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Abstract 

3D building models have a wide range of applications. A reconstructed 3D building 

model can be used for virtual reality, games, films and city planning. There are three 

main approaches for 3D building reconstruction from images: Laser Scanning, 

Structure-from-Motion (SfM) and Multi-View Stereopsis (MVS). Laser Scanning is 

accurate, but expensive and limited by the range of the laser. Both SfM and MVS 

recover 3D buildings from multiple images. SfM recovers 3D data as well as camera 

positions and orientations from a sequence of input images. MVS methods, especially 

patch-based MVS (PMVS), apply various geometric constraints to determine point 

correspondence, and thus can achieve higher accuracy and often recover denser 3D 

point cloud than do SfM methods. Complex algorithms need to be applied to the point 

cloud to construct mesh surfaces. But, the recovered point cloud can have missing 

data points in regions that lack features for matching, making recovery of complete 

surface difficult.  

  This thesis presents a robust reconstruction of textured surfaces from 3D point 

clouds given by patch-based MVS method. To a good first approximation, a 

building’s surface can be modeled by either a flat plane or a curve surface, when the 

scene depth is much smaller than the distance of the building to the camera. 

Therefore, simple surfaces can be fitted into the point cloud. Then, 3D points are 

resampled on the fitted surfaces in an orderly pattern, whose colors are retrieved from 

the input images. This approach is thus simple, inexpensive and effective for 
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recovering textured surfaces of buildings. Test results show that such 3D mesh models 

are sufficiently accurate and realistic for 3D visualization in many applications. 

Keywords:  

3D Building Reconstruction, Multi-View Stereo, Surface Fitting, Mesh Surface 

Reconstruction  
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1. Introduction 

1.1 Motivation 

3D building models have a wide range of applications. A reconstructed 3D building 

model can be used for virtual reality, games, films and city planning. For heritage 

preservation, reconstructed 3D model of a historical building can be stored in a digital 

library.     

There are three main approaches for 3D building reconstruction: namely laser 

scanning, Structure-from-Motion (SfM) and Multi-View Stereopsis (MVS). Laser 

scanning [1,4,8,9,14,36] is very accurate and efficient, but requires an expensive laser 

scanner, and is limited by the range of the laser. Both SfM and MVS recover 3D 

buildings from multiple images. SfM recovers 3D data as well as camera positions 

and orientations from a sequence of input images [2, 6, 7, 17, 18, 28, 29, 33, 34, 37]. 

The required camera parameters can be calibrated explicitly or computed by 

self-calibration methods. MVS methods apply various geometric constraints to 

determine point correspondence for triangulation of 3D points given known camera 

parameters [13, 20, 26]. MVS methods, especially patch-based MVS (PMVS) [12, 13, 

15, 20, 23, 24], can achieve higher accuracy [30] and often recover denser 3D point 

cloud than do SfM methods.    

This thesis presents a robust reconstruction of textured surfaces from 3D point clouds 

given by patch-based MVS method. Building’s surfaces are modeled by either flat 

planes or curve surfaces. This is a good first approximation when the scene depth is 
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much smaller than the distance of the building to the camera, which holds true for 

many contemporary architectural design. Therefore, simple surfaces can be fitted into 

the point cloud, and then 3D points are resampled on the fitted surfaces in an orderly 

pattern, whose colors are retrieved from the input images. This approach is thus 

simple, inexpensive and effective for recovering parametric textured surfaces of 

buildings. Test results show that such 3D mesh models are sufficiently accurate and 

realistic for 3D visualization in many applications. 

 

1.2 Thesis Objective  

The main objective of this thesis is to develop a pipeline for 3D reconstruction from 

multiple views for buildings with curved surfaces, with the following criteria 

1) The reconstructed surfaces should be complete with colour texture without 

holes or missing texture.   

2) Multiple surfaces of a building should be accurately reconstructed. 

1.3 Thesis Organization 

Next, literature review is discussed in chapter 2. Then, the three main stages of our 3D 

reconstruction pipeline are elaborated in chapter 3. Next, reconstruction results 

including point cloud, meshes and 3D model with reconstructed surface will be 

displayed in chapter 4. Finally, I will conclude this paper in chapter 5.  
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2. Literature Review 

Various methods have been used for the acquisition of 3D shapes of objects in the 

past. There are two main categories, namely active methods and passive methods. 

