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Effects of delay jitter on 
four schemes
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Some describe effects 
of latency instead
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Player A

Permissible Client/Server Architecture

Player B

Server

lag

lag
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Fluctuating latency:
Variable response time 
annoys users.  Hard to 
compensate.
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Clock Sync: Will not 
help
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Player A

Improve fairness by artificial delay at the 
server.  (longer delay for “closer” player)

Player B

Server

lag

lag
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Need to know the RTT 
between server and client 
to insert artificial lag.
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Fluctuating latency:
Hard to predict RTT.
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Clock Sync: Insert 
timestamp to measure 
latency. 
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Server
(now)

Server
(now - t)

Server estimates latency of message and go 
back to the time the message is generated.
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Fluctuating latency:
Hard to estimate RTT
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Clock Sync: Insert 
timestamp to measure 
latency. 
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Slow down/speed up movement of passive objects 
to improve consistency among players.

temporal
distortion

rendered position 
of ball

A B
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Fluctuating latency:
Hard to estimate RTT.  
Speed fluctuates.
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Clock Sync: Accurate 
estimation of latency 
won’t help.
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Peer-to-Peer 
Architecture
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Problem: 
Communication between 

Every Pair of Peers
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Idea (old): A peer p only 
needs to communicate 
with another peer q 
if p is relevant to q
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Recall: In C/S Architecture, the 
server has global information 
and decide who is relevant to 
who.
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Problem: No global 
information in P2P 
architecture.
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Naive Solution: Every 
peer keeps global information 
about all other peers and 
make individual decision.
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Maintaining global 
information is expensive 
(and that’s what we want 
to avoid in the first place!)
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Smarter solution: 
exchange position, then 
decide when should the 
next position exchange be.

24

24



Idea: Assume B is static. If 
A knows B’s position, A can 
compute the region which is 
irrelevant to B.  Need not 
update B if A moves within 
that region.
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what if B moves?
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It still works if B also knows A 
position and computes the 
region that is irrelevant to A.  
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Position exchanges occur once 
initially, and when a player 
moves outside of its irrelevant 
region wrt another player.
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Frontier Sets
cell-based, visibility-based IM
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Previously, we learnt how to 
compute cell-to-cell visibility.
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Frontier for cells X and Y 
consists of 

two sets FXY and FYX
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No cell in FXY is visible from 
a cell in FYX, and vice versa.
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FXY and FYX are disjoint 
if X and Y are not mutually visible.
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FXY and FYX are empty 
if X and Y are mutually visible.
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Suppose X and Y are not 
mutually visible, then 
a simple frontier is 

FXY = {X}    FYX = {Y}

(many others are possible)
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A B C

D E F

G H I
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A B C

D E F

G H I
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A B C

D E F

G H I
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A B C

D E F

G H I
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A B C

D E F

G H I

NOT a frontier for A and I (D is visible from B).
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Position exchanges occur once 
initially, and when a player 
moves outside of its irrelevant 
region wrt another player.
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Initialize: 
Let player P be in cell X
For each player Q
   Let cell of Q be Y
	 Compute FXY (or simply FQ)
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Move to new cell:
Let X be new cell
For each player Q
	 If X not in FQ

	 Send location to Q
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Receive Update:  
(location from Q)
Send location to Q
Recompute FQ
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A B C

D E F

G H I

Update is triggered.
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A B C

D E F

G H I

New Frontier.
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A B C

D E F

G H I

Update triggered.
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A B C

D E F

G H I

New frontier (empty since E can see G)
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How to compute frontier?
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A good frontier is as large as 
possible, with two almost 

equal-size sets. 
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A B C

D E F

G H I

Build a visibility graph.  Cells are vertices.  Two cells are
connected by an edge if they are visible to each other

(EVEN if they don’t share a boundary)
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Let dist(X,Y) be the shortest 
distance between two cells X 
and Y on the visibility graph.
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A B C

D E F

G H I

0 1 2

212

2 3 3
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Theorem
FXY = { i | dist(X,i) <= dist(Y,i) - 1}
FYX = { j | dist(Y,j) < dist(X,j) - 1}

are valid frontiers.
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A B C

D E F

G H I
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A B C

D E F

G H I
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G I

0 1 2

212

2 3 3 0

0

11

2 2

33 3

4

57

57



A B C

D E F

G H I
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Theorem
FXY = { i | dist(X,i) <= dist(Y,i) - 1}
FYX = { j | dist(Y,j) < dist(X,j) - 1}

are valid frontiers.

