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Abstracts 

Colorectal cancer is one of the most prevalent types of cancer in both 

incident rate and mortality rate. To improve treatment outcome and 

reduce complications, quantifying the structural characteristics of the 

mesorectum, colorectum, the pelvic and the boundary containing internal 

organs is essential. 

Intra and inter-observer variability are not small in these problems, and 

hence an absolute ground truth is not available. However, with enough 

trainers preparing the data, the label will calibrate toward the ground 

truth. In this study, a machine learning system utilizing deep convolutional 

neural networks is proposed that can improve when there are more 

trainers and data. This system can fully automatically analyze data. Initial 

results for such system also show that it is very robust, consistent and 

efficient. 

The system will be able to aid clinicians in diagnosing and screening, thus 

ensure higher quality treatment. Moreover, such a system will enable a 

larger population-based study where there can be hundreds to thousands 

of patients, and it is not possible for clinicians to prepare data manually. 

Keywords: segmentation, landmark detection, deep learning, 

convolutional neural networks, learning system, fully automated, MRI, 

mesorectum, colorectum, pelvic dimension, colorectal cancer. 
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1 Introductions 

1.1 Motivations 

Cancer is on the rise, in term of both incident rate and mortality rate. For 

colorectal cancer, it was third in incidence (10.2%) out of 18.2 million new 

cases and second in mortality (9.2%) out of 9.6 million death in both sexes 

worldwide in 2018 alone (Bray et al., 2018). Most of the time it is detected 

at the later stages (III and IV), which severely decreases survival rate (Lee, 

Chew, Chow, Zheng, & Ho, 2015; Siegel et al., 2017).   

Even though the mortality rate can be reduced with early and regular 

screening (Schreuders et al., 2015), success in treatment is one of the most 

crucial factors for survival rate. For rectal cancer surgery, total mesorectal 

excision (TME) introduced by Heald et al (Heald, Husband, & Ryall, 1982) 

in 1982 is the gold standard (Penna, Cunningham, & Hompes, 2017). This 

surgery removes the mesorectum completely (Heald et al., 1982) and has 

superiority over others in term of cure rates and recurrence rate 

(MacFarlane, Ryall, & Heald, 1993). Mesorectum refers to the region of fat 

that embraces the lateral and posterior sides of the retroperitoneal rectum 

(Diop et al., 2003). It contains all the lymphatics that may harbor cancer 

cells, and this is the rationale for removing the entire intact envelope 

within the TME plane (Torkzad, Hansson, Lindholm, Martling, & Blomqvist, 

2007).  
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Mesorectum volume and measurement surrounding it (volume ratio with 

the organ chamber volume, pelvic dimension, etc.) have been shown to 

have impacts on the type of surgery chosen and the immediate as well as 

long term outcomes of the patients (Allen, Gada, & Blunt, 2007; Ishida et al., 

2013; Tayyab, Razack, Sharma, Gunn, & Hartley, 2015; Torkzad & 

Blomqvist, 2005; Torkzad et al., 2007). For the type of surgery, there are 

keyhole (laparoscopic) TME (LTME) and open TME (OTME) (Vennix et al., 

2014). It has been shown that LTME has speedier recovery rate post 

treatment with fewer complications and smaller cosmetic impact on 

patients (Vennix et al., 2014). However, mesorectum volume and pelvic 

dimension play a role in the difficulty of LTME (Allen et al., 2007; Ishida et 

al., 2013).  

It is worth noticing that all of those mesorectum and pelvic measurements 

can be extracted in magnetic resonance imaging (MRI) scans, meaning 

clinicians can give good prediction non-invasively. Currently, almost all 

study concerning the mesorectum utilizes manual segmentation with the 

help of experts. This is a time consuming and costly procedure. 

Upon realizing the importance of the mesorectum volume and other 

parameters around it, this thesis aims to propose a learning computer 

system that in time can provide reliable fully-automated parameter 

extraction of the meso-colorectal scans and hopefully will assist the 

diagnosis of clinicians in the future. The selling point of the system is in its 

ability to learn and grow, with every additional training case that a doctor 
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provides, the system gets closer to human performance. Moreover, once 

the system is implemented, there is no need for a computer expert to 

maintain the system fulltime as the training of the system can be done by 

anyone. 

This first version of the system will consist of two main functions. The first 

one is to segment the mesorectum and the colorectum in order to calculate 

the necessary volume or area. The second function is to find landmarks to 

calculate the pelvic dimensions.  

1.2 Thesis objectives 

The objective of this thesis is to train and implement the first version of a 

computer system that can (1) segment the colorectal and mesorectal 

regions (Figure 1.1) and (2) detect six important landmarks to assist in the 

assessment of colorectal surgery (Figure 1.2, Figure 1.3). For tissue 

segmentation problem, the objective is: to segment and output 3 binary 

masks corresponding with 3 classes (background, mesorectum and 

colorectum). For landmark localization problem, the objective is: to detect 

six landmarks using segmentation approach. 

Moreover, it is also essential to show that such a system can grow with 

more and more training samples. The main assumption is that the region 

of interest is visible in the input images and hence cases of irrelevant 

images are not addressed. 
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Figure 1.1. Training objective for tissue segmentation problem. Left: Input, 

middle: output, right: overlay between input and output 

Figure 1.2. Training objective for top right landmark for landmark 

detection/localization problem. Left: Input, middle: output, right: overlay 

between input and output 
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Figure 1.3. The locations of all six landmarks 

  



 
Chapter 2. Related works 
 

6 
 

2 Related works 

2.1 Region-based segmentation 

Methods in this approach find regions with similar pixel characteristics 

and boundaries can be obtained as a result of segmentation. These 

methods can be supervised or unsupervised. 