Active methods use specially controlled light sources to illuminate the scene and 

acquire 3D data from the illuminated patterns. These methods include time-of-flight, 

shape-from-shading, structured light, active stereo, and photometric stereo [27]. They 

are computationally less demanding than do passive methods, since special controlled 

light is used to simplify the 3D acquisition process. Laser scanning and structure light 

are already used in commercial products. But they are limited to scenes, where special 

controlled illumination can be properly applied.  

  Passive methods acquire 3D data only from input images, without using controlled 

light. Based on the numbers of view points, passive methods can be further 

categorized into two groups. Methods such as shape-from-texture, shape- 

from-occlusion, shape-from-defocus, and shape-from-contour acquire 3D data from 

single view point [27]. Due to the nature of the features used, these methods are 

restricted to scenes that are rich in the required features, and they tend to be less 

accurate than active methods. Methods such as passive stereo, multi-view stereo, 

structure-from-motion, shape-from-silhouettes acquire 3D data using images captured 

from two or more view points [27]. 

  Among the above methods, laser scanning, structure-from-motion, and multi-view 

-stereo have been successfully demonstrated for 3D reconstruction of buildings and 

street scenes. Laser scanning is very accurate and efficient, but requires an expensive 
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laser scanner, and is limited by the range of the laser. In reconstructing large historic 

sites, laser scanning is often used together with other data such as engineering 

drawing, aerial images, ground-plane images, etc. [1,4,8,9,14,36] 

  Structure-from-motion (SfM) methods recover 3D data as well as camera positions 

and orientations from a sequence of input images [2, 6, 7, 17, 18, 28, 29, 33, 34, 37]. 

The required camera parameters can be calibrated explicitly or computed by 

self-calibration methods [16]. MVS methods apply various geometric constraints to 

determine point correspondence for triangulation of 3D points given known camera 

parameters [13, 20, 26]. MVS methods, especially patch-based MVS (PMVS) [12, 13, 

15, 20, 23, 24], can achieve higher accuracy [30] and often recover denser 3D point 

cloud than do SfM methods. PMVS can produce dense oriented rectangular patches 

with center vectors and normal vectors. Each patch can be projected into multiple 

images viewing it (See Fig. 1).  

 

Fig. 1. Projection of 3D patches in multiple views. 

An initial point cloud can be established through feature matching with Harris and 

Difference of Gaussians operators. Then, after procedures of patch initialization in 

neighboring image cell, patch optimization with respect to center vector and normal 
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vector, patch expansion and filtering, the point cloud gradually becomes dense. Since 

PMVS uses a weak form of regularization during patch expansion and filtering, it can 

recover a dense 3D point cloud, but also contain many outliers. Moreover, point cloud 

recovered by PMVS has large empty regions, which are not successfully 

reconstructed (see Fig. 2). Hence, PMVS is suitable to recover an initial point cloud 

from multiple views. Then, further techniques are needed to refine the point cloud and 

recover the missing region on the surface of building.  

 

Fig. 2. Point cloud recovered by PMVS. Empty regions are not successfully reconstructed. 

 

SfM and MVS may be used together in a pipeline with MVS serving as the refinement 

stage [6, 25]. Sophisticated algorithms are required to reconstruct mesh surfaces from 

point cloud. For example, [10,13] use Poisson surface reconstruction method [21], and 

[20,22] employ graph cut algorithm with geometric constraints. 
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3.  Algorithms 

3.1  Overview of Algorithm 

This proposed algorithm continues from where PMVS ends. The pipeline for 3D 

reconstruction consists of three main stages as below: 

• Stage 1: Recover a 3D point cloud of a building using PMVS.  

• Stage 2: Reconstruct main surfaces from 3D point cloud by Robust Surface 

Fitting (chapter 3.3) and Splitting (chapter 3.4). 

• Stage 3: Resample 3D points to refine surfaces (chapter 3.5).  

First, the Bundler algorithm [31] is applied to the input images to extract matching 

feature points and camera parameters. Then, we apply PMVS to recover a 3D point 

cloud in stage 1. The reason to choose PMVS is that it can output a dense point cloud, 

which describes the overall structure of the building. In stage 2, I will perform robust 

surface fitting algorithm to obtain the parametric equation of the underlying surface. 

A robust surface splitting algorithm is also introduced to split the input 3D point cloud 

into multiple partitions for fitting different surfaces. In stage 3, 3D points are 

resampled on the fitted surfaces, and their colors are retrieved from frontal images.  

