
Jump-Oriented Programming: A New Class of Code-Reuse
Attack

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh Zhenkai Liang
Department of Computer Science School of Computing

North Carolina State University National University of Singapore
{tkbletsc, xuxian_jiang, vwfreeh}@ncsu.edu liangzk@comp.nus.edu.sg

ABSTRACT
Return-oriented programming is an effective code-reuse at-
tack in which short code sequences ending in a ret instruc-
tion are found within existing binaries and executed in ar-
bitrary order by taking control of the stack. This allows
for Turing-complete behavior in the target program without
the need for injecting attack code, thus significantly negat-
ing current code injection defense efforts (e.g., W⊕X). On
the other hand, its inherent characteristics, such as the re-
liance on the stack and the consecutive execution of return-
oriented gadgets, have prompted a variety of defenses to
detect or prevent it from happening.

In this paper, we introduce a new class of code-reuse at-
tack, called jump-oriented programming. This new attack
eliminates the reliance on the stack and ret instructions
(including ret-like instructions such as pop+jmp) seen in
return-oriented programming without sacrificing expressive
power. This attack still builds and chains functional gadgets,
each performing certain primitive operations, except these
gadgets end in an indirect branch rather than ret. Without
the convenience of using ret to unify them, the attack relies
on a dispatcher gadget to dispatch and execute the functional
gadgets. We have successfully identified the availability of
these jump-oriented gadgets in the GNU libc library. Our
experience with an example shellcode attack demonstrates
the practicality and effectiveness of this technique.

1. INTRODUCTION
Network servers are under constant threat by attackers

who use maliciously crafted packets to exploit software bugs
and gain unauthorized control. In spite of significant re-
search addressing the underlying causes of software vulner-
abilities, such attacks remain one of the largest problems
in the security field. An arms race has developed between
increasingly sophisticated attacks and their corresponding
defenses.

One of the earliest forms of software exploit is the code
injection attack, wherein the malicious message includes ma-
chine code, and a buffer overflow or other technique is used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$5.00.

to redirect control flow to the attacker-supplied code. How-
ever, with the advent of CPUs and operating systems that
support the W⊕X guarantee [3], this threat has been mit-
igated in many contexts. In particular, W⊕X enforces the
property that “a given memory page will never be both
writable and executable at the same time.” The basic premise
behind it is that if a page cannot be written to and later ex-
ecuted from, code injection becomes impossible.

Unfortunately, attackers have developed innovative ways
to defeat W⊕X. For example, one possible way is to launch
a code-reuse attack, wherein existing code is re-purposed to
a malicious end. The simplest and most common form of
this is the return-into-libc technique [33]. In this scenario,
the adversary uses a buffer overflow to overwrite part of
the stack with return addresses and parameters for a list
of functions within libc (the core C library that is dynami-
cally linked to all applications in UNIX-like environments).
This allows the attacker to execute an arbitrary sequence
of libc functions, with a common example being a call to
system("/bin/sh") to launch a shell.

While return-into-libc is powerful, it does not allow arbi-
trary computation within the context of the exploited ap-
plication. For this, the attacker may turn to return-oriented
programming (ROP) [36]. As before, ROP overwrites the
stack with return addresses and arguments. However, the
addresses supplied now point to arbitrary points within the
existing code base, with the only requirement being that
these snippets of code, or gadgets, end in a ret instruction
to transfer the control to the next gadget. Return-oriented
programming has been shown to be Turing complete on a
variety of platforms and codebases [10, 15, 21, 32, 30], and
automated techniques have made development of such at-
tacks a straightforward process [10, 23, 30]. The real-world
danger of this technique was shown when Checkoway et al.
used it to violate the integrity of a commonly deployed elec-
tronic voting machine [15].

Since the advent of return-oriented programming, a num-
ber of defenses have been proposed to either detect or pre-
vent ROP-based attacks. For example, DynIMA [18] detects
the consecutive execution of small instruction sequences each
ending with a ret and suspects them as gadgets in a ROP
attack. DROP [16] observes that a ROP execution contin-
uously pops return addresses that always point to the same
specific memory space, and considers this as a ROP-inherent
feature to be useful for its detection. The return-less ap-
proach [31] goes a step further by eliminating all ret in-
structions in a program, thereby removing the existence of
return-oriented gadgets and precluding the possibility of a
ROP-based attack.

Local variables,

saved registers, etc.

Previous

ebp

Return

address

Stack expands

Increasing addresses

ebpesp

Function

arguments

Figure 1: Simplified layout of an x86 stack frame.

In this paper, we present an alternative attack paradigm
called jump-oriented programming (JOP). In a JOP-based
attack, the attacker abandons all reliance on the stack for
control flow and ret for gadget discovery and chaining, in-
stead using nothing more than a sequence of indirect jump
instructions. Because almost all known techniques to defend
against ROP depend on its reliance on the stack or ret, none
of them are capable of detecting or defending against this
new approach. The one exception are systems that enforce
full control-flow integrity (e.g. [4]); unfortunately, such sys-
tems are not widely deployed, likely due to concerns over
their complexity and negative performance impact.

Similar to ROP, the building blocks of JOP are still short
code sequences called gadgets. However, instead of ending
with a ret, each such gadget ends with an indirect jmp1.
Some of these jmp instructions are intentionally emitted by
the compiler. Others are not intended but present due to the
density of x86 instructions and the feasibility of unaligned
execution. However, unlike ROP, where a ret gadget can
naturally return back the control based on the content of the
stack, a jmp gadget is performing an uni-directional control-
flow transfer to its target, making it difficult to regain con-
trol back to chain the execution of the next jump-oriented
gadget.

We note that a code-reuse attack based on indirect jmps
was put forth as a theoretical possibility as early as 2003
[35]. However, there always remained an open problem of
how the attacker would maintain control of the program’s
execution. With no common control mechanism like ret to
unify them, it was not clear how to chain gadgets together
with uni-directional jmps.

Our solution to this problem is the proposition of a new
class of gadget, the dispatcher gadget. Such a gadget is in-
tended to govern control flow among various jump-oriented
gadgets. More specifically, if we consider other gadgets as
functional gadgets that perform primitive operations, this
dispatcher gadget is specifically selected to determine which
functional gadget is going to be invoked next. Naturally,
the dispatcher gadget can maintain an internal dispatch ta-
ble that explicitly specifies the control flow of the functional
gadgets. Also, it ensures that the ending jmp instruction in
the functional gadget will always transfer the control back
to the dispatcher gadget. By doing so, jump-oriented com-
putation becomes feasible.

In order to achieve the same Turing-complete expressive
power of ROP, we also aim to identify various jump-oriented
gadgets for memory load/store, arithmetic calculations, bi-
nary operations, conditional branching, and system calls.
To do that, we propose an algorithm to discover and col-
lect jump-oriented gadgets, organize them into different cat-
egories, and save them in a central gadget catalog.

1Independent of our work, a concurrent approach by Check-
oway et al. [14] proposes to replace ret in ROP with a
pop+jmp. However, the x86-based approach still relies on the
stack to govern control flow among gadgets and the pop+jmp
sequence is rare – as detailed in Section 6.

