
′
i and

u
′
j , andlij is the current edge length betweenui anduj on a

contourC. Minimizing Eu enables the vertices to distribute
more evenly on the mesh surface. When the mesh vertices
are close to the target surface, the weights of positional con-
straints become small. At the same time, the constraint of
uniform vertex distribution becomes significant, and it min-
imizes the difference between the lengthlij of a mesh edge
and the average length̄l, which is estimated from the length
of the closed contour that includes the edge. The energy
Eu reaches the minimum value 0 when alllij are equal tōl,
i.e., all mesh edges are of the same length. Thus, the mesh
vertices can displace along directions tangential to the mesh
surface and distribute more evenly.

The non-linear total energyE is minimized using Gauss-
Newton iteration with the efficient Taucs solver.

In summary, the proposed algorithm can efficiently de-
tect and avoid possible flippings before each deformation
iteration. Segmentation is achieved by efficient Laplacian
deformation with various constraints. The strength of our
algorithm will be discussed in the next section.

4. Experiments and Discussions

Comprehensive tests were conducted to verify the
strength of our algorithm in terms of flip detection and
avoidance (Section 4.1), convergence and noise resilience
(Section 4.2), accuracy and efficiency (Section 4.3). The ex-
periments were mainly carried out on globular objects such
as liver and spleen. Applicability of the proposed algorithm
to tubular objects is also discussed in Section 4.4. All ex-
periments were performed on an Intel Core 2 Duo 2.33 GHz
computer with 4G memory.

4.1. Flip Avoidance

To understand the importance of flip detection and avoid-
ance in mesh deformation-based segmentation, mesh regis-
tration to a binary volume image without flip detection and
avoidance was performed. As shown in Fig. 3(b, c), surface
discontinuities caused by flippings occur even with a very
small deformation step size. In comparison, registration us-
ing our proposed algorithm is flipping-free (Fig. 3(d)).
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Figure 4. Convergence curve. The average estimated distance from
model vertices to target points decreases as the algorithm iterates.

4.2. Convergence and Noise Resilience

This experiment shows that our algorithm can converge
in registering the model to concave objects. The initial
spherical model (Fig. 1(b)) was manually placed outside the
volume images of a cup object (Fig. 1(c)). The model con-
verged to the target surface (Fig. 1(d)) in 150 iterations.

To demonstrate convergence and noise resilience proper-
ties of the proposed algorithm in real medical volume im-
ages, segmentation of soft organs from abdominal CT scans
with slice thickness of 1mm to 3mm was carried out. The
level set algorithm and the proposed algorithm were both
performed on 8 CT scans. Graph cut was performed only
on a single slice from one scan because it is an interactive
algorithm and can achieve arbitrarily high accuracy given
substantial amount of user interaction. In our experiment,
result from graph cut was obtained by moderate user in-
put (Fig. 5(i)). The target organs were the livers and the
spleens. The model was initialized as a spherical mesh
(Fig. 5(a)) since the targets were globular. Voxels inside
the sphere were used to build a Gaussian mixture model
(GMM) of the intensity probability distribution of the tar-
get organs (foreground). Voxels with low probability were
regarded as background feature voxels. Transitions from
consecutive foreground voxels to consecutive background
voxels along searching directions suggest the presence of
boundary points of the target organ. Figure 5(f, g) show two
views of the segmented liver using our algorithm, which has
a complex shape.

To demonstrate the convergence property of our segmen-
tation algorithm, the average distance from the model ver-
tices to the target points over each iteration for one test data
is plotted (Fig. 4). The distance decreases rapidly as the
algorithm iterates. Convergence of our algorithm was also
confirmed by other test data with similar descending curves.

The proposed algorithm is noise resilient because it
looks for correspondence over a long range, and is thus less
affected by local noise. It also incorporates geometric con-
straints that increase its resilience to local noise. In compar-
ison, segmentation using the snake algorithm was trapped
by local noise, as shown in Fig. 5(e).

4.3. Accuracy and Efficiency

Our algorithm was compared with GVF snake [25],
level set method as implemented in ITK-SNAP and graph
cut [18] in terms of noise resilience, accuracy and efficiency.

Our algorithm and level set were applied to the whole
CT volume and initialized with spheres of the same size at
the same location (Fig. 5(a)). GVF snake was applied on a
single CT slice because of its 2D nature. It was initialized
with a 2D cross-section of the sphere in the slice. Graph cut
was applied to a single CT slice because its 3D implemen-
tation ran out of memory given the input volume images. It
was initialized by manual markups representing foreground
and background pixels (Fig. 5(i)). The level set algorithm
was stopped immediately by the user when the liver regions
were fully segmented.