  For a large building, a single point cloud cannot cover the full extent of the 

building. In this case, multiple point clouds can be recovered for different parts of the 

building, and our algorithm can be applied to reconstruct different parts of the 

surfaces, which can then be aligned and merged together. 
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3.2  3D Point Cloud Recovered by PMVS 

First, the Bundler algorithm [31] is applied to the input images to extract matching 

feature points and camera parameters. Next, PMVS algorithm [11, 12, 29, 32] makes 

use of the matched feature points and projection matrix of each view to recover an 

initial 3D point cloud with color information. Then after several iterations of patch 

optimization and patch expansion, the point cloud gradually becomes dense.  

Even though PMVS can generate dense point cloud, there still remain large empty 

regions, which are not successfully reconstructed. Also, points do not lie on the same 

plane due to inaccuracy on their 3D coordinates. (See Fig. 3)  

Hence, in order to overcome these defects, a robust surface fitting algorithm will be 

introduced in the next chapter to compute an accurate surface parametric equation of 

the building.   

  

(a)                                      (b) 

Fig. 3. Point cloud of Old Stamford House recovered by PMVS. 

(a) Right plane of the building. Many regions of the plane are empty. 

(b) Top-down view. Points don’t lie on the plane 
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3.3  Robust Surface Fitting Algorithm 

3.3.1  Plane Fitting  

To a first approximation, buildings consist of planes. So, it is natural to fit a plane into 

the point cloud and then reconstruct the whole plane of a building. But, as we zoom 

into the point cloud, we find that 3D points generally do not reside in the same plane. 

Although these points can provide some depth information about the structure, this 

depth information is usually quite small, and even not reliable at the very first place. 

Hence, there is a trade-off between the overall structure and the small depth 

information of a building. In our work, the geometrical accuracy of the overall 

structure determines the entire reconstruction process and is thus much more 

important than the small depth information which is negligible. Therefore, a plane 

will be used to cover one facet of a building. Initially, we will use an estimated line to 

split the point cloud given by PMVS, and use those 3D points near the target plane for 

plane fitting.   

A plane in 3D space can be defined as   

z =S (x, y) = b1 x + b2 y + b3  (1)                  

Then 3D points (xi , yi , zi) around the facet of building can be fitted into this plane, and 

be written into a system of n linear equations as below 

    ,  (2)  
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 which can also be written in a matrix form:    

Z = M B      (3) 

The plane surface parameters B can be solved using Least Square method. 

Next, we need to refine this plane by discarding points with large distance to the plane 

(see Fig. 4). And then, we use this newly filtered point set to solve equation system 

(2) again, and get more accurate plane parameters B until the sum of square errors of 

projection distance to the plane is smaller than a threshold. I will illustrate more about 

this iterative refinement process in chapter 3.3.3 Robust algorithms. 

  
(a)                                (b) 

 
(c) 

Fig. 4. Fitted plane of Old Stamford House. (a) point cloud with outliers before plane fitting  
(b) fitted points lie on a single plane (c) right view of the plane 



	   10	  

3.3.2  Curve Surface Fitting  

Curved surface can have various shapes and it is thus more complex to reconstruct 

than a plane. Since most buildings with curved surface exist in cylinder or parabola 

form, we can use second order polynomial functions to determine its shape. If the 

curved surface is more complex and varied, we can define it with a spline function 

and split it into different parts, of which each can be estimated using second order 

polynomial function. Or, we can use higher order polynomial function for more 

complex shapes in the same manner. Our current implementation restricts to planner 

and quadratic surfaces which are sufficient for the test cases. The type of surface is 

specified by the user. 

A second order polynomial function can be defined as: 

z = S (x, y) = c20 x2 + c02 y2 + c11 xy + c10 x + c01 y + c00      (4) 

All the points (xi , yi , zi) belong to the curved surface region can be fitted into function 

(4), and be organized into a system of equations as below 

  

€ 

z1


zn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

x1
2 y1

2 x1y1 x1 y1 1
     
xn

2 yn
2 xn yn xn yn 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

c20


c00

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 ,  (5) 

which can also be written into a matrix form as    

Z = N C        (6) 
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(xi , yi , zi) is known from the point cloud, and the curve surface parameters C can be 

solved using least square method. With C determined, we will have a explicit 

parametric equation (Eq. (4) ) of the curve surface (See Fig. 5).  

  

(a)                                  (b) 

Fig. 5. Fitted curve surface of Old Stamford House. 3D points lie on the curve surface given 

by Curve Surface Fitting algorithm. (a) top view of the curve surface. (b) frontal view of the 

curve surface. 