In summary, this paper makes the following contributions:

1. We expand the taxonomy of code-reuse attacks on the
x86 to include a new class of attack: jump-oriented
programming. When compared to existing return-oriented
programming, our attack has the benefit in not relying
on the stack for control flow. Instead, we introduce
the notion of a dispatcher gadget to take the role of
executing functional gadgets.

2. We present a heuristic-based algorithm to effectively
discover a variety of jump-oriented gadgets on the x86,
including the critical dispatcher gadget. Our results
indicate that all of these gadgets are abundantly avail-
able in GNU libc that is dynamically linked to almost
all UNIX applications.

3. We demonstrate the efficacy of this technique with a
jump-oriented shellcode attack based on the gadgets
discovered by our algorithm.

The rest of the paper is organized as follows: Section 2
provides a background of the relevant aspects of the x86
architecture and the existing ROP methodology. Next, Sec-
tion 3 explains the design of the new jump-oriented program-
ming attack, then Section 4 presents an implementation on
an x86 Linux system, including a concrete example attack.
Section 5 examines the limitations of our approach and ex-
plores ways for improvement. Finally, Section 6 covers the
related work and Section 7 concludes this paper.

2. BACKGROUND
To understand the contributions of this paper, it will be

necessary to briefly summarize the techniques behind return-
oriented programming. Since our system is developed on the
32-bit x86 architecture2, our discussion primarily focuses on
that platform.

As illustrated in Figure 1, the x86 stack is managed by
two dedicated CPU registers: the esp “stack pointer” regis-
ter, which points to the top of the stack, and the ebp “base
pointer” register, which points to the bottom of the current
stack frame. Because the stack grows downward, i.e., grows
in the direction of decreasing addresses, esp ≤ ebp. Each
stack frame stores each function call’s parameters, return
address, previous stack frame pointer, and automatic (lo-
cal) variables, if any. The stack content or pointers can be
manipulated directly via the two stack registers, or implic-
itly through a variety of CPU opcodes, such as push and
pop. The instruction set includes opcodes for making func-
tion calls (call) and returning from them (ret)3. The call
instruction pushes the address of the next instruction (the
return address) onto the stack. Conversely, the ret instruc-
tion pops the stack into eip, resuming execution directly
after the call.

2The x86 assembly language used in this paper is written in
Intel syntax. This means that destination operands appear
first, so add eax,ebx indicates eax ← eax + ebx. Mem-
ory dereference is indicated by brackets, e.g., [eax]. Also,
the x86 platform allows dereference operations to encode
fairly complex expressions within a single instruction, e.g.,
[eax+ebx*4+0x1234].
3There are actually multiple flavors of call and ret to sup-
port inter-segment control transfers (“far” calls) and auto-
matic stack unwinding. For this discussion, these distinc-
tions have little relevance, so we speak about call and ret
in generic terms.

gadget catalog

(with return−oriented gadgets)

insns ret

insns ret

insns ret

insns ret

(data)

(data)

return address

stack

return address

return address

return address

(a) The ROP model

Dispatcher

insns jmp

insns jmp

insns jmp

insns jmp

gadget catalog

(with jump−oriented gadgets)

(data)

(data)

gadget address

gadget address

gadget address

gadget address

dispatch table

EIP

(b) The JOP model

Figure 2: Return-oriented programming (ROP) vs. jump-oriented programming (JOP)

An attacker can exploit a buffer overflow vulnerability or
other flaw to overwrite part of the stack, such as replacing
the current frame’s return address with a supplied value. In
the traditional return-into-libc approach, this new value is
a pointer to a function in libc chosen by the attacker. After
the victim program uses the new value and enters the func-
tion, the memory cells next to the overwritten return address
are interpreted as parameters by the function, allowing the
execution of an arbitrary function with attacker-specified
parameters. By chaining these malicious stack frames to-
gether, a sequence of functions can be executed. While this
is undoubtedly a very powerful ability, it does not allow the
attacker to perform arbitrary computation. For that, the
attack needs to launch another process (e.g., via exec()) or
alter memory permissions to make a traditional code injec-
tion attack possible (e.g., via mprotect()).

Because these operations may lead to detection or inter-
ception, the stealthy attacker may instead turn to return-
oriented programming, which allows arbitrary computation
within the context of the vulnerable application. Return-
oriented programming is driven by the insight that return
addresses on the stack can point anywhere, not just to the
beginning of functions like in a classic return-into-libc at-
tack. Therefore, it can direct control flow through a series
of small snippets of existing code, each ending in ret. These
small snippets of code are called gadgets, and in a large
enough codebase (such as libc), there is a massive selection
of gadgets to choose from. On the x86 platform, the selec-
tion is made even larger because instructions are of variable
length, so the CPU will interpret the raw bytes of an in-
struction differently if decoding is started from a different
offset.

Based on this, the return-oriented program is simply a
sequence of gadget addresses and data values laid out in the
vulnerable program’s memory. In a traditional attack, it is
overflowed into the stack, though the buffer can be loaded
elsewhere if the attacker can redirect the stack pointer esp
to the new location. The gadget addresses can be thought of
as opcodes in a new return-oriented machine, and the stack
pointer esp is its program counter. Under this definition,
just as a basic block of traditional code is one that does not
explicitly permute the program counter, a “basic block” of
return-oriented code is one that does not explicitly permute
the stack pointer esp. Conversely, conditional branches and
loops can be created by changing the value of esp based on
logic. The combination of arithmetic, logic, and conditional
branching yields a Turing complete return-oriented machine.
A set of gadgets that satisfies these requirements was first
discovered on the x86 [36] and later expanded to many other
platforms [10, 15, 21, 32, 30]. In addition, such attacks can

also make arbitrary system calls, as this is simply a matter
of calling the appropriate library routine, or even accessing
the kernel system call interface directly. Because of this, a
return-oriented attack is equivalent in expressive power to a
successful code injection.

A number of researchers have attempted to address the
problem of return-oriented programming. Each of the pro-
posed defense systems identifies a specific trait exhibited by
return-oriented attacks and develops a detection or preven-
tion measure around it. Some enforce the LIFO stack in-
variant [19, 22], some detect excessive execution of the ret
instruction [16, 18], and one went so far as to eliminate ev-
ery instance of the ret opcode from the kernel image [31].
What these techniques have in common is that they all as-
sume that the attack must use the stack to govern control
flow. This paper introduces jump-oriented programming as
a new alternative that has no reliance on the stack, and is
therefore immune to such defenses.

Threat model In this work, we assume the adversary
can put a payload (e.g., the dispatch table – Section 3) into
memory and gain control of a number of registers, especially
the instruction pointer eip to divert the program execution.
The assumption is reasonable, as several common vulnera-
bilities such as buffer overruns, heap overflows, and format
string bugs exist that fulfill this requirement. We also as-
sume the presence of a significant codebase in which to find
gadgets. As with ROP, we find that this can be fulfilled
solely with the content of libc, which is dynamically linked
to all processes in UNIX-like environments. On the defen-
sive side, the vulnerable program is protected by a strict
enforcement of code integrity (e.g., W⊕X) that defeats the
traditional code injection attack.