For unsupervised methods there can be clustering-based methods 

(Celeux, Forbes, & Peyrard, 2003; Coleman & Andrews, 1979; Yang, Hu, 

Lin, & Lin, 2002; Yao, Duan, Li, & Wang, 2013), region growing methods 

(Adams & Bischof, 1994; Fan, Yau, Elmagarmid, & Aref, 2001) or graph-

based methods that look for region homogeneity (Boykov & Funka-Lea, 

2006; Boykov & Jolly, 2000; Felzenszwalb & Huttenlocher, 2004). For 

clustering-based methods, the image is transformed into a feature space, 

and then clustering rules are applied to form groups (or clusters) in this 

space. Clustering-based methods also consider region homogeneity. The 

rules or features used are mostly local and hence are very sensitive to 

changes. For region growing methods, image is segmented into various 

regions that initially started from seeds. The seeds grow by pixels’ 

characteristics, and it can be stopped by prior knowledge rules. For 

graph-based methods, the image is treated as a graph G = {V,E} where V 

defines the nodes (or pixels) and E defines the edges connecting the 

nodes. The segmentation is done by partition the graph by maximizing or 
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minimizing certain aspects within the partition. Graphs are also usually 

used with Markov theory such as Markov random field (MRF) or 

conditional random field (CRF) in order to build contextual models 

(Lafferty, McCallum, & Pereira, 2001). 

For supervised methods, there can be pixel-level annotation and image-

level annotation. For pixel-level annotation, many state-of-the-art models 

utilize MRF or CRF to find the most probable label for each pixel of an 

image. To label a pixel, we need a unary potential for each pixel and a 

pairwise potential for pairs of neighborhood pixels. To obtain the unary 

potential, we need to train a classifier based on the strong annotation 

provided. The classifier can be random forest (Schroff, Criminisi, & 

Zisserman, 2008), SVM (Furey et al., 2000) or convolutional neural 

network (Krizhevsky, Sutskever, & Hinton, 2012). The pairwise potential 

is defined over a region surrounding the pixel of interest. After that, we can 

perform maximum a posterior inference. For image level annotation, one 

image will only have one label, oppose to a strong annotation meaning 

every pixel is labelled. One can use a form of expectation-maximization 

(EM) algorithm (Duygulu, Barnard, de Freitas, & Forsyth, 2002; Verbeek & 

Triggs, 2007) or multi-instance learning (MIL) which include MI - support 

vector machine (MI-SVM) (Andrews, Tsochantaridis, & Hofmann, 2003),  in 

order to give the attention to the region that have classify the image. Other 

methods include label propagation(Liu et al., 2009) and bounding box 

approaches (Xia, Domokos, Dong, Cheong, & Yan, 2013). However, these 
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approaches based on image-level labels provide very low-quality 

segmentation. To improve quality, semi-supervised approaches are 

proposed wherein between image-level labels, we can use a few strongly 

annotated images. This method when coupled into an EM-based algorithm 

improves the performance significantly (Papandreou, Chen, Murphy, & 

Yuille, 2015). 

2.2 Boundary-based segmentation 

Methods in this approach find region boundaries that differentiate 

between regions and hence, boundaries are obtained directly while 

regions are obtained as a result of that process.  

Some of the notable methods in this approach are gradient based (Delogu, 

Fantacci, Kasae, & Retico, 2007; Geets, Lee, Bol, Lonneux, & Grégoire, 

2007), snakes (active contour) (Chan & Vese, 2001; Kass, Witkin, & 

Terzopoulos, 1988; C. Xu & Prince, 1998), level-set (Leventon, Faugeras, 

Grimson, & Wells, 2000; Li et al., 2011), watershed (Beucher, 1992; Hill, 

Canagarajah, & Bull, 2003), etc. Gradient based method detects 

boundaries based on discontinuity detection. Active contour method, also 

known as snakes, detects boundaries using energy minimizing, 

deformable spline. Snakes requires prior knowledge of the target shape or 

interactions with the user. Level-set method evolves a surface until some 

stop criteria (such as edges) to obtain the contour of a region. Watershed 

method treat image like a topographic map with gradients of the image is 
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the topographic surface. The contours are then the ridges of the image 

that separate the drainage regions.  

2.3 Hybrid approaches segmentation 

These approaches work on both regions and boundaries at the same time. 

Graph cut methods (Boykov & Funka-Lea, 2006; Boykov & Jolly, 2000; 

Felzenszwalb & Huttenlocher, 2004) can be considered a hybrid between 

region-based and boundary-based segmentation since the graph works 

on both nodes and edges.  

Active appearance model (Chen, Udupa, Bagci, Zhuge, & Yao, 2012; 

Mitchell et al., 2002) is a method that deforms shape and appearance of a 

statistical model to match target image. It uses appearance estimation and 

target image’s difference to optimize.  

There are many approaches and methods being developed for semantic 

image segmentation and mentioned above are just some of the notable 

ones. 

2.4 Landmark localization 

There are many landmark localization methods developed for different 

problems such as facial landmark localization (Zhanpeng Zhang, Luo, Loy, 

& Tang, 2014), pose detection (Ramanan & Zhu, 2012), and skull landmark 

localization (El-Feghi, Sid-Ahmed, & Ahmadi, 2004; Richtsmeier, Paik, 

Elfert, Cole, & Dahlman, 1995). 
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Notably for the current problem is the work of Tompson et al (Tompson, 

Jain, LeCun, & Bregler, 2014) where a hybrid network of convolutional 

network and MRF is proposed. This approach provides heatmap images for 

the landmark. Expanding on this work, Payer et al (Payer, Štern, Bischof, & 

Urschler, 2019) encode pseudo-probability of a landmark being located at 

a certain position using such heatmap. The landmark location is then at the 

coordinate where the heatmap has the highest value (Payer et al., 2019). 
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3 Methods 

Three neural network architectures will be explored in this thesis, namely 

U-net, Full Resolution Residual Network (FRRN) and Full Resolution 

Residual U-net (FRRUnet). They are all composed of convolutional layer.  

First, section 3.1 will introduce the proposed approach. An ensemble model 

composed of the three networks will also be explored. Convolutional 

neural networks will be discussed in section 3.2 while the three 

architectures will be discussed in section 3.3 to 3.5. Ensemble model will 

be explored in section 3.6 and neural network training will be described in 

section 3.7. 

3.1 Proposed approach 

Based on the related work of landmark localization, I proposed an 

approach where the heatmap turns into a segmentation map, with the 

landmark lies exactly in the middle of the region. 