 

 

3.3.3  Robust Algorithm 

If the surface fitting algorithm is only performed once, many outliers which don’t stay 

on the surface, will be included into the point set for surface fitting. As a result, the 

surface parameters are not accurate. In order to refine surface parameters, we need to 

discard these outliers by iteratively running surface fitting algorithm. 
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The error term can be defined as  

ei = ( zi – S (x, y) )2       (7) 

Then, we compute the median of squared error, and denote it as E  

€ 

E = median
i

(ei)        (8) 

The simplified robust algorithm is summarized as below: 

P* : 3D point set for surface fitting  τ : minimum error 

k : minimum number of inliers     

Step1: Initialization: P* ← Original 3D points , E ← ∞ 

Step2: Repeat while ( E >τ and |P*|>k ) : 

   (1) Fit a surface S to the point set P*   

   (2) Compute robust error E of S on P*  

   (3) Remove points with residual ei ≥ E from P*  

 

Empirical tests show that a threshold of τ = 5×10−7 gives good results. Figure 6 

shows that the algorithm can converge within a small number of iterations and the 

solution has very small error. Although standard robust algorithm such as RANSAC 

may be used, the above algorithm is much more efficient than RANSAC. It is stable 

and accurate because of large number of inliers available in the point cloud for 

accurate fitting. 
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Fig. 6. Convergence curve of robust surface fitting. Median error E drops after each surface 

fitting iteration. 

After each refinement, points with relatively large error terms will be regarded as 

outlier and get rejected, and thus set P* becomes finer. With each newly filtered set 

P*, the surface parameter C gets refined.       

If we only perform one iteration of surface fitting, sort (ei) in ascending order and take 

n points with smallest ei to calculate surface parameter C, this would result in large 

inaccuracy of curve surface parameter C. This can be observed from Fig. 6, where the 

median error E in 1st iteration is significantly larger than median error in 2nd iteration 

and afterwards. That’s because the 3D point set P for 1st iteration of surface fitting, 

contains many outliers. Therefore, it is necessary to reject  outliers gradually, based 

on a more and more accurate surface parameter C, which gets refined after each 

iteration of surface fitting.  

The accuracy of parameter C is critical to determine the shape of curved surface. It 

helps to avoid seams when joining a curved surface and a plane together, which will 

be elaborated in the following chapter 3.4 . Moreover, the accuracy of parameter C is 
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crucial to establish a correct correspondence between a 3D point on the curved surface 

and a 2D point in its viewing image.  

Below is an example of a curved surface region of old Stamford House. Before the 

curved surface refinement, there are 34673 points including outliers, e.g. Traffic lights 

ahead of a building, and background noise (see Fig. 7a). After refinement, the shape 

of the curved surface is much clearer and finer. Only 7462 points are used to compute 

the curved surface parameter. Outliers and other non critical points have been rejected 

(See Fig. 7b). 

   

                 (a)                                     (b) 

Fig 7.  3D points near the curve surface. Fig. 7 shows a bottom view of the curve surface 
region of Old Stamford House. (a) 3D points around a curved surface. Many outliers exist 
before the robust fitting algorithm. (b) Inliers identified by the robust fitting algorithm, lie 
very close to the fitted surface. 
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3.4  Robust Surface Splitting Algorithm 

3.4.1  Robust Surface Splitting 

Robust surface fitting algorithm in chapter 3.3 fits one single surface to a 3D point 

cloud. Now, I will show how to split input 3D point cloud into multiple partitions for 

fitting different surfaces independently. 

Two non-parallel surfaces of the following forms: 

      surface 1:  z = S1 (x, y)  

      surface 2:  z = S2 (x, y)  

The multiple views of the building are taken in such a way that the depth direction of 

the building is always on z direction.(See Fig. 8.) 

 

Fig. 8. Point cloud in the world coordinate. z is the depth direction.   
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Define function D(x, y, z) as the absolute difference between the above two surfaces 

D(x, y, z) = |S1 (x, y) – S2 (x, y)| ,  (9) 

Then, the equation D(x, y) = 0 denotes the intersection of the two surfaces. D(x, y) 

measures the distance of any surface point X=(x, y, z) to the intersection of the two 

surfaces.  

We can use a line l(X) to denote the intersection between two surfaces. We project the 

3D data points onto the x-y plane along z-axis, and use l(X) to split the 3D points into 

two different partitions for fitting two different surfaces. 