3. DESIGN
Figure 2 compares return-oriented programming (ROP)

and our proposed jump-oriented programming (JOP). As in
ROP, a jump-oriented program consists of a set of gadget ad-
dresses and data values loaded into memory, with the gadget
addresses being analogous to opcodes within a new jump-
oriented machine. In ROP, this data is stored in the stack,
so the stack pointer esp serves as the “program counter” in a
return-oriented program. JOP is not limited to using esp to
reference its gadget addresses, and control flow is not driven
by the ret instruction. Instead, JOP uses a dispatch table
to hold gadget addresses and data. The “program counter”
is any register that points into the dispatch table. Control
flow is driven by a special dispatcher gadget that executes
the sequence of gadgets. At each invocation, the dispatcher
advances the virtual program counter, and launches the as-
sociated gadget.

dispatcher: add edx, 4

 jmp [edx]

loader: mov eax,[eax]

 jmp esi

adder: add eax,[ebx]

 jmp [edi]

storer: mov [ecx],eax

 jmp [edi]

...

Dispatch table

1

3

5

2

4

6

loader

adder

storer

Figure 3: Control flow in an example jump-oriented
program, with the order of jumps indicated by the
numbers 1..6. Here, edx is used as pc, which the
dispatcher advances by simply adding 4 to get to
the next word in a contiguous gadget address table
(so f(pc) = pc+4). The functional gadgets shown will
(1) dereference eax, (2) add the value at address ebx
to eax, and (3) store the result at the address ecx.
The registers esi and edi are used to return control
to the dispatcher – esi does so directly, whereas edi
goes through a layer of indirection.

An example control flow of a JOP program is shown in
Figure 3. In this example, we essentially add two memory
values (pointed to by eax and ebx, respectively) and store
the sum into another memory location pointed to by ecx,
i.e., [ecx] ← [eax] + [ebx].

The main goal of this work is to demonstrate the feasi-
bility of jump-oriented programming. We show that its ex-
pressive power is comparable to that of return-oriented pro-
gramming. However, by not relying on the stack for control
flow, JOP can potentially use any memory range, including
even non-contiguous memory, to hold the dispatch table.

Below, we further elaborate on the dispatcher gadget (Sec-
tion 3.1) as well as the functional gadgets (Section 3.2) whose
primitive operations comprise the actual computation. Af-
ter that, we discuss how to discover these gadgets from the
commonly available codebase (Section 3.3). Finally, we ex-
plore possible ways to bootstrap a jump-oriented program
(Section 3.4).

3.1 The Dispatcher Gadget
The dispatcher gadget plays a critical role in the JOP tech-

nique. It essentially maintains a virtual program counter, or
pc, and executes the JOP program by advancing it through
one gadget after another. Specifically, each pc value specifies
an entry in the dispatch table, which points to a particular
jump-oriented functional gadget. Once invoked, each func-
tional gadget will perform a basic operation, such as arith-
metic calculation, branching, or the invocation of a particu-
lar system call.

We consider any jump-oriented gadget that carries out the
following algorithm as a dispatcher candidate.

pc← f(pc);
goto ∗ pc;

Here, pc can be a memory address or register that repre-
sents a pointer into our jump-oriented program. It is not
the CPU’s instruction pointer—it refers to a pointer in the
gadget table supplied by the attacker. The function f(pc)
is any operation that changes the program counter pc in a
predictable and evolving way. In some cases, it may be sim-
ply expressed via pure arithmetic (e.g., f(pc) = pc + 4 as
shown in Figure 3). In other cases, it could be a memory
dereference operation (e.g., f(pc) = ∗(pc−18)) or any other

expression that can be predicted by the attacker beforehand.
Each time the dispatcher gadget is invoked, the pc will be
advanced accordingly. Then the dispatcher dereferences it
and jumps to the resulting address.4

Given the wide definition of what constitutes a dispatcher,
we had little trouble in finding several viable candidates
within libc. The way the dispatcher gadget advances the pc
affects the organization of the dispatch table. Specifically,
the dispatch table can be a simple array if pc is repeatedly
advanced by a constant value (e.g., f(pc) = pc+4) or a linked
list if memory is dereferenced (e.g., f(pc) = ∗(pc−18)). The
example attack in Section 4 uses an array to organize the
dispatch table.

This new programming model expands the basic code-
reuse attack used in ROP. Specifically, if we consider the
stack used in a ROP-based program as its dispatch table and
esp as its pc, the ret instruction at the end of each return-
oriented gadget acts as a dispatcher that advances the pc
by 4 each time a gadget is completed, i.e., f(pc) = pc + 4.
However, all ROP-based attacks still rely on the stack, which
is no longer necessary in a JOP-based attack.

3.2 Functional Gadgets
The dispatcher gadget itself does not perform any actual

work on its own—it exists solely to launch other gadgets,
which we call functional gadgets. To maintain control of the
execution, all functional gadgets executed by the dispatcher
must conclude by jumping back to it, so that the next gadget
can be launched.

More formally, a functional gadget is defined as a num-
ber of useful instructions ending in a sequence that will load
the instruction pointer with the result of a known expres-
sion. This expression may be a register (jmp edx), a register
dereference (jmp [edx]), or a complex dereference expres-
sion (jmp [edx+esi*4-1]). The only requirement is that by
the time the branch is executed, it must evaluate to the ad-
dress of the dispatcher, or to another gadget that leads to
the dispatcher. However, the attack does not rely on spe-
cific operands for each of these branches: functional gadgets
may change the CPU state in order to make available a dif-
ferent set of gadgets for the next operation. For example,
one gadget may end in jmp [edx], then a second may use
the edx register for a computation before loading esi with
the dispatcher address and terminating with jmp esi. Fur-
thermore, the functional gadget may have an effect on pc,
which makes it possible to implement conditional branching
within the jump-oriented program, including the introduc-
tion of loops. The most obvious opcode to use for the branch
is an indirect jump (jmp), but one interesting thing to note
is that because there is no reliance on the stack, we can also
use sequences that end in a call, because the side effect of
pushing the return address to the stack is irrelevant.

There are a few different kinds of functional gadgets needed
to obtain the same expressive power of ROP, which we briefly
review below. Examples will be presented in Section 4.

Loading data In the return-oriented approach, there
is an obvious place to place data: in the stack itself. This
allows ubiquitous pop instructions to load registers. In JOP,
however, one may load data values in a variety of ways –
any gadget that loads from and advances a pointer will do.

4On the x86, it is possible to add a constant to a register
and dereference the result within one instruction; such in-
structions can be used in dispatchers without difficulty, as
the constant is known beforehand.

On the x86, there are a variety of string loading and loop
sequences that do this. Further, even though JOP does not
rely on the stack for control flow, there is no reason the stack
cannot be co-opted to serve as a data loading mechanism as
in ROP, as the existing defense techniques focus on protect-
ing stack-based control flow, not simple data access. In our
implementation, the stack pointer esp is redirected and the
stack is used for this purpose.