Hence, segmentation will be used for both problems. Moreover, due to the 

rise of deep convolutional neural networks, it would be very interesting to 

study the segmentation results of such approach with very limited data and 

how it improves when given more data. Hence, convolutional neural 

networks are used throughout this study. 

There are two objectives for the learning system. The first one is to segment 

the mesorectum and the colorectum. The second one is to localize the 
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landmarks to measure pelvic dimensions and assess the volume of the 

entire boundary surrounding the internal organs. 

Details on segmentation approach using deep convolutional neural 

networks will be explored in subsequent sections in this chapter. 

3.2 Convolutional neural networks 

Convolutional neural networks are neural networks that utilize 

convolutional layer as building blocks. Convolutional layer will consist of K 

number of filters that will transform an input with dimensions H*W*1 into 

H’*W’*K (Figure 3.1). The filter size is 3 by 3 (Figure 3.1). In neural 

networks, a convolutional layer (Krizhevsky et al., 2012; LeCun & Bengio, 

1995; LeCun, Kavukcuoglu, & Farabet, 2010; Simonyan, Vedaldi, & 

Zisserman, 2013) is defined by filter/kernel size, number of filters/kernels, 

padding size and stride size. For a 2D image, 2D filters are normally used. 

But it is also possible to use a 3D filter for a multi-channel image (e.g.: color 

image with RGB channels). It is nonetheless possible to do 2D convolution 

on a 3D volume since each filter is extended through the whole depth of the 

input. Since the thesis deals with grayscale images (one channel), 2D filters 

are used.  

For the current problem, every convolutional layer will have: 

- K filter 

- F*F filter size 

- Stride S 
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- Padding P 

An image with input dimensions W*H*D will have output dimensions 

W’*H’*K with: 

𝑊′ =  
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 

𝐻′ =  
𝐻 − 𝐹 + 2𝑃

𝑆
+ 1 

However, in the current thesis, we used F = 3, S = 1, P = 1, effectively cancels 

out everything beside W and H, hence making W’ = W and H’ = H. 

The weights of each filter are shared for the entire image, constraining 

them to do the same operation on different parts of the image. However, 

different filters in one layer will have different weights, enabling multiple 

feature extraction at each location (LeCun & Bengio, 1995). Moreover, 

since each convolutional layer has multiple filters, there is a risk that all 

filters will converge to the same set of weights, making them effectively 

equal to one filter. Details on how to avoid this will be described and 

explained in 3.6.2 Training procedures. 

Image is downsampled 2 times in order to compress the representation 

and extract important features.  However, the number of filters is doubled 

after every downsampling stage to prevent drastically reducing the 

number of neurons. Overall, there will be 4-6 downsampling and 

upsampling stages with the current input image size of 256 by 256. More 

than that then the latent space dimensions will be too small.  
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Figure 3.1. Overview of convolutional neural network  

This type of convolutional layer is adopted throughout all three 

architecture.  

3.3 U-net 

U-net architecture (Ronneberger, Fischer, & Brox, 2015) is given in figure 

3.2.  U-net follows closely the architecture of an autoencoder, in which the 

inputs are being down-sampled in order to learn more higher abstract 

features and then up-sampled again to output the desired objective, in this 

case, it is the segmented masks of the same size as the inputs. Before each 

step of down-sampling and up-sampling, there are two convolutional 
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layers, and each layer is followed by an activation function. All activation 

functions used before the last layer are rectified linear unit (ReLU) (Dahl, 

Sainath, & Hinton, 2013; Nair & Hinton, 2010; B. Xu, Wang, Chen, & Li, 

2015):  𝑓(𝑥) = max (0, 𝑥).  These activation functions help the network to 

learn the non-linearity in the data. The last layer activation is a Softmax 

function(Bishop, 2006): f(xi)  =  
𝑒xi

∑ 𝑒
xj

j
.  

Moreover, the number of filters for each convolutional layer (number in the 

bracket after layer name in figure 3.2) doubles for each down-sampling 

step and halves for each up-sampling step. The starting number of filters is 

32 (same for FRRN and FRRUNet). Through trials and errors, these 

numbers of filters are found to be producing good prediction accuracy 

while still being able to be loaded into memory. After each down-sampling 

(MaxPooling) layer, the dimensions of the image become H’/2 by W’/2, 

where H’ and W’ are the dimensions of the previous layer. After each up-

sampling layer, the dimensions of the image become 2*H’ by 2*W’, where 

H’ and W’ are the dimensions of the previous layer. Refer to each 

architecture figure for the layer dimensions written in Italic. All 

convolutional layer used padding so that the output dimensions stayed the 

same as the input dimensions. Only after maxpooling and upsampling that 

the image H and W dimensions change, while only convolutional layers will 

change the third dimension (number of channels/filters) (beside reshaping 

and concatenation). 
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Figure 3.2. U-net Architecture 

The most significant difference of U-net compares to an autoencoder is the 

skip connections that connect each down-sampling step with the 

corresponding up-sampling step (Ronneberger et al., 2015). These skip 

connections provide more spatial data that is lost in down-sampling steps, 

hence making the final predictions more robust and smoother. 

Total number of parameters in U-net is 7,846,147 and all parameters are 

trainable. 

3.4 Full resolution residual network (FRRN) 

FRRN architecture (Pohlen, Hermans, Mathias, & Leibe, 2017) is given in 

figure 3.3. The overall architecture is still the same as U-net, downsampling 
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the inputs to extract features and then upsampling to get the desired 

outputs. However, instead of using skip connections to ferry forward 

spatial data, FRRN keeps a full resolution highway (z-stream in figure 3.3). 

The information on this highway is modified after each down-sampling and 

up-sampling step and also before those steps, information from the 

highway is pulled and concatenate with the y-stream (autoencoder 

stream). This kind of highway is shown to help the network learn faster 

with less data. 