The intersection line l(X) on x-y plane is defined as follows: 

l(X) = b1 x + b2 y + b3 = 0 

Then, points Xi not lying on the line have non-zero values l(Xi) . So, a set of 3D 

points Xi can be split into two subsets according to the sign of l(Xi). After splitting, a 

surface can be fitted to each of the two subsets using the robust surface fitting 

algorithm. The intersection of these surfaces induces a change of l(X), and the whole 

process can be iterated to obtain the optimal splitting line.  
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The robust surface splitting algorithm is summarized as follows: 

Step1: Let l be the initial intersection, P be the 3D point cloud to be split 

Step2: Repeat: 

(1) Split P into P1 and P2 according to the sign of l(Xi), for all points Xi ∈ P 

(2) Perform robust fitting of surface S1 on P1 and S2 on P2 

(3) Compute D(Xi) for each point Xi and select a subset Q of points with the 

smallest D(Xi), which are near the intersection.  

(4) Fit l to the points in Q using linear least square method. 

 

This algorithm is iterated for a fixed number of times to obtain the optimal 

intersection to split the input point cloud into different independent partitions and fit 

surfaces respectively (see Fig.9). In the current implementation, the size of Q is 50, 

and empirical tests show that 2 iterations are sufficient. The above surface splitting 

algorithm is repeatedly applied to different parts of the input point cloud to robustly 

split and recover multiple surfaces of a building. To define the boundaries of a 

quadrilateral surface, 4 lines are needed. 

 

After performing the above algorithm, we can get not only the intersection line l, but 

also the points in subset Q on the intersection, which can be used as corresponding 

points to remove seam between two surfaces in chapter 3.4.2.  
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Fig. 9. Splitting of point cloud to reconstruct multiple surfaces. Initial intersection (Green). 

Refined intersection (Red).  
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3.4.2  Alignment of Surfaces  

Seam could be observed around the intersection where two surfaces are split (see Fig. 

10(a)). Without changing the parameters of the plane or the curved surface, similarity 

transformation can be used to align two adjacent surfaces to remove the seam or gap. 

The points on the intersection l obtained from the above algorithm can be used to get 

the corresponding points Xi and Xi’ on surface S1 and S2 respectively as follows:  

Recall that Q is the subset containing the points on the intersection l  

∀(Xi , Yi, Zi) ∈ Q ,  

Let Xi = ( xi , yi , zi )T on surface S1 and Xi’ = ( xi’ , yi’ , zi’ )T on surface S2 , where 

xi = xi’ = Xi 

yi = yi’ = Yi 

zi = S1 (Xi , Yi)  

zi’ = S2 (Xi , Yi)  

Thus X = ( X1 , … , XN ) are the N points on surface S1 , X’ = ( X1’, … , XN’ ) are their 

corresponding points on surface S2 , then we can compute the best similarity 

transformation to align the two surfaces using well-known algorithms such as [19, 

35]. Here, I present the algorithm of [19] for completeness. 
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we will transform X to align with X’ by the following equation   

X’ = sRX + T   (10) 

(1) Centralize each point by substracting its mean vector: 

€ 

ri = Xi −X, 

€ 

ri
ʹ′ = Xi

ʹ′ −Xʹ′  (11) 

              where 

€ 

X =
1
n

Xi
i=1

n

∑  , 

€ 

Xʹ′ =
1
n

Xi
ʹ′

i=1

n

∑  (12) 

(2) Determine the scaling factor by comparing variance:  

€ 

s2 =

ri
ʹ′

2

i=1

n

∑

ri
2

i=1

n

∑
 (13) 

(3) Compute rotation matrix as follows: 

   Form matrix M from sum of outer product 

€ 

M = ri
ʹ′

i=1

n

∑ ri
T   (14) 

   Then rotation matrix is given by 

€ 

R = MQ−1/ 2  (15) 

                     where 

€ 

Q = MTM  (16) 

(4) Compute translation matrix by 

€ 

T = Xʹ′ − sRX   (17) 
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For a degenerate case, when X and X’ lie on the same plane, we can use real(Q-1/2) to 

approximate Q-1/2, since coefficients of its complex part is close to 0. Another 

approach is to use singular value decomposition. 

With s, R and T obtained, we can transform one surface based on Eq. (10) to join the 

other adjacent surface. By doing so, seam between two surfaces can be removed.(see 

Fig. 10.)  