Memory access To access memory, load and store gad-
gets are required. These gadgets take a memory address and
reads or writes a byte or word at that location.

Arithmetic and logic Once operands (or pointers to
operands) are loaded into CPU registers, ALU operations
can be applied by finding gadgets with the appropriate op-
codes (add, sub, and, or, etc.).

Branching Unconditional branching can be achieved
by modifying the register or memory location used for pc.
Conditional branching is performed by adjusting pc based on
the result of a previous computation. This may be achieved
several ways, including adding a calculated value to pc, using
a short conditional branch within a gadget to change pc
based on logic, or even using the x86’s special conditional
move instruction to update pc (cmov).

System calls While the above gadgets are sufficient to
make JOP Turing complete (i.e., capable of arbitrary com-
putations), system calls are needed to carry out most prac-
tical tasks. There are a few different ways to make a system
call. First, it is possible to call legitimate functions by set-
ting up the stack with appropriate parameters and a return
address of a gadget that will restore the appropriate CPU
state and execute the dispatcher. However, because it may
be possible for existing defenses against ROP to detect this,
a more prudent approach is to make system calls directly.
The methodology for doing this varies by CPU and oper-
ating system. On the x86-based Linux, one may execute
int 0x80 to raise an interrupt, jump to a kernel-provided
routine called __kernel_vsyscall to execute a sysenter
instruction, or even execute a sysenter instruction directly.

3.3 Gadget Discovery
The näıve method to locate gadgets within the target bi-

nary is to simply disassemble it and search for indirect jump
or call instructions. However, instructions on the x86 plat-
form are of variable length, so decoding the same memory
from one offset versus another can yield a very different set
of operations. This means that every x86 binary contains a
number of unintended code sequences that can be accessed
by jumping to an offset not on an original instruction bound-
ary. Given this, an algorithm for locating gadgets ending in
ret was given by Shacham in the context of ROP [36].

We adopt a similar approach in our gadget discovery pro-
cess. The algorithm works by scanning the executable region
of the binary for the valid starting byte(s) of an indirect
branch instruction. On the x86, this consists of the byte
0xff followed by a second byte with a specific range of val-
ues.5 Such sequences can be located by a linear search. From
there, it is a simple matter to step backwards byte by byte
and decode each possible gadget terminating in the indirect
jump. This approach is defined formally in Algorithm 1.

As shown in the algorithm, the FindGadget(C) procedure
uses a string search to find indirect jumps in a codebase C,
then walks backwards by up to δmax bytes and disassem-

5For full details on the precise encoding of indirect jmp and
call instructions, see [24].

Algorithm 1

procedure IsV iableGadget(G)

1: V ← {Registers and writable memory addresses}
2: J ← (Last instruction of G)
3: if (J is not an indirect jump) ∨ (J.operand /∈ V) then
4: return false
5: end if
6: A← {Addresses of each instruction in G}
7: for all instructions I ∈ G, such that I 6= J do
8: if (I is illegal) ∨ ((I is a branch) ∧ ¬((I is a conditional

jump) ∧ (I.operand ∈ A))) then
9: return false

10: end if
11: end for
12: return true

procedure FindGadgets(C)

1: for each address p that is an indirect branch in C do
2: len← (Length of the branch at C[p])
3: for δ = 1 to δmax do
4: G← disassemble(C[p− δ : p+ len])
5: if IsV iableGadget(G) ∧Heuristic(G) then
6: print G
7: end if
8: end for
9: end for

bles each resulting code region. The value of δmax is the
maximum size of a gadget, in bytes. Its selection depends
on the average length of instructions on the given architec-
ture and the maximum number of instructions per gadget to
consider. Our experience is that, as observed in ROP [36],
useful gadgets need not be longer than 5 instructions.

There are several criteria by which a potential gadget can
be eliminated at this stage; these are detected by the pro-
cedure IsV iableGadget(G). First, because the algorithm
walks backward one byte at a time, it is possible that the
sequence that was originally an indirect jump is no longer
interpreted as such. If this is the case, the gadget is elimi-
nated. Second, the target of an indirect jump can be a reg-
ister value (e.g., esi), the address pointed to by a register
([esi]), or the address pointed to by a memory dereference
([0x7474505b]). In the latter case, if the address given is
not likely to be valid, writable location at runtime, then the
gadget is eliminated. Third, if any part of the gadget does
not encode a legal x86 instruction, the gadget is eliminated.
Finally, the gadget itself may contain a conditional branch
separate from the indirect branch at the end. If the target
of this branch lies outside of the gadget bounds, the gad-
get is eliminated. Further, if the target of the branch does
not align with the instructions identified in the gadget, it is
eliminated.

This yields the set of potentially useful gadgets in the
codebase, and on a large codebase such as libc, that will
mean tens of thousands of candidate gadgets. The set is
narrowed down further by Heuristic(G), which filters gad-
gets based on their viability for a particular purpose. While
there has been much work on completely automating the
gadget search in ROP [10, 23, 30], the JOP gadget search
adds additional complexity. Because each gadget must end
with a jump back to the dispatcher, care must be taken to
ensure that the register used for this purpose is set properly
before it is needed. This introduces two requirements when
locating and chaining jump-oriented gadgets. (1) The gad-
get must not destroy its own jump target. The target may be
modified, however, if this modification can be compensated

for by a previous gadget. For example, if a gadget incre-
ments edx as a side-effect before ending in jmp [edx], then
the value of edx when the gadget starts should be one less
than the intended value. (2) Because gadgets are chained
together, the side-effects of an earlier gadget must not dis-
turb the jump targets of subsequent ones. For example, if a
register is used for a calculation in gadget A and used as a
jump target in gadget B, then an intervening gadget must
set this register to the dispatcher address before gadget B
can be used.

Because of this added complexity, the search for gadgets
in this work requires additional heuristics, represented in the
algorithm as Heuristic(G). We describe the most interest-
ing of these heuristics below.

To locate potential dispatcher gadgets within the code-
base, we developed the dispatcher heuristic. This algorithm
works by filtering all the potential gadgets located by the
search algorithm down to a small set from which the attack
designer can choose. For each gadget, we begin by getting
the jump target in the gadget’s last instruction, then exam-
ining the first instruction in the gadget sequence based on
three conditions.

First, the instruction must have the jump target as its
destination operand. If the gadget is not modifying the jump
target, then it cannot be a dispatcher.

Second, we filter the gadgets based on opcode. Because
of the wide variety of x86 opcodes which could possibly ad-
vance pc, it is more expedient to filter opcodes via a blacklist
rather than a whitelist. Therefore, we throw out opcodes
that are unable to permute the target by at least the word
size.