Moreover, the building blocks for FRRN are not a simple convolutional 

layer like U-net but are consist of full resolution residual unit (FRRU), 

residual unit (RU) and convolutional batch normalization (Ioffe & Szegedy, 

2015) block (ConvBN block). Details on those building blocks are provided 

in figure 3.3. Basically, an N by N will denote filter size, and the number in 

the bracket will denote the number of filters for each layer. Since this 

network needs to maintain a full resolution highway, it uses more memory 

than U-net with the advantages of faster learning. However, since it uses 

more memory, the number of filters after each MaxPooling and 

UpSampling layer cannot be doubled and halved respectively. Hence the 

number of filters only increases by 16 and 32 for the first two stages and 

the last four stages respectively. Same goes for UpSampling stages. 

The activation functions used before the last layer are leaky ReLUs(B. Xu et 

al., 2015): 
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𝑓(𝑥) = {
𝛼𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
 

Where α is a small constant to keep the gradient alive even if x is negative. 

For this thesis, α is chosen to be 0.3. Batch normalization finds the mean 

and variance of each mini batch and then scale and shift the values 

(subtract the mean and divide by the standard deviation) (Ioffe & Szegedy, 

2015). 

 

Figure 3.3. FRRU architecture 

Total number of parameters in FRRN is 4,263,843. There are 4,255,843 

trainable parameters and 8,000 non-trainable parameters from batch 

normalization layers. 
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3.5 Full resolution residual U-net (FRRUnet) 

This architecture called FRRUnet is a combination of U-net and FRRN 

(Figure 3.4). The proposed model utilized U-net (Figure 3.2) skip 

connections to connect the first two down-sampling (Encoding) and up-

sampling (Decoding) blocks. However, the skip connections for FRRUnet 

have a feature extraction residual unit (RU) before concatenating with the 

up-sampling stream. This is to extract meaningful data instead of just bring 

all the information forward. The rest of the model followed closely that of 

FRRN (Figure 3.3). The number of filters for each layer follows the same 

rule as FRRN because this network also has the disadvantage of using more 

memory, even though it uses less than FRRN because the highway is at half 

resolution. 

Total number of parameters in FRRUnet is 3,973,571. There are 3,966,371 

trainable parameters and 7,200 non-trainable parameters from batch 

normalization layers. 
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Figure 3.4. FRRUnet architecture 

3.6 Ensemble model 

For segmentation problem, an ensemble method (Figure 3.5)(Hansen & 

Salamon, 1990; Perrone & Cooper, 1992) was introduced. This method 

learned how to combine the three base models (U-net, FRRN, FRRUnet) in 

a non-linear manner using an MLP. The base models are frozen and non-

trainable. All outputs for each pixel from all models were concatenated 

along the last dimension and used as input to a 100 hidden-unit MLP.  The 

output dimensions of each model are H*W*3, and the concatenated 

dimensions are H*W*9. The weights/parameters that connected the input 
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to the hidden layer and to the output were shared between all pixels. The 

output dimension of the MLP was the same as the base models. The 

objective of this problem is shown in figure 3.6. 

To create diversity in learning performance and bias, the number of 

downsampling and upsampling was different for each base model. For U-

net, it had 4 stages (Up-Down sampling). FRRN had 6 stages. FRRUnet had 

2 U-net stages and 4 FRRN stages (6 total). It is good to have different 

performance and bias because when the predictions are combined in 

ensemble method there will be more information at different image 

location. If the bias is the same for all network, they will fail at the same 

locations and even combining them will not help to recover from that. 

 

Figure 3.5. Ensemble architecture 
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Total number of parameters in ensemble model is 16,084,864. There are 

1,303 trainable parameters and 16,083,561 non-trainable parameters 

from frozen base models. 

3.7  Neural networks training 

3.7.1 Training objectives 

Figure 3.6. Training objective for tissue segmentation problem. Left: Input, 

middle: output, right: overlay between input and output 

For tissues segmentation, the input and output dimension height (H) and 

width (W) are 256 and 256 respectively. For landmark localization, H and 

W are 296 and 296 respectively due to a padding of size 20. Both tissue 

segmentation and landmark localization have three classes. The 

dimensions are fixed, but since Dicom images are of square ratio, the input 

can be easily resized without losing over structural properties to the 

suitable dimensions. 

For tissue segmentation problem, the objective is quite clear: to segment 

and output 3 binary masks corresponding with 3 classes (background, 

mesorectum and colorectum).  
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For landmark detection problem, the network needed to identify 6 

landmarks and training an ensemble model would require a lot of time and 

resources (each model needed to train 4 times, 3 base models and 1 

ensemble model then time 6 landmarks, total of 24 models). Hence, only 

FRRUnet was used for this problem. The 6 landmarks are used to 

approximate the pelvic dimensions as well as to draw a boundary of the 

chamber that contains the internal organs and they are simply named: top 

left, top right, middle left, middle right, bottom left, bottom right – based on 

their locations on the scan. Traditionally to identify a Cartesian coordinate, 

a regression model is used since the outputs are continuous. However, due 

to the fact that medical images are limited in quantity, it is very tough to 

train a robust regression model. Hence a segmentation approach was 

proposed (Figure 3.7). The point landmark of interest was expanded into a 

small box, termed as the Focus Region, with the point located exactly 

centrally. Moreover, to reduce class imbalance, a larger region was selected 

surrounding the Focus Region, called Attention Region. This region helped 

direct the network attention to the region of interest.  
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Figure 3.7. Training objective for top right landmark for landmark 

detection/localization problem. Left: Input, middle: output, right: overlay 

between input and output 

A general definition of a regression approach is as follow: 

ℎ: 𝑅(𝐻×𝑊) ⇒ 𝑅2 

where the dimensions of the image are H and W pixels for height and width 

respectively. The outputs for such an approach are two real values for x 

and y location. During training, there will only be two feedbacks (back 

propagation (Horikawa, Furuhashi, & Uchikawa, 1992)) from x and y for 

the network to optimize. 

Whereas for a segmentation approach proposed, the whole process was 

divided into two steps: 

ℎ: 𝑅(𝐻×𝑊) ⇒ 𝑅(𝐻×𝑊×3) 

𝑐: 𝑅(𝐻×𝑊×3) ⇒ 𝑅2 

The first step would predict 3 binary masks of the same size as the input. 