59

59



FXY = { i |dist(X,i) <= dist(Y,i) - 1}
FYX = { j |dist(Y,j) < dist(X,j) - 1} 

Proof (by contradiction)
Suppose there are two cells, C in 
FXY and D in FYX, that can see each 
other.
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FXY = { i |dist(X,i) <= dist(Y,i) - 1}
FYX = { j |dist(Y,j) < dist(X,j) - 1} 

dist(X,C) <= dist(Y,C) - 1
dist(Y,D) < dist(X,D) - 1
dist(C,D) = dist(D,C) = 1
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dist(X,C) <= dist(Y,C) - 1
dist(Y,D) < dist(X,D) - 1
dist(C,D) = dist(D,C) = 1

We also know that
dist(X,D) <= dist(X,C) + dist(C,D)
dist(Y,C) <= dist(Y,D) + dist(D,C)
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1. dist(X,C) <= dist(Y,C) - 1
2. dist(Y,D) < dist(X,D) - 1
3. dist(C,D) = 1
4. dist(X,D) <= dist(X,C) + dist(C,D)
5. dist(Y,C) <= dist(Y,D) + dist(D,C)

From 4, 1, and 3:
dist(X,D) 	<= dist(Y,C) - 1 + 1
From 5:
dist(X,D) <= dist(Y,D) + 1
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1. dist(X,C) <= dist(Y,C) - 1
2. dist(Y,D) < dist(X,D) - 1
3. dist(C,D) = 1
4. dist(X,D) <= dist(X,C) + dist(C,D)
5. dist(Y,C) <= dist(Y,D) + dist(D,C)

We have
	 dist(X,D) <= dist(Y,D) + 1
Which contradict 2
	 dist(X,D) > dist(Y,D) + 1
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How good is the idea?

(How many messages can we save 
by using Frontier Sets?)
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q2dm3 q2dm4 q2dm8

Max dist() 4 5 8

Num of cells 666 1902 966
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Frontier Density: 
% of player-pairs with 
non-empty frontiers.
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q2dm3 q2dm4 q2dm8

Frontier 
Density 83.9 93.0 84.2

68

68



Frontier Size: 
% of cells in the frontier 
on average

69

69



q2dm3 q2dm4 q2dm8

Frontier 
Size 38.3% 67.3% 68.2%
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Compare with
1. Naive P2P
2. Perfect P2P
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Naive P2P
Always send update to 
15 other players.
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Perfect P2P
Hypothetical protocol 
that sends messages 
only to visible players.
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Number of messages per frame per player.
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q2dm3 q2dm4 q2dm8

Number of messages per frame per player.
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q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

Number of messages per frame per player.
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q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

PPP 3.7 1.9 4.2

Number of messages per frame per player.
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q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

PPP 3.7 1.9 4.2

Frontier 5.4 2.6 5.9

Number of messages per frame per player.
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Space Complexity
Let N be the number of cells.  If 
we precompute Frontier for 
every pair of cells, we need

O(N3) 
space.
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If we store visibility graph and 
compute frontier as needed,  
we only need

O(N2) 
space.
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Frontier Sets
cell-based, visibility-based IM
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Limitations
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Works badly if there’s 
little occlusion in the 

virtual world.
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Still need to 
exchange locations 
with every other 

players occasionally.
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Frontier Sets
cell-based, visibility-based IM
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Voronoi Overlay Network: 
Aura-based Interest Management
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Diagrams and plots in the 
sections are taken from 
presentation slides by 

Shun-yun Hu, available on 
http://vast.sf.net

X

83

http://vast.sf.net
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Keep a list of neighbors 
within AOI and exchange 
messages with neighbors.
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How to initialize list of 
neighbors?

How to keep list of neighbors 
up-to-date?
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Every node is in charge of a 
region in the virtual world. 

The region contains points 
closest to the node.
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Voronoi Diagram
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AOI Neighbors:
Neighbors in AOI
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Enclosing 
Neighbors:
Neighbors in 
adjacent region.

(may or may not 
be in AOI)
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Boundary 
Neighbors:
Neighbors whose 
region intersect 
with AOI.

(may or may not 
be in AOI)
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Boundary and
Enclosing
Neighbor
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Regular AOI 
Neighbor:
Non-boundary
and non-enclosing
neighbor in AOI
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Unknown nodes 
(not neighbors!)
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A node always 
connect to its 
enclosing neigbours, 
regardless of whether 
they are in the AOI.
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A node exchanges 
updates with all 
neighbors.
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A node maintain 
Voronoi of all 
neighbors
(regardless of inside 
AOI or not)
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Suppose a player X wants to 
join.  X sends its location to 
any node in the system.  

96

97



97

X join request is forwarded to the node 
in charge of the region (i.e., closest node 
to X), called acceptor.
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Forwarding is done greedily 
(every step forward to neighbor closest to X)
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Acceptor inform the joining node X of its neighbors.  
Acceptor, X, and the neighbors update their Voronoi 

diagram to include the new node.
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Suppose X moves.  Boundary neighbors of X check if 
their enclosing neighbor is now in X’s AOI or has become 

X’s enclosing neighbor.  X updates its new neighbor
with information about its neighbor.  Neighbors outside 
region is disconnected.  Voronoi diagrams are updated.
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When a node disconnect, Voronoi diagrams are
updated by the affected nodes.  New boundary

neighbors may be discovered.
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Average Neighbor Size Measurements
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Responsive

Consistent

Cheat-Free

Fair

Scalable

Efficient

Robust

Simple
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