Third, operations that completely overwrite the destina-
tion operand (e.g., mov) must be self-referential, i.e., the des-
tination operand is also present within the source operands.
For example, the “load effective address” opcode (lea) can
perform calculations based on one or more registers. The in-
struction lea edx,[eax+ebx] is unlikely to be useful within
a dispatcher, as it overwrites edx with the calculation eax+ebx
– it does not advance edx by a predictable value. Con-
versely, the instruction lea edx,[edx+esi] advances edx by
the value stored in esi, and is therefore a dispatcher can-
didate. The self-referential requirement is not strictly nec-
essary, as there could be a multi-register scheme that could
act as a dispatcher, but enforcing the requirement simplifies
the search considerably by eliminating a vast number of false
positives.

Once the gadgets have been filtered by these three condi-
tions, we examine each candidate and choose one that uses
the least commonly used registers. This is because the regis-
ter or registers used by the dispatcher will be unavailable for
computation, meaning that functional gadgets that rely on
those registers will unusable. Therefore, to make available
the greatest number of functional gadgets, we select the the
dispatcher that uses the least common registers.

There are a number of heuristics available to locate dif-
ferent kinds of functional gadgets. In the case of conditional
branch gadgets, the conditional branch operation can be sep-
arated into two steps: (1) update a general purpose register
based on a comparison, and (2) use this result to permute pc.
Because step 2 is a simple arithmetic operation, we instead
focus on finding gadgets that implement step 1.

The result of a comparison are stored in CPU’s compara-
tor flags register (EFLAGS on the x86), and the most com-
mon way to leverage these flags is with a conditional jump

instruction. For example, on the x86, the je instruction will
“jump if equal”, i.e. if the “zero flag” ZF is set. To find gad-
gets that leverage such instructions, the heuristic need only
locate those gadgets whose first instruction is a conditional
jump to another instruction later in the same gadget. Such
a gadget will conditionally jump over some part of the gad-
get body, and can potentially be used to capture the result
of a comparison in a general purpose register, where it can
later be added to pc.

In addition to using conditional jumps, some CPUs, such
as modern iterations of the x86, support the “conditional
move” (cmov) and “set byte on condition” (set) instructions.
We can search for a gadget that uses these instructions to
conditionally alter a register.

Finally, there are also instructions that implicitly access
the comparator flags, such as adc (“add with carry”). This
instruction works like a normal add, except that the desti-
nation operand will be incremented one further if the “carry
flag” is set. Because the carry flag represents the result of an
unsigned integer comparison whenever the cmp instruction
is used, instructions like adc behave like conditional move
instructions, and can therefore be used to update general
purpose registers with the comparison result.

The heuristics for finding arithmetic, logic, and memory
access gadgets are much simpler, by comparison. We need
only restrict the opcode to the desired operation (add, mov,
and, etc.) and ensure that any destination operands do not
conflict with the jump target.

3.4 Launching the Attack
The vulnerabilities that can lead to a jump-oriented at-

tack are similar to those of return-oriented programming.
The key difference, however, is that while ROP requires con-
trol over the instruction pointer eip and stack pointer esp,
JOP requires eip plus whatever set of memory locations or
registers are used to run the dispatcher gadget. In practice,
this can be achieved by first directing control flow through
a special initializer gadget. Specifically, the initializer gad-
get fills the relevant registers either by arithmetic and logic
or by loading values from memory. Once this is done, the
initializer jumps to the dispatcher, and the jump-oriented
program can begin. The initializer gadget can take many
forms, depending on the mix of registers that need to be
filled. One simple case is a gadget that executes the popa
instruction, which loads every general-purpose register from
the stack. The initializer is not strictly necessary in all cases:
if the attacker can take over control flow at a time when reg-
isters happen to be set at useful values, the dispatcher can
be run directly from there.

The precise vulnerabilities that can lead to a return-oriented
attack have been discussed in depth previously [36, 10, 15,
21, 32, 30, 14]. Due to space constraints, we omit the details
here and merely summarize that the attacker can conceiv-
ably launch a jump-oriented attack by overwriting the stack,
a function pointer, or a setjmp buffer. As the first two are
already well-known, we explain the setjmp buffer below.

A setjmp buffer The C99 standard specifies the setjmp()
and longjmp() functions as a means to achieve non-local go-
tos [25]. This functionality is often used for complex error
handlers and in user mode threading libraries, such as cer-
tain versions of pthreads [26]. The programmer allocates a
jmp_buf structure and calls setjmp() with a pointer to this
structure at the point in the program where control flow
will eventually return. The setjmp() function will store the

0

3000

6000

9000

12000

jmp call jmp+call ret

Unintended

Intended

Figure 4: The frequency of indirect jmp and call
instructions, both intended and unintended, vs. ret
instructions in libc.

current CPU state in the jmp_buf object, including the in-
struction pointer eip and some (but not all) general-purpose
registers. The function returns 0 at this time.

Later, the programmer can call longjmp() with the jmp_buf
object in order to return control flow back to the point when
setjmp() was originally called, bypassing all stack seman-
tics. This function will restore the saved registers and jump
to the saved value of eip. At this time, it will be as if
setjmp() returns a second time, now with a non-zero re-
turn value. If the attacker can overwrite this buffer and a
longjmp() is subsequently called, then control flow can be
redirected to an initializer gadget to begin the jump-oriented
program. Because of the straightforward nature of this tech-
nique, it is employed in our example attack (Section 4.4).

4. IMPLEMENTATION
To demonstrate the efficacy of the JOP technique, we de-

veloped a jump-oriented attack on a modern Linux system.
Specifically, the attack is developed under Debian Linux
5.0.4 on the 32-bit x86 platform, with all gadgets being
gleaned from the GNU libc library. Debian ships multiple
versions of libc for different CPU and virtualization envi-
ronments. Our target library was /lib/i686/cmov/libc-
2.7.so,6 the version for CPUs supporting the conditional
move (cmov) instruction. In the following, we first examine
the overall availability of gadgets within libc, and then cover
the selection of the dispatcher and other functional gadgets.
After that, we present a full jump-oriented example attack.

4.1 Availability of Gadgets
Jump-oriented programming requires gadgets that end in

indirect branches instead of the ret instruction. These branches
may be jmp instructions, or, because we are not concerned
with using the stack for control flow, call instructions. Re-
call that the x86’s variable instruction size allows for mul-
tiple interpretations of the same code, leading to a set of
intended instructions generated by the compiler, plus an al-
ternative set of unintended instructions found by reinter-
preting the code from a different offset. To examine the rel-
ative availability of gadgets in JOP versus ROP, we show in
Figure 4 the comparison between the number of ret instruc-
tions and the number of indirect jmp and call instructions.

If we were constrained to use only intended jmp and call
gadgets, it is unlikely that there would be enough gadgets in
libc alone to sustain a Turing-complete attack code, as there
are only a few hundred such instructions present. However,
when unintended instruction sequences are taken into ac-
count, a far greater selection of gadgets becomes available.

6File size: 1413540 bytes,
MD5 checksum: e4e7e3c6b4f1be983e00c0daafc3aaf3.