These masks corresponded to 3 classes: Focus Region, Attention Region 
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and Background. This would make 𝐻 × 𝑊 feedbacks to the network during 

training since every pixel needed to be classified. The second step was to 

calculate the center point of the region to get the x and y location of the 

landmarks. The formula to calculate the center of the regions is: 

Centroid = (
𝜇1,0

𝜇0,0
,

𝜇0,1

𝜇0,0
)where 𝜇𝑚,𝑛 = ∑ ∑ (𝑥 − 𝑐𝑥)𝑚(𝑦 − 𝑐𝑦)

𝑛
𝑀(𝑥, 𝑦)ℎ

𝑦=0
𝑤
𝑥=0  

Where M is the image moment (Mukundan & Ramakrishnan, 1998).  

Since all neural networks were segmentation (or pixelwise classification) 

networks, their final activation layers were all softmax (Bishop, 2006). 

Softmax calculates the probabilities distribution of each pixel over all 

possible classes. The formula for softmax is: 

f(xi)  =  
𝑒xi

∑ 𝑒
xj

j
 (Bishop, 2006) 

3.7.2 Training procedures 

To train a neural network, an optimizer and a loss function are necessary. 

Loss function gives feedback about how the prediction is different from the 

ground truth (target/objective).  These losses are then back propagated 

throughout the network, and the network’s parameters are tuned using a 

variation of gradient descent called Adam (Kingma & Ba, 2014).  

For a multi-class classification like the current problems, categorical cross 

entropy (Zhilu Zhang & Sabuncu, 2018) was used as the loss function. The 

formula is: 
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l =  − ∑ yi log(pi)
C
i  (Zhilu Zhang & Sabuncu, 2018) 

where 𝑦𝑖 is the ground truth and 𝑝𝑖 is the prediction after a softmax 

activation for each class 𝑖 in 𝐶.  

Adam (Kingma & Ba, 2014) was used as optimizer. The formula for 

updating the parameters is as follow: 

𝑚 = 𝛽1𝑚 + (1 − 𝛽1) × dx 

v = 𝛽2v + (1 − 𝛽2) × dx
2 

x +=  
− learning_rate × m

√v + 𝜀
 

where x is the updated parameter, 𝑑𝑥 is the gradient and 𝛽1, 𝛽2, 𝜀 are 

hyperparameters. After trials and errors, the learning rate was chosen to 

be 0.00005 for the base models and 0.0001 for the ensemble model. The 

hyperparameters were left as recommended from the paper, 

𝛽1: 0.9, 𝛽2: 0.999, 𝜀: 1𝑒 − 7.  

 To address the problem of limited data, augmentation was used. Details 

are in table 3.1. 

For tissue segmentation, additional random horizontal flip was applied.  

Checkpoint was also used to save the best model so far on validation set 

instead of only saving the latest model. 
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Table 3.1. Augmentation used in training 

Deformation Range Example 

Width shift 0.05 

 

Height shift 0.15  

 

Shear 0.05 
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Zoom 0.9 - 1.05  

 

Rotation 8 degree 

 

Brightness [-15, +15] 
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Contrast 0.8 – 1.5 

 

 

Moreover, to prevent overfitting, dropout (Hinton, Krizhevsky, Sutskever, 

& Srivastva, 2014) was used frequently after big layers. Dropout means 

dropping out weights/parameters in the neural network with a predefined 

probability. In this thesis, the chosen probability is 0.5. Dropout also helps 

to prevent the filter from converging into the same set of weights since for 

every training epoch, half of the filters’ weights are set to 0 on random, 

forcing them to learn different features. 

3.7.3 Model retraining 

One of the advantages of a machine learning system is that it can easily be 

retrained. Once additional training data are labelled, one can proceed to 

retrain the neural network models using python scripts. It is up to the user 

to change the hyper-parameters such as learning rate, checkpoint, batch 

size, number of epochs, and even the model architectures. 
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4 Experiments and Discussions 

4.1 Data preparation and preprocessing 

 
A 

 
B 

 
C 

Figure 4.1. Example scans from the extended dataset. A: scan from NUH. B: 

scan from PROMISE 12 dataset. C: scan from 108 Military Hospital. 

4.1.1 Dataset 

Data collected from National University Hospital (NUH) (Singapore), 108 

Military Hospital (Vietnam) and Prostate MRI Segmentation 

(PROMISE12)(Litjens et al., 2014) dataset were used for model training 

and testing. For data collected from hospitals, it was in Dicom format, and 

pyDicom Python package was used to extract the data. Axial scans were 

used. PROMISE12 dataset was already extracted. For PROMISE12 dataset, 

slices that contain the mesorectum section were manually selected. Since 

this dataset focuses on prostate cancer, only a small portion of the slices 

contained the mesorectum. Even though the angle of the axial scans in 

PROMISE was different from colorectal scans, the overall visual was similar 

and the crucial tissues were present (Figure 4.1).  
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FIJI (Schindelin et al., 2012) was used to prepare the ground truth for tissue 

segmentation, and MATLAB (MathWorks, Inc) was used to prepare the 

ground truth for landmark detection.  

4.1.2 Tissue segmentation 

 

 
Figure 4.2. Data preparation procedure for tissue segmentation problem 

For tissue segmentation, a small macro was written to utilize FIJI and its 

Segmentation plugin. The user only needs to open the image and run the 

macro in FIJI and start segmenting like Figure 4.2. The user will need to 

select the corresponding tissue of interest before segmenting. The ‘+’ and 

‘-’ signs will add or subtract the selection into or from the tissue 
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respectively in the label image shown on the right. The tools available for 

region selection are from FIJI toolbars such as polygon, eclipse and 

freehand etc. Once finished, the label will be saved to the training folder. 

4.1.3 Landmark location 

For landmark detection labelling, a MATLAB script was written to assist 

human/trainer/user in quick data preparation. The user will mark the 6 

landmarks, press enter once to show the confirmation points in red 

squares (Figure 4.3). If the user is not satisfied, they can proceed to re-

labelling the location. Once the user is satisfied with the marking, press 

enter without selecting any point on the confirmation screen will bring the 

next image. 