 
(a) 

 

(b) 

Fig. 10. Alignment of surfaces. (a) Before alignment, seam (red line) exists between two 

surfaces. (b) After alignment, seam is removed. 
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3.5  Surface Resampling 

3.5.1  Resampling of Surface Points 

The 3D point cloud recovered by PMVS in the 1st stage usually does not cover a 

surface completely with some missing data on the surface. In order to obtain the 

complete texture for a surface, it is necessary to resample 3D point on the 

reconstructed surfaces given the parametric equations of surfaces obtained in the 2nd 

stage. Then, the color information can be retrieved from frontal input images. 

To resample 3D points on a surface, we can first project the surface on x-y plane, grid 

sample (xi , yi) of each 3D point in the projected region, and compute zi of each 3D 

point based on parametric equation of the surface. Then we can resample the 3D point 

(xi , yi , zi) on the reconstructed surface.    

Suppose polygon P1P2P4P3 is the projection of a surface onto x-y plane, we need to 

grid sample points (xi , yi) inside the polygon. P1 , P2 , P3 , P4 are four corner points 

manually marked on the x-y plane. A line segment L(X) is computed between two 

connected corners such that L(X) is positive for points inside the resampling region 

and negative for points outside. This property is true for all convex regions and is easy 

to determine whether a point is inside the resampling region.  
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We add a direction for each edge, such that the orientation is clockwise. Then for a 

point to be sampled inside the polygon, it must be always on the positive side for all 

four directed edges. 

Suppose P1 =(x1, y1), P2 =(x2, y2) 

Line P1P2 is given by 

a11 x + a21 y +a31 = 0 

Then,  

a11 x1 + a21 y1 +a31 = 0 

a11 x2 + a21 y2 +a31 = 0 

Therefore,  

a11( x1-x2) + a21(y1 -y2) = 0  (18) 

For a convex polygon, choose the center point P0 = (P1+P2+P3+P4)/4 = (x0, y0) , 
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P0 = (x0, y0) will be always inside the polygon.  

Choose (a11 , a21) s.t. Eq. (18) is true, and  

a11( x0-x1) + a21(y0 –y1) ≥ 0 . 

∀ P=(x, y), if P is on the positive side of Line P1P2 , then  

a11( x-x1) + a21(y –y1) ≥ 0 , must be satisfied. 

Similarly, if P lies on the positive side of all four directed edges, then 

a1i ( x-xi) + a2i (y –yi) ≥ 0 , for i= 1, 2, 3, 4, must be satisfied. (19) 

After recovery the parameters of the four lines, we can sample points (x, y) inside the 

region by satisfying the condition: 

a1i x + a2i y + a3i  ≥ 0, for i= 1, 2, 3, 4. 

Since surface is given, z can be computed with (x , y) using the equation of surface 

(Eq.1, Eq.4). 

z = S (x , y) 

Then we can resample each 3D point (x , y , z) on the reconstructed surface (See Fig. 

11) at regular spacing. Note that the resampling rate is determined by the user 

according to the resolution required and it is independent of the sampling density of 

the point cloud. 
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(a)                        (b) 

 
(c) 

Fig. 11. Resampled surface points. (a) 3D points in initial point cloud is sparse and missing 

data points in some regions (b) Resampled 3D points cover the surface completely        

(c) Zoomed-in view of resampled 3D points inside the red box. 
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3.5.2  Color Retrieval from Frontal Image 

After all points are resampled in 3D space, next we want to display them with color. 

We will choose a default color for the roof, the bottom and the back of a building. But 

for main structures reconstructed from multiple images, we can retrieve color pixel for 

each 3D point from its viewing image. 

Let (x, y, z, 1)T denotes a homogeneous coordinate of a resampled point in 3D space 

and (u,v,1)T denotes its homogeneous 2D image coordinate. They are related by the 

following equation          
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where P = K(R|T). R is the Rotation Matrix, T is Translation vector and K is the 

projection matrix of the camera.  

Eq. (20) can also be written as 
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where X = (x, y, z, 1)T 

Compute d first,  
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Then we have 

                    

€ 

u =
P1

TX
P3

TX
 , 

€ 

v =
P2

TX
P3

TX
  (22) 

If we choose image I as the viewing image for resampled 3D points, then the color 

pixel of each point X can be found at I(v,u). Finally, the whole structure is determined 

and resampled accordingly by 3D points with their colors for display purpose (see 

Fig. 12). 