This is due in large part to a specific aspect of the x86 in-
struction set: that the first opcode byte for an indirect jump
is 0xff. Because the x86 uses two’s complement signed inte-
gers, small negative values contain one or more 0xff bytes.
Therefore, in addition to the 0xff bytes provided within op-
codes, there is a large selection of 0xff bytes within imme-
diate operands stored in the code stream. In fact, 0xff is
the second most prevalent byte in the executable region of
libc, with 0x00 being the first. This means that, probabilis-
tically, indirect calls and jumps are far more prevalent than
would otherwise be the case. Thanks to this, we have a large
number of candidate jump gadgets to choose from.

To search for gadgets, we apply the algorithm given in
Section 3.3. In doing so, we must select a value for δmax,
the largest gadget size to consider, in bytes. A conservative
value would be the average gadget length (5) multiplied by
the average instruction’s length (3.5), i.e. d5 · 3.5e = 18.
However, the only side-effect of making δmax too large is
including gadgets that may be of limited usefulness due
to their length, so we err on the side of inclusiveness and
set δmax = 32 bytes. Later, the gadget list may be sorted
by number of instructions per gadget in order to focus on
shorter and therefore more likely choices.

When the gadget search algorithm is applied to the exe-
cutable regions of libc, 31,136 potential gadgets are found.
The following two sections describe how these candidates are
filtered by heuristics and manual analysis in order to locate
the dispatcher and functional gadgets to mount our attack.

4.2 The Dispatcher Gadget
Using the heuristics described in Section 3.3, the complete

set of potential gadgets was reduced to 35 candidates. Be-
cause there are so many choices, we can eliminate sequences
longer than two instructions (the minimum length of any
useful gadget) and still have 14 candidates to choose from.
Through manual analysis, we find that 12 of these are vi-
able. These choices use either arithmetic or dereferencing
to advance pc, and rely on various registers to operate. Be-
cause the registers used by the dispatcher are unavailable for
use by functional gadgets, choosing a dispatcher that uses
the least common registers will make available the broadest
range of functional gadgets. With this in mind, we selected
the following dispatcher gadget in our example shellcode:

add ebp, edi
jmp [ebp-0x39]

This gadget uses the stack base pointer ebp as the jump
target pc, adding to it the value stored in edi. We find that,
as far as functional gadgets are concerned, neither of these
registers play a prominent role in code generated by the
compiler. Also, the constant offset -0x39 applied to the jmp
instruction is of little consequence, as this can be statically
compensated for when setting ebp to begin with. Because
it is straightforward, predictable, and uses only two little-
needed registers, we selected this dispatcher gadget to drive
the shellcode example employed in Section 4.4.

4.3 Other Gadgets
Once the dispatcher is in place, one of the first functional

gadgets needed is a means to load operands. In ROP, this
is achieved by placing data on the stack, intermixed with
return addresses that point to gadgets. This way, gadgets
can use pop instructions to access data. There is no reason
why this approach cannot be applied in JOP, as anti-ROP
defense techniques focus on abuses of the stack as a means

for controlling the flow of execution, not data. In our im-
plementation, part of the attack includes moving the stack
pointer esp to part of the malicious buffer. Data can then
be loaded directly from the buffer by pop instructions. This
forms the basis for our load data gadget. A heuristic can
be applied to locate such gadgets; the only requirements are
that (a) the candidate’s first instruction must be a pop to a
general purpose register other than those used by our cho-
sen dispatcher (ebp and edi), and (b) the indirect jump at
the end must not use this register for its destination. This
heuristic yields 60 possibilities within libc, so we filter the
result further to only include gadgets with three instruc-
tions or fewer; this gives 22 possibilities. Manual analysis
of this list yields 14 load data gadgets which can be used
to load any of the general purpose registers not involved in
the dispatcher. There is no need to filter further – because
these gadgets have different side-effects and indirect jump
targets, each of them may be useful at different times, de-
pending on the registers in use for a calculation within the
jump-oriented program.

If all registers need to be loaded at once, a gadget using the
popa instruction can be executed. This instruction loads all
general purpose registers from the stack at once. This forms
the basis of the initializer gadget, which is used to prepare
the CPU state when the attack begins.

Similar to the search for the load data gadgets, basic arith-
metic and logic gadgets can be found with simple heuristics.
Due to space constraints, suffice it to say there is a plenti-
ful selection of gadgets implementing these operations. Re-
stricting the length of a gadget to three instructions, we find
221 choices for the add gadget, 129 choices for sub, 112 for
or, 1191 for xor, etc.

Achieving arbitrary access to memory is achieved by sim-
ilar means. The most straightforward memory gadgets use
the mov instruction to copy data between registers and mem-
ory. A heuristic to find memory write gadgets simply needs
to find instructions of the form mov [dest], src, while the
memory read gadget is of the form mov dest, [src]. As
with most x86 instructions, the memory address in the mov
may be offset by a constant, but this can be compensated
for when designing the attack. Based on the above observa-
tions, a search of libc finds 150 possible load gadgets and 33
possible write gadgets based on mov. This does not include
the large variety of x86 instructions that perform load and
store operations implicitly, such as the string manipulation
instructions lod and sto.

To locate conditional branch gadgets, we applied the heuris-
tics described in Section 3.3. By far the most common means
of moving the result of a comparison into a general purpose
register is via the adc and sbb instructions, which work like
add and sub, except incrementing/decrementing one further
if the CPU “carry flag” is set. Because this flag represents
the result of an unsigned integer comparison, gadgets fea-
turing these instructions can be used to perform conditional
branches. There are 1664 such gadgets found in libc, 333 of
which consist of only two instructions. These gadgets can
update any of the general purpose registers. To complete
the conditional jump, we need only apply the plain arith-
metic gadgets found previously to add some multiple of the
updated register to pc.

To perform system calls, there are a number of differ-
ent approaches the attacker can take. Of course, the at-
tacker could arrange to call a regular library routine such as
system(). However, because this would involve construct-

ing an artificial stack frame, this approach runs the risk of
being detected by existing anti-ROP defenses. Instead, the
attacker can directly request a system call through the ker-
nel’s usual interface. On x86-based Linux, this can be done
by executing a sysenter instruction to access the “fast sys-
tem call” functionality.

To use this mechanism, the caller will (1) set eax to the
system call number, (2) set the registers ebx, ecx, and edx
to the call’s parameters, and (3) execute the sysenter in-
struction. Ordinarily, the caller will also push ecx, edx,
ebp, and the address of the next instruction onto the stack,
but this bookkeeping is optional for the jump-oriented at-
tacker. Instead, we can take advantage of the fact that the
return address is specified on the stack by pointing it back
to the dispatcher. This means that the sysenter gadget
needs not end in an indirect jump. Note that this return
address is not the same as a normal function return address
– the kernel interface allows for this value to be set by the
user. This is because all system calls have the same exit
point in userspace: a small snippet of kernel-provided code
which jumps back to the stored address.