Figure 4.3. Data preparation procedure for landmark detection/ 

localization problem. 



 
Chapter 4. Experiments and Discussions  
 

33 
 

4.2 Test procedures 

Training and testing are executed in my PC with the following 

specifications. The graphical processing unit (GPU) was NVIDIA GTX 1080 

(NVIDIA Corporation), and the central processing unit (CPU) was an Intel 

CPU core i7-7700 (Intel Corporation) at clock speed 3.6 GHz. Single 

threading was used for CPU workload. The neural network programs are 

implemented using Keras (Chollet, 2017) and Tensorflow (Abadi et al., 

2016) in Python 3. 

The main test results will only be the NUH test dataset. The pixel resolution 

for this dataset with image height and width of 256 by 256 is 0.703125 mm. 

All Dicom images are of square ratio and hence resizing images to 256 by 

256 will not affect the tissue structures. All measurements reported will be 

in real-world scale.  

4.2.1 Tissue segmentation 

To show that those additional data were helpful even though they were not 

from the exact problem, the segmentation model was trained with the 

original NUH data only that consist of 4 training samples, 2 validation 

samples and 8 testing samples; and with the extended data set (NUH + 108 

Military Hospital + PROMISE 12) that consist of 102 training samples, 27 

validation samples and two set of testing data. The first testing set was the 

original 8 testing samples (NUH dataset), and the second set is the 

extended one with 18 testing samples (NUH + 108 Military Hospital).  



 
Chapter 4. Experiments and Discussions  
 

34 
 

The main scores usually used to assess a segmentation against a ground 

truth are Dice score(Crum, Camara, & Hill, 2006; Milletari, Navab, & 

Ahmadi, 2016), sensitivity (true positive) and specificity (true negative) 

(Altman & Bland, 1994): 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒  =  
2 × |𝐴 ∩ 𝐵|

2 × |𝐴 ∩ 𝐵| + |𝐵\𝐴| + |𝐴\𝐵|
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

            , where TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

Those scores were used to assess tissue segmentation robustness and 

accuracy. Dice score is the main benchmark for accuracy as it is based on 

overlapping index between the prediction and ground truth of each tissue 

and hence is not susceptible to class imbalance. 

4.2.2 Augmentation ablation study 

Beside additional data, image augmentation plays an important role in 

preventing overfitting as well as increasing model accuracy. Beside the 

basic augmentations such as image shifting, zooming and flipping, this 

thesis also utilized contrast and brightness shifting as well as rotation. To 
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show the usefulness of contrast-brightness shifting and rotation in training 

the model, a comparison between no augmentation, only contrast-

brightness shift, only rotation and all augmentation will be studied. The 

model used is FRRUnet and the score for comparison is dice score. 

Extended dataset was used for training and testing. 

4.2.3 Landmark localization 

Once the extended dataset was proven to be useful, the full dataset (NUH + 

108 Military Hospital + PROMISE 12) was used for training (102 samples), 

validating (27 samples) and testing (18 samples) of the landmark detection 

network.  

Intraclass correlation coefficient (ICC) is a statistical measurement used 

extensively in the study of reliability between observers (inter-observer) 

and within single observer (intra-observer)(Koo & Li, 2016). It is chosen to 

be the primary benchmark to measure how well the machine learns to 

mimic human trainer as well as to compare between approaches. ICC 

values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9 and 

greater than 0.9 are considered poor, moderate, good and excellent 

reliability respectively (Koo & Li, 2016). There are many types of ICC, the 

one chosen in this experiment is two-way, single score, absolute agreement 

ICC based on guideline paper (Koo & Li, 2016).  

𝐼𝐶𝐶 =  
𝑀𝑆𝑅−𝑀𝑆𝐸

𝑀𝑆𝑅+(𝑘−1)𝑀𝑆𝐸+
𝑘

𝑛
(𝑀𝑆𝐶−𝑀𝑆𝐸)

, 

where: MSR = mean square for rows 
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MSE = mean square for error 

MSC = mean square for columns 

n = number of subjects 

k = number of raters/measurements 

Since the location of a single landmark is two dimensional (x and y), ICC is 

calculated for each dimension and average to obtain the final reliability 

score. Average distances between predicted location and human marked 

location are also used to give a more well-rounded perspective. 

4.2.4 Machine learning system efficiency 

Training time and testing (inference) time are recorded across multiple 

runs to show the efficiency of the system. 

The training time for FRRN, U-net, FRRUnet and Ensemble model are 

260ms/step, 106ms/step, 202ms/step and 76ms/step respectively for a 

batch size of 3 per step.  All models are trained for 10 steps per epoch with 

2000 epochs. The total training time for FRRN, U-net, FRRUnet and 

Ensemble model are 86 minutes, 35 minutes, 67 minutes and 25 minutes 

respectively. Ensemble model training is much quicker than other models 

even though it is bigger is due to almost all parameters are frozen and it 

only has around one thousand trainable parameters. 

The inference time for Ensemble and FRRUnet model was recorded as they 

were the final models used for result analysis. For Ensemble model, the 
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prediction time per scan is 0.05 ± 0.0036 seconds. If the whole extended 

test dataset (18 samples) were loaded on memory and prediction was run 

on the whole set, the prediction time reduce to 0.036 ± 0.00024 seconds 

per scan. For FRRUnet model, the prediction time per scan is 0.03 ± 0.0025 

seconds. If the whole extended test dataset (18 samples) were loaded on 

memory and prediction was run on the whole set, the prediction time 

reduce to 0.017 ± 0.00034 seconds per scan.  

4.3 Tissue segmentation results and discussions 

The results of the scores are presented in table 4.1, 4.2 and 4.3 for three 

experiments. Scores in bold are the highest in the current column of that 

tissue while scores with an underline are the lowest. However, for many 

cases, the performances are so close that there is no real single highest or 

lowest score. 

Dice score shows the overall segmentation quality and is one of the main 

benchmarks used to compare between models and experiments. 