 

Fig. 12.  Resampled 3D points with colors  
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3.5.3  Removal of Distortion and Color Blending 

After we reconstruct the whole structure and display with color pixels, some part of 

the building might be occluded by trees, traffic lights or may have severe image 

distortion due to oblique views (see Fig. 13(a)). 

One way to avoid such distortion is to reconstruct that blocked part of building from 

another better view, for instance a frontal view. So, for the distorted plane, instead of 

using image I1(see Fig. 13(c)), we will manually choose another image I2 with frontal 

view for reconstruction (see Fig. 13(d)). And the color pixel for each 3D points on the 

distorted plane will be I2 (v’, u’ ) from Eq. (22). 

By using a frontal view for reconstruction, image distortion and occlusion can be 

reduced quite efficiently. However, since color pixels of 3D points come from 

different images, there might be a color seam observed at the intersection line of 

curved surface and plane (see Fig. 14). 

 

         (a)                     (b)                      (c)                                 

Fig. 13. Removal of distorted color texture. (a) Color texture with gross distortion. (b) Color 

retrieved from a frontal view image. Distortion is removed, but a visible seam is induced   

(c) Color blending removes the seam. 
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Fig. 14. Selected region for color blending (right rectangular box in red) 

On the left of the color seam (red dotted line), color is retrieved from I1 (See Fig. 

13(c)). On the right of the seam, color is retrieved from I2 (See Fig. 13(d)). We can 

blend colors of I2 on the right of the seam with color of I1 in the same location to 

reduce this seam.  

w : an effective width to define the region for color blending 

d : distance to color seam                

Blended Color = (1- d/w) * I1(v,u) + (d/w) * I2(v’,u’), for d ∈[0,w] 

 

After blending two colors from I1 and I2 , we can see that the color seam can be 

reduced quite effectively (see Fig. 15). 
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(a)                        (b) 

Fig. 15. Color blending. (a) color seam exists before blending (b) Color seam is removed after 

blending. 
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3.6  Construction of 3D Mesh Model 

Since the 3D points in chapter 3.5 are sampled in such a way that the unit distance 

between any two neighboring points are similar, it will be easier to construct a 3D 

mesh model with color on vertex based on the resampled 3D points, to cover up the 

empty space between two adjacent 3D points. Here, we adopt ball pivoting algorithm 

[3] to reconstruct surface. The reconstruction process starts with a seed triangle, and 

pivot a ball of a given radius around the edges of the seed triangle to touch another 

point and hence create a new triangle. After the reconstruction process, meshes are 

created in the point cloud. From its mechanism, we can deduce and observe that ball 

pivoting algorithm works well on our uniformly sampled points (see Fig 16). 
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(a) 
 

 

(b) 

Fig. 16. 3D Mesh model of Old Stamford House. (a) Frontal view. (b) Zoomed-in view of the 

red box in (a). 
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4.Test Results & Discussions 

4.1  Test Data 

To reconstruct 3D model of SMRT Headquarter Building, 27 images from different 

views have been taken. The SMRT Headquarter Building locates in City Hall District, 

251 North Bridge Road, Singapore 179102. 

Some examples are shown below. (See Fig. 17.) 

 

  

Fig. 17. Input images of SMRT Headquarters from different views. 
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To reconstruct 3D model of Old Stamford House, 31 images from different views 

have been taken. The Old Stamford House locates at the corner of the junction of 

Stamford Road and Hill Street, in the Downtown Core of Singapore. Some examples 

are shown below. (See Fig. 18.) 

 

   

   

Fig. 18. Input images of Old Stamford House from various views.  
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4.2   Reconstructed 3D Models 

4.2.1  Results of Stage 1:  3D Point Cloud given by PMVS  

 

	  

(a) 

	  

(b) 

Fig. 19.  3D point cloud of SMRT Headquarters recovered by PMVS. (a) left view  

(b) right view 

From Fig. 19(b), we can see very clearly most part of the right plane is empty and 

hence it will be rather difficult to reconstruct surface directly on the right plane. But 

with plane fitting algorithm, we can figure out the accurate parametric equation of the 

plane, resample points on it and therefore reconstruct the plane. 
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(a) 

 
(b) 

 

(c) 

Fig. 20.  3D point cloud of Old Stamford House recovered by PMVS.  (a)-(b) First point 
cloud. (c) Second point cloud. 

From Fig. 20(a), we can see there are many outliers around the surface. Moreover, 

large region of empty space can be observed on the right plane of the building. 