Given this, the only challenge to making a system call is
populating the correct registers. This becomes increasingly
difficult as the number of parameters increases. For calls
with three parameters such as execve(), it is necessary to
simultaneously set eax, ebx, ecx, and edx. This is somewhat
tricky, as there is no popa gadget that jumps based on a reg-
ister other than the ones needed for the system call, and the
selection of gadgets becomes limited as general purpose reg-
isters become occupied with specific values. Nevertheless, it
is possible to make arbitrary system calls using only material
from libc by chaining together multiple gadgets. For exam-
ple, the following sequence of gadgets will load eax, ebx,
ecx, and edx from attacker-supplied memory, then make a
system call. This gadget sequence was used in constructing
the shellcode for the example attack presented below.

popa ; Load all registers
cmc ; No practical effect
jmp far dword [ecx] ; Back to dispatcher via ecx

xchg ecx, eax ; Exchange ecx and eax
fdiv st, st(3) ; No practical effect
jmp [esi-0xf] ; Back to dispatcher via esi

mov eax, [esi+0xc] ; Set eax
mov [esp], eax ; No practical effect
call [esi+0x4] ; Back to dispatcher via esi

sysenter ; Perform system call

4.4 Example attack
Because of its simplicity, we use a vulnerable test program

similar to the one given by Checkoway and Shacham [14].
The source code to this program is given in Figure 5. In
essence, this program copies the first command line argu-
ment argv[1] into a 256 byte buffer on the heap. Because
the program does not limit the amount of data copied, this
program is vulnerable to the setjmp exploit described in
Section 3.4. The attacker can overflow the buffer and, when
the longjmp function is called on line 17, take control of
the registers ebx, esi, edi, ebp, esp, and the instruction
pointer eip. This specific application is merely an example:
any exploit which delivers control of the instruction pointer
and other registers can potentially be used to start a jump-
oriented attack.

We use this program as a platform to launch a jump-

 1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #include <setjmp.h>
 5
 6 struct foo {
 7 char buffer[256];
 8 jmp_buf jb;
 9 };
 10
 11 int main(int argc, char** argv, char** envp) {
 12 struct foo *f = malloc(sizeof(*f));
 13 if (setjmp(f->jb)) {
 14 return 0;
 15 }
 16 strcpy(f->buffer, argv[1]);
 17 longjmp(f->jb, 1);
 18 }

Figure 5: The example vulnerable program

oriented shellcode program which will ultimately use the
execve system call to launch an interactive shell. Specif-
ically, our example attack was constructed in NASM [1],
which, despite being an assembler, was only used to spec-
ify raw data fields. The macros and arithmetic features of
NASM allow the expression of the exploit code in a straight-
forward way. The attack source code is given in our technical
report [9].

When assembled by NASM, this script will produce a bi-
nary exploit file, which is then provided to the vulnerable
program as a command line argument:

$./vulnerable "`cat exploit.bin`"

This launches the jump-oriented program and ultimately
yields an interactive shell prompt without a single ret in-
struction.

5. DISCUSSION
In this section, we examine possible limitations and dis-

cuss further refinements in the jump-oriented programming
technique. First, while we have found that JOP is capable
of arbitrary computation in theory, constructing the attack
code manually is a complex task, moreso even than in ROP.
The main reason is an added layer of interdependency in
JOP gadgets. Specifically, because of the reliance on cer-
tain registers to serve as the “state” for the jump-oriented
system (e.g., the pointer to the dispatch table and the call-
back to the dispatcher after each gadget execution), there
are complex restrictions on the sequence of gadgets that can
be assembled. Oftentimes, the attack designer will need to
introduce gadgets whose sole purpose is to make the next
gadget work (e.g., by setting a jump target register). This
naturally complicates the development of automated tech-
niques to facilitate the jump-oriented programming.

Second, while the idea of jump-oriented programming is
applicable in theory to architectures with fixed-length in-
structions (SPARC, ARM, etc.), it may be the case that
a much larger codebase is required to realize full Turing-
complete operation. This is because two features of the x86
conspire to make gadgets based on jmp and call especially
plentiful: (1) variable length instructions allow multiple in-
terpretations of the code stream, and (2) indirect branch
instructions begin with the especially common 0xff byte. A
thorough analysis of the feasibility and efficiency of apply-
ing JOP to alternative platforms (e.g., MIPS), including the
portability of dispatcher gadgets and the associated dispatch
table (Section 3), is an important question which we leave
to future work.

Third, if we examine the nature of the two different pro-
gramming models, i.e., ROP and JOP, the basis of the vul-

nerability is not the returns or the indirect jumps, but rather
the promiscuous behavior of allowing entry to any address in
an executable program or library. To defend against them,
there is a need to enforce control-flow integrity. From an-
other perspective, it may be tempting to assume that this
attack might be trivially defeated by identifying anoma-
lies, such as dispatcher-like behavior or high-frequency in-
direct jumps. Unfortunately, this is not the case. Such de-
fenses can be easily evaded by arranging for the execution
of long-running functions and changing dispatchers periodi-
cally. Next, we examine related work and discuss a number
of orthogonal defenses which could be used to impede or
prevent either return- or jump-oriented programming.

6. RELATED WORK
Anti-ROP defenses Recently, a number of defense

systems have been proposed to detect or prevent return-
oriented programming attacks. For example, based on a
separate shadow stack (similar to [17, 22]), ROPdefender
proposes a binary rewriting approach to ensure the valid-
ity of each return target, thus blocking the execution of
return-oriented gadgets [19]. DROP [16] and DynIMA [18]
detect a ROP-based attack by monitoring the execution of
short instruction sequences each ending with a ret. The
return-less approach [31] recognizes the need of ret for the
gadget construction and chaining and develops a compiler-
based approach to remove the presence of the ret opcode.
In contrast, jump-oriented programming is made immune
from these defenses by avoiding the reliance on ret or the
return stack to launch a JOP-based attack. In this respect,
JOP reflects the trend of the ongoing security arms-race.
Most recently, Onarlioglu et. al introduced G-Free, a com-
piler designed to produce gadget-less binaries [34]. This is
achieved by removing all unintended control flow transfers,
then protecting the intended ones through pointer encyption
and stack cookies. Because indirect jump and call instruc-
tions are protected in this scheme, it would prevent them
from being misused and essentially de-generalize existing
ROP attacks to the traditional return-into-libc attacks.

Independent of our work, a concurrent approach by Check-
oway et al. [14] proposes to replace ret in ROP with a
pop+jmp on x86, which arguably is a step further from the
original ROP model. However, pop+jmp sequences are rare,
necessitating the“bring your own pop+jmp”paradigm, where
the sequence must be found in a particularly large code base.
In fact, our analysis of the text section of the default libc in
Debian Linux 5.0.4 on the 32-bit x86 platform does not yield
a single pop+jmp sequence. Also, the use of such sequence
still imposes the need of relying on the stack to govern con-
trol flow among gadgets. In comparison, our JOP model has
no such restrictions, and therefore threatens a much broader
set of applications and environments. An ARM implemen-
tation was also presented in this work which relied on an
“update-load-branch” gadget to maintain control flow. This
similarity lends evidence to the theory that jump-oriented
attacks could be a cross-platform threat, not limited to x86.