This section contains 3 experiments to show the machine robustness and 

potential in colorectal MRI image tissue segmentation. For the first test, the 

models were only trained and tested on NUH dataset. The results are 

shown in table 4.1. Overall, ensemble model managed to capture more 

general patterns and the final Dice scores for mesorectum and colorectum 

segmentation.  
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Table 4.1. Test results from training and testing on original NUH dataset 

 
Dice Sensitivity Specificity 

Mesorectum 

U-net 75.41 ± 7.05 87.74 ± 4.01 98.10 ± 0.84 

FRRU 79.38 ± 5.70 84.86 ± 6.37 98.81 ± 0.31 

FRRUnet 75.91 ± 8.99 71.96 ± 12.93 99.35 ± 0.20 

Ensemble 79.98 ± 7.17 76.37 ± 11.41 99.44 ± 0.23 

Colorectum 

U-net 86.31 ± 4.87 85.54 ± 4.90 99.63 ± 0.31 

FRRU 85.32 ± 7.98 83.67 ± 9.65 99.64 ± 0.28 

FRRUnet 80.86 ± 11.28 81.97 ± 13.00 99.22 ± 1.42 

Ensemble 88.11 ± 6.10 87.79 ± 7.22 99.61 ± 0.65 

The second test (table 4.2) is to show the learning system potential in the 

future, by expanding the training set while keeping the test set to be the 

same. The dice score increases nearly 8% for mesorectum segmentation 

which is one of the main objectives of the thesis. The colorectum 

segmentation has mixed results, dice score still has an average increase of 

2.4%, with a sharp increase in FRRU model and a slight decrease in U-net 

and Ensemble. Overall, expanding the dataset results in a net increase in 

the performance of the networks.  
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Table 4.2. Test results from training on extended dataset and testing on 

original NUH dataset 

 
Dice Sensitivity Specificity 

Mesorectum 

U-net 81.26 ± 5.21 88.40 ± 5.48 98.81 ± 0.39 

FRRU 85.09 ± 3.69 84.39 ± 8.15 99.45 ± 0.35 

FRRUnet 83.17 ± 5.49 91.44 ± 3.12 98.85 ± 0.47 

Ensemble 85.69 ± 4.31 91.38 ± 4.19 99.11 ± 0.40 

Colorectum 

U-net 85.67 ± 5.88 76.66 ± 7.97 99.95 ± 0.05 

FRRU 92.09 ± 3.13 88.11 ± 5.71 99.91 ± 0.07 

FRRUnet 82.82 ± 7.32 73.05 ± 11.32 99.93 ± 0.07 

Ensemble 87.95 ± 5.56 80.63 ± 8.42 99.94 ± 0.06 

 

The slight decrease in performance in some models might be because the 

networks now need to learn a larger dataset with possibly more complex 

patterns and in order to have a better generalization, it loses some specific 

patterns in the original dataset. Hence for the third experiment (table 4.3), 

the test set is also expanded. Indeed, both the mesorectum and colorectum 

got an increase of around 6.5% compared to the original dataset. 
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Table 4.3. Test results from training and testing on extended dataset  

 
Dice Sensitivity Specificity 

Mesorectum 

U-net 80.99 ± 10.79 89.24 ± 7.86 99.02 ± 0.75 

FRRU 82.30 ± 5.38 80.20 ± 8.78 99.59 ± 0.30 

FRRUnet 82.53 ± 7.42 87.19 ± 6.47 99.24 ± 0.50 

Ensemble 85.08 ± 5.70 88.49 ± 5.96 99.40 ± 0.40 

Colorectum 

U-net 90.76 ± 6.17 85.65 ± 10.04 99.95 ± 0.04 

FRRU 92.39 ± 2.99 92.18 ± 6.66 99.86 ± 0.09 

FRRUnet 88.46 ± 7.81 86.49 ± 14.25 99.85 ± 0.12 

Ensemble 91.49 ± 5.30 89.71 ± 9.99 99.89 ± 0.08 

 

In conclusion, these experiments show that the models can learn to 

segment important tissues with high accuracy as well as sensitivity and 

specificity. Moreover, the potential of a learning system is clearly proven 

as given more data, the model improves significantly. 

4.4 Augmentation study results and discussions 

Results are shown in table 4.4. It clearly shows the importance of data 

augmentation in training deep neural networks, especially in the case of 

limited data.  
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Table 4.4. Test results of various augmentation configuration from 

training and testing on extended dataset  

Configuration Mesorectum Colorectum Background 

No augmentation 59.38±10.2 71.60±26.58 99.08±0.34 

Brightness + 

contrast 

63.45±12.94 75.81±8.92 99.09±0.47 

Rotation 73.59±7.08 77.08±21.27 99.40±0.26 

All augmentation 82.53±7.42 88.46±7.81 99.66±0.13 

 

4.5 Landmark localization results and discussions 

No landmark in regression approach obtains excellent reliability and only 

one location has good reliability while half of the landmarks in the 

proposed segmentation approach receive excellent scores and one receive 

a good score. For the rest of the landmark in the segmentation approach, 

the ICC is still larger than the one in regression approach by several folds. 

The details of the results are shown in table 4.5. 

 

 

 

 

 

 



 
Chapter 4. Experiments and Discussions  
 

42 
 

Table 4.5. ICC score and average distance of predicted landmarks against 

human markers 

 

To explain why for the proposed segmentation approach the ICCs for some 

landmarks are low but the average distances are still close to human marks, 

we look at ICC in more details. ICC considers both the distance between two 

raters as well as the trend in marking of both raters. If all top right x 

 
Top left Top 

right 

Middle 

left 

Middle 

right 

Bottom 

left 

Bottom 

right 

Regression 

ICC x 0.806 0.481 0.236 0.132 0.034 -0.109 

ICC y 0.867 0.795 0.731 -0.123 -0.001 0.009 

Average ICC 0.837 0.638 0.484 0.005 0.016 -0.050 

Average 

Distance 

(mm) 

6.858 ± 

3.699 

11.901 ± 

4.205 

9.999 ± 

7.367 

25.546 ± 

12.756 

20.540 ± 

5.781 

27.385 ± 

7.798 

Segmentation 

ICC x 0.934 0.805 0.947 0.974 0.298 0.222 

ICC y 0.884 0.931 0.906 0.960 0.836 0.556 

Average ICC 0.909 0.868 0.927 0.967 0.567 0.389 

Average 

Distance 

(mm) 

