Local Perception Filter

Maintaining tightly synchronized states

States can go out of date. A player sees a state that happened t seconds ago.

Hybrid Model: Render objects within realtime interaction range in real time, other objects in delayed time.

Question: What if a player A throws a ball at player B?

Question: What if a player B throws a ball at player A?

Two Kinds of Entities

Active: players (unpredictable) Passive: ball, bullet (predictable)

Question: What if a player A throws a ball at player B?

Question: What if a player B throws a ball at player A?

From perspective of a player A, the other player is surrounded by a "temporal distortion field" defined by the communication delay between that player and A.

ID temporal distortion field from A's perspective.

ID temporal distortion field from B's perspective.

Extension to multi players

Limitations

Delay jitter leads to fluctuating field.

Can't interact directly with other players.

Local Perception Filter

Bullet Time

Slow down time to allow more reaction time.

E.g. "Max Payne"

Difficult in multiplayer game -- naive implementation slows every player down. Ideally, players who invoke "bullet time" slow down their game, but others play on. "bullet time" -- bullet slows down as it comes near the player; increases speed as it moves away.

bullet time distortion field from B's perspective.

overall distortion field

overall distortion field from B's perspective.

bullet time distortion field from A's perspective.

You Are Here

- CS4344
 - Client/Server Architecture
 - Synchronization Protocols
You Are Here

- CS4344
 - Client/Server Architecture
 - Synchronization Protocols
 - Interest Management

Bandwidth Requirement

A Measurement Study of Shen Zhou Online, an MMORPG.

Images taken from <u>http://tjgame.enorth.com.cn/system/2003/07/09/000594000.shtml</u>

Average bandwidth per client

2.5: I

Peak-to-Mean Ratio for Bandwidth

370,000

Simultaneous Number Of Players (Ragnarok Online, December 2004)

6.5 Gbps

Peak Server Bandwidth

860 Terabyte

Amount of data transfered per month

Need to reduce bandwidth overhead

Dead Reckoning

Interest Management

Relevance Filtering

Idea: only need to update another player p if the update matters to p.

Aura / Area-of-Interest

Update of p matters to q if the auras of p and q intersect.

Foci (what a player can see)

Nimbi (where a player can be seen)

Update of p matters to q if the foci of p intersects nimbi of q.

Calculating aura/foci/nimbi can be costly.

Idea: approximate use bounding boxes

or approximate using cells

Large cell: Redundant messages. Small cell: Large management overhead.

The white player will receive many messages he/she is not interested in.

Idea: we can dynamically partition the cells into smaller ones as needed.

Generalization: an entity may specify any other events/ entity it is interested in.

Communication Abstraction

Multicast: send a message to a set of subscribers

Group: a channel to **publish** messages

A client can **subscribe** to/ **join** a group to start receiving messages from that group.

A client can **unsubscribe** from/**leave** a group to stop receiving messages from that group.

Anyone can send a message to a group (need not be a subscriber).

Each cell is a group. A subscriber can subscribe to multiple cells. A group can have multiple publishers.

Implementation: IP Multicast

Multicast groups are identified using class D IP addresses (224.0.0.0 to 239.255.255.255)

Any message sent to a multicast address will be sent to all its subscriber.
Anyone listening to a multicast address will receive messages sent to it.

Problems with IP Multicast

Not reliable

join/leave takes time

not widely deployed

need states at the router

and many others..