From another perspective, other orthogonal defense schemes
(e.g., randomization) have been proposed to defend against
code injection attacks. In particular, address-space layout
randomization (ASLR) [2, 7, 8] randomizes the memory lay-
out of a running program, making it difficult to determine
the addresses in libc and other legitimate code on which
return-into-libc or ROP/JOP-based attacks rely. However,
there are de-randomization attacks to bypass ASLR [20, 33,

37] or limit its effectiveness. Instruction-set randomization
(ISR) [6, 27] instead randomizes the instruction set for each
running process so that instructions in the injected attack
code fail to execute correctly even though the attacks may
have successfully hijacked the control flow. However, it is not
effective to return-into-libc and ROP/JOP-based attacks.

Memory safety In the past, many defense mechanisms
have also been proposed to better enforce enhanced mem-
ory safety. For example, CFI [4] and program shepherding
[28] are designed to protect the control-flow integrity prop-
erty of a running program. DFI [12] and others [5, 13] build
on the control-flow integrity property and further extend it
for other types of memory safety (e.g., data-flow integrity).
Note that if control-flow integrity is strictly enforced, both
ROP and JOP will be blocked from hijacking the control
flow in the first place. However, precise CFI enforcement
requires complex code analysis, which can be difficult to ob-
tain especially for programs with a large codebase, including
libc or modern OS kernels. Further, CFI has not seen wide
deployment, likely due to concerns over performance, espe-
cially in the case of real-time enforcement.

Other code re-uses Most recently, researchers found
interesting applications of re-using certain code snippets from
malicious code to better understand them. For example,
Caballero et al. proposed BCR [11], a tool that aims to
extract a function from a (malware) binary so that it can
be re-used later. Kolbitsch et al. developed Inspector [29]
to re-use existing code in a binary and transform it into a
stand-alone gadget that can be later used to (re)execute spe-
cific malware functionality. In comparison, ROP and JOP
re-use legitimate code of a vulnerable program to construct
arbitrary computation without injecting code.

7. CONCLUSION
In this paper, we have presented a new class of code-reuse

attack, jump-oriented programming. This attack eliminates
the reliance on the stack and rets from return-oriented pro-
gramming but without scarifying its expressive power. In
particular, under this attack, we can build and chain normal
functional gadgets with each performing certain primitive
operations. However, due to the lack of ret to chain them,
this attack relies on a dispatcher gadget to dispatch and exe-
cute next functional gadget. We have successfully developed
an example shellcode attack based on jump-oriented pro-
gramming, and the abundance of jmp gadgets in GNU libc
indicates the practicality and effectiveness of this attack.

8. REFERENCES
[1] NASM. http://www.nasm.us/.

[2] PaX ASLR Documentation.
http://pax.grsecurity.net/docs/aslr.txt.

[3] W∧X. http://en.wikipedia.org/wiki/W∧X.

[4] M. Abadi, M. Budiu, Úlfar Erilingsson, and J. Ligatti.
Control-Flow Integrity: Principles, Implementations, and
Applications. In 12th ACM CCS, October 2005.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing Memory Error Exploits with WIT. In 28th IEEE
Symposium on Security and Privacy, May 2008.

[6] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,
D. Stefanovic, and D. D. Zovi. Randomized Instruction Set
Emulation to Disrupt Binary Code Injection Attacks. 10th
ACM CCS, 2003.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
Obfuscation: An Efficient Approach to Combat a Broad Range
of Memory Error Exploits. 12th USENIX Security, 2003.

[8] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
Techniques for Comprehensive Protection from Memory Error
Exploits. 14th USENIX Security, 2005.

[9] T. Bletsch, X. Jiang, and V. Freeh. Jump-Oriented
Programming: A New Class of Code-Reuse Attack. In CSC
Technical Report TR-2010-8, NC State University, 2010.

[10] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
Good Instructions Go Bad: Generalizing Return-Oriented
Programming to RISC. In 15th ACM CCS, pages 27–38, New
York, NY, USA, 2008. ACM.

[11] J. Caballero, N. M. Johnson, S. McCamant, and D. Song.
Binary Code Extraction and Interface Identification for
Security Applications. In 17th ISOC NDSS, 2010.

[12] M. Castro, M. Costa, and T. Harris. Securing Software by
Enforcing Data-Flow Integrity. In 7th USENIX OSDI, 2006.

[13] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast Byte-Granularity
Software Fault Isolation. In 22nd ACM SOSP, October 2009.

[14] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented programming
without returns. In 17th ACM CCS, 2010.

[15] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman,
E. W. Felten, , and H. Shacham. Can DREs provide
long-lasting security? The case of return-oriented programming
and the AVC Advantage. In EVT/WOTE 2009, USENIX,
2009.

[16] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop:
Detecting return-oriented programming malicious code. In 5th
ACM ICISS, 2009.

[17] T. Chiueh and F. Hsu. RAD: A Compile-Time Solution to
Buffer Overflow Attacks. In 21st IEEE ICDCS, April 2001.

[18] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity
Measurement and Attestation: Towards Defense against
Return-oriented Programming Attacks. In 2009 ACM STC.

[19] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A
detection tool to defend against return-oriented programming
attacks. Technical Report HGI-TR-2010-001, Horst Görtz
Institute for IT Security, March 2010.

[20] T. Durden. Bypassing PaX ASLR Protection. Phrack
Magazine, Volume 11, Issue 0x59, File 9 of 18, 2002.

[21] A. Francillon and C. Castelluccia. Code Injection Attacks on
Harvard-Architecture Devices. In 15th ACM CCS, 2008.

[22] M. Frantzen and M. Shuey. StackGhost: Hardware Facilitated
Stack Protection. In 10th USENIX Security Symposium, 2001.

[23] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In 19th
USENIX Security Symposium, Aug. 2009.

[24] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, volume 2. Mar. 2010.

[25] ISO. The ansi c standard (c99). Technical Report WG14
N1124, ISO/IEC, 1999.

[26] R. Johnson. Open source posix threads for win32 faq.
http://sourceware.org/pthreads-win32/faq.html.

[27] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks With Instruction-Set Randomization.
10th ACM CCS, 2003.

[28] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. In 11th USENIX
Security Symposium, August 2002.

[29] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector
Gadget: Automated Extraction of Proprietary Gadgets from
Malware Binaries. In 30th IEEE Symposium on Security and
Privacy, May 2010.

[30] T. Kornau. Return oriented programming for the ARM
architecture. Master’s thesis, Ruhr-Universität Bochum,
January 2010.

[31] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
return-oriented rootkits with return-less kernels. In 5th ACM
SIGOPS EuroSys Conference, Apr. 2010.

[32] F. F. Lidner. Developments in Cisco IOS Forensics. In
CONference 2.0, Nov. 2009.

[33] Nergal. The Advanced Return-into-lib(c) Exploits: PaX Case
Study. Phrack Magazine, Volume 11, Issue 0x58, 2001.

[34] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda.
G-free: Defeating return-oriented programming through
gadget-less binaries. In 26th ACSAC, 2010.

[35] PaX Team. What the future holds for PaX.
http://pax.grsecurity.net/docs/pax-future.txt, 2003.

[36] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In 14th
ACM CCS, 2007.

[37] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address Space
Randomization. 11th ACM CCS, 2004.