5.617 ± 

3.373 

5.726 ± 

1.963 

4.022 ± 

2.173 

3.339 ± 

1.398 

4.354 ± 

1.737 

4.686 ± 

1.936 
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coordinates in the segmentation approach are subtracted by 10, meaning 

the trend between samples is still the same, the ICC drop to 0.384 from 

0.805. This explains why bottom point predictions have low ICC but shorter 

distances to human markers. Visualization for x coordinate of top right and 

bottom right landmarks further proves the point. The top right x 

coordinate predictions follow the human marks not just in term of distance 

but also the bias (the overall trend). The bottom right x coordinate 

predictions might be closer to human’s but the overall trend between 

human and machine looks random. For regression method, if the distance 

is too great, no matter how close the trend is between two raters, the ICC 

will still be very low.  

Overall, this proves that the proposed segmentation approach is superior 

by a large margin in all landmark detection, especially in the case of limited 

training data. Moreover, it can be concluded that the proposed 

segmentation approach can detect the landmark reliably. 

4.6 Learning system analysis 

The whole result analysis process for a single volume of 30 scans takes only 

a few seconds to finish with commercially available hardware. Moreover, 

once the system is trained, its prediction is deterministic, meaning with the 

same input it will always produce the same output. So, the consistency is 

high. Finally, in term of robustness and accuracy, it is shown in the first two 

sections of this chapter that the machine can learn from human with high 
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sensitivity and specificity. Nonetheless, with more training data, the 

machine proved to be improving significantly.  

Normally, a deep neural network needs huge amount of data (can come up 

to millions of samples) in order to predict with high accuracy. However, 

there are two main reasons why the current neural network system needs 

much fewer data. Firstly, the system adopts a segmentation approach, 

which is very rich in information for labelled data. Every pixel has a label, 

not just one label for the entire image like normal classification task. Thus, 

making back propagation information rich and hence making the network 

learn faster. Secondly, there are much fewer data variations in medical 

images. Unlike normal real life images in which the main object can have a 

lot of variations (e.g.: for a cat it can be black, brown or it can be sitting, 

standing, hiding etc.), medical images always have a standard operation 

during the image capture process and the tissue general location and 

orientation should be similar between images. 

The visualization of the segmentation and landmark localization results 

can be found in the appendix. One example of not up to standard 

segmentation is shown here in figure 4.5. This might be due to the tissues’ 

boundaries are not clearly seen and the network detected the wrong 

boundaries.  
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Figure 4.5. An example output from the machine (left) compare to human 

(right). Segmentation result here needs improvement 
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5 Future works and Conclusions 

5.1 Future works 

The current prototype of the learning system is proved to be robust, 

consistent and efficient. However, as of the current state, it still lacks a 

quality check and exception catching function. Exception catching 

implementation is a matter of software development and should be 

implemented in the future.  

For prediction quality check, the preliminary algorithm is already thought 

out. For tissue segmentation, a simple clustering algorithm can be used 

because of the prior knowledge that for one axial scan, there should be only 

one or two clusters of mesorectum and colorectum. For landmark 

detection, a confidence score is proposed due to the nature of the 

segmentation approach. Confidence score is based on the predicted shape 

of the Focus region, if it follows a square with a fixed side length the 

confidence will be higher and vice versa.  

Another technical limitation is from the landmark localization approach. 

Since it needs a surrounding region from the point of interest, it might not 

work if the point is too close to the border. The problem was faced in this 

study for the bottom landmarks. However, it was solved by adding a 

padding border with the width similar to half of the focus region side 

length. 
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The networks are deterministic with the same input; however, it was not 

tested against augmented or adversarial inputs. This will be a very 

interesting study for the future. 

Another limitation is the lack of hyper-parameter tuning such as which 

number of filters is optimal for each layer. This is due to the search space 

for this problem is large while time and resources are limited. However, in 

the future, a thorough grid search to arrive at optimal hyper-parameter 

values will be appreciated. 

As an exploratory study, there is an obvious lack of data and expert 

trainers. However, thanks to the nature of this thesis objective, a working 

prototype of a learning system is successfully implemented and proven to 

be able to improve significantly with more data and trainers. Moreover, 

since the point of machine learning system proposed is to allow doctors or 

medical experts to be able to teach the machine themselves, the system has 

the potential to be very close to an expert if it is put into a clinical setting 

usage. Hence, in the future, with more data and expert trainers, the system 

can be much better. 

5.2 Conclusions 

Advancement in screening and diagnosing is vital in the control and 

treatment of colorectal cancer. Analyzing and quantifying the mesorectum, 

colorectum, as well as pelvic structures, can lead to a more suitable surgery 

option as well as reduce complications and increase long term survival rate 
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for patients. It is true that many procedures are time-consuming with intra- 

and inter-observer variability. However, statistically, with more trainers 

(observers), the results should calibrate toward a ground truth. 

Hence, a learning system has been proposed. With this system, many 

clinicians can train the machine together without the expert knowledge in 

coding. Moreover, with many expert trainers, the machine is bound to 

perform much better, with it being able to get very close to a ground truth 

is entirely possible. 

Currently, the system can segment and measure the mesorectum and 

colorectum volume as well as pelvic dimension and quantify the overall 

structure of the boundary that contains the internal organs. With a modular 

approach, the system can do much more, as long as an explicit objective 

function is described, and proper training data is prepared. 

Moreover, such a system like this, besides aiding clinicians, will enable 

large population study between the structures of mesorectum, colorectum, 

etc. and prognosis, risk factors and many other aspects. Many potential 

links and correlations can be found that is difficult before due to the tedious 

nature of labelling the data. 

In conclusion, a learning system is introduced that can quantify many 

structural parameters that can help in the assessment of colorectal cancer 

surgery with high robustness, consistency and efficiency. Such a system is 
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also able to improve itself with clinicians’ input and training, making it 

future proof.   
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Appendix 

Figures comparing the machine predictions (left) and human labels 

(right) for NUH test dataset. 
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