Therefore, we need a robust surface fitting algorithm to filter those outliers and get the 

parametric equation of the surface. Then resample 3D points on the surface to cover 

those empty space on the right plane. 
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4.2.2  Results of Stage 2:  Refined Surface given by Robust Surface Fitting 

Algorithm 

	  
(a) 

 
(b) 

Fig. 21. Refined surface of SMRT Headquarters. (a) frontal view (b) bottom view  
 

28370 points lie on the curve surface. Outliers are discarded. The median squared 
error is smaller than 5*10-7. 
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4.2.3 Results of Stage 3: Resampled 3D Points on Reconstructed Surfaces   

	  
(a) 

	  
(b) 

Fig. 22. Resampled 3D points on surface of SMRT Headquarters.  
(a) complete view of resampled 3D points on surface.  

(b) zoomed in view of the red box in (a). 

151944 points are resampled on the surface of SMRT Headquarters building with 

color retrieved from frontal images. This point cloud is more dense than original point 

cloud given by PMVS. Moreover, these resampled points have covered the entire 

surface of the building, i.e. left plane, right plane, and curve surface in the middle, 

leaving no missing regions on the surface.      
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(a) 

 
(b) 

Fig. 23. Resampled 3D points on surface of Old Stamford House.  
(a) complete view of resampled 3D points on surface.  
(b) zoomed in view of the red box in (a). 

106225 points are resampled on the surface of Old Stamford House. The resampled 

points with colors can effectively reduce distortion or misalignment, which often 

occurs, when we directly texture map an 2D image onto a curve surface or a plane.  
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4.2.4  Final 3D Mesh Model  

  
                (a)                                      (b) 

 
(c) 

 
(d) 

Fig. 24.  Reconstructed mesh model of SMRT Headquarters.  (a) Left view. (b) Right view. 
(c) Frontal view. (d) Zoomed-in mesh of the red box in (c).   
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Fig. 25.  Reconstructed mesh model of Old Stamford House. (Row 1-2) Mesh model from 
various views. (Row 3) Zoom-in view of the region in the red box above. 
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Table 1. Results of mesh surface reconstruction. Execution times are measured in 

minutes, excluding manual inputs. 

 No. of 
images 

No. of  
point clouds 

No. of 
surfaces 

Bundler 
rum time 
(mins) 

PMVS 
run time 
(mins) 

My algo 
run time 
(mins) 

Total  
run time 
(mins) 

Stamford 
House 

105 2 3 79 47 14 140 

SMRT 
Headquarters 

27 1 3 20 12 6 38 

 

Two large buildings with curve surfaces were used as the test cases: one with a 

convex curved surface, the other with a concave curved surface. Multiple images of 

the buildings were taken from various viewing angles. For each test case, PMVS 

algorithm was executed on the multiple views to recover 3D point clouds, and our 

complete surface reconstruction algorithm was executed to reconstruct the surfaces. 

  Table 1 shows the results of applying the algorithms on the test cases. Building 1 

had an extended wall and required two separate point clouds that capture the various 

walls. Bundler and PMVS took majority of the time to compute the matching feature 

points, camera parameters, and point cloud. Fig17- Fig25 show samples inputs, 

recovered point clouds, and reconstruction results of the buildings. Notice that the 

point clouds are sparse in some parts of the surfaces. Nevertheless, our algorithm can 

resample the color textures in those areas from the input images and reconstruct 

complete mesh of the surfaces. 
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5.  Conclusion 

5.1 Summary 

This thesis presented a simple, inexpensive, and effective method for reconstructing 

textured mesh surfaces of large buildings with curved surfaces. It applies PMVS 

algorithm to recover point cloud from multiple input images. Then, robust surface 

fitting and splitting algorithms are applied to fit multiple surfaces to different parts of 

the point cloud. These surfaces are then aligned, merged and color blended to produce 

a single mesh model of the building, completed with color texture. The mesh models 

can be used directly in various applications. Test results show that the 3D models 

reconstructed by the algorithm are sufficiently accurate and realistic for 3D 

visualization in various applications. 

 

5.2 Future Work 

This thesis demonstrated the reconstruction of surfaces from a single point cloud. For 

a large building, multiple point clouds need to be recovered to cover different parts of 

the building. Our algorithm can be applied to the point clouds to reconstruct the 

surfaces separately, and then align and merge them into a single mesh model. 

Reconstruction of a large building that is close in proximity to other buildings or 

constructions is a very challenging task. The challenge is to devise a scheme that can 

reconstruct the entire building with the least number of input images and point clouds.  
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