As shown in Fig. 5(h) and (d), indistinct boundaries
caused severe leakage problem for both level set and graph
cut. The noise problem prevented the GVF snake from con-
verging to the target boundary (Fig. 5(e)). In comparison,
our algorithm has less leakage thanks to the geometric con-
straints. Segmentation accuracy in terms of average sym-
metric distance and volume overlap was computed for level
set and our algorithm (Table 1).Our algorithm achieved bet-
ter accuracy with shorter average symmetric distance and
larger volume overlap. The much lower variance achieved
by our algorithm also indicates it is more stable.

With regard to efficiency, the level set algorithm took
1051 iterations in476.29 seconds on average to segment
the whole liver. In contrast, our algorithm took only43 it-
erations in54.47 seconds on average to segment the liver.
Compared to graph cut, our algorithm also took much less
time to segment a slice. Note that the level set algorithm
implemented in ITK-SNAP automatically used two threads
for computation in our PC, whereas graph cut and our algo-
rithm used one thread only.

Segmentation was also performed on another abdomi-
nal organ, i.e., spleen. As shown in Table 1, the results
produced by level set (Fig. 6(d) top) is less smooth than
those produced by our algorithm (Fig. 6(c) top) due to vox-
elization, and they have leakage artifacts. Our algorithm
performed more accurately than level set in segmenting the
spleen. Execution time for a slice was also computed across
different algorithms. The results in Table 1 show that the
proposed algorithm is much faster than the level set algo-
rithm and graph cut.

4.4. Segmentation of Tubular Organ

To further test the capability of the proposed algorithm
to segment target organs with various shapes, registration
of the model to tubular target, e.g., a U-shaped volume
(Fig. 1(e)) is performed. The initial spherical mesh was out-
side of the target, and it successfully converged to the target
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(f) (g) (h) (i)
Figure 5. Comparison of segmentation algorithms. (a) Initialization for proposed algorithm, level set and GVF snake. Segmentation results
of (b, f, g) proposed algorithm, (c, h) level set, (d) graph cut, (e) GVF snake. (i) Initialization for graph cut: (red) foreground and (blue)
background markups. Best viewed in color.

Table 1. Comparison of level set algorithm (LS), graph cut (GC) and the proposed algorithm. V: ground truth volume. D: average symmetric
distance. VO: volume (area for graph cut) overlap. K: number of iterations. T: execution time. T′: execution time per slice.

V (mm3) Algorithm D (mm) VO K T (sec) T′ (sec)

liver 1754.37±387.57
LS 10.28±3.25 72.98±8.12% 1051±138 476.29±116.27 3.58±2.46
GC 10.49 81.50% 23 17.30 17.30

proposed 1.69±0.40 89.97±1.52% 43±6 54.47±7.38 0.42±0.26

spleen 367.89±196.43
LS 4.43±3.59 76.10±15.06% 519±75 110.38±43.60 0.71±0.27
GC 0.82 96.00% 13 11.56 11.56

proposed 1.00±0.27 88.87±2.98% 42±11 17.84±4.50 0.14±0.11
left

6.05
LS 0.38 81.20% 387 53.04 0.53

brachiocephalic GC 1.36 81.20% 14 10.99 10.99
vein proposed 0.35 83.00% 72 26.01 0.26

surface in 150 iterations (Fig. 1(f)).
Segmentation of left brachiocephalic vein which has a

tubular shape from real medical images was performed. The
initialization was inside the blood vessel (Fig. 6(a) bottom).
The left brachiocephalic vein was successfully segmented
(Fig. 6(b, c) bottom) thanks to the uniform vertex distri-
bution constraint, which facilitated the large shape change.
Results were compared with those obtained by the level set
methods and graph cut (Table 1). Segmentation accuracy
using our algorithm is only slightly better than that of level
set and graph cut because the object has a very small vol-
ume (6mm3) and a segmentation error of a single voxel will
result in large error in volume overlap. Again, our algorithm
is more efficient.

5. Conclusions

This paper presented a 3D volume image segmentation
algorithm based on a novel flipping-free mesh deformation
method. The proposed algorithm is free from flipping self-
intersection by detecting and avoiding possible flippings ef-

ficiently before each deformation iteration. It also allevi-
ates folding and non-flipping self-intersection problems by
propagating displacement vectors. Our algorithm is noise
resilient because (1) it looks for possible feature points over
a long range instead of within a small local neighborhood,
and (2) it incorporates geometric constraints. It is very effi-
cient thanks to explicit mesh representation and the Lapla-
cian deformation algorithm. Comprehensive tests show that
it is more noise resilient, accurate and efficient than snake,
level set and graph cut. Future work may include handling
of global self-intersection in some extreme cases and appli-
cation to vessel tree segmentation.
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