
Quiz 1

1

1

Effects of delay jitter on
four schemes

2

2

Some describe effects
of latency instead

3

3

Player A

Permissible Client/Server Architecture

Player B

Server

lag

lag

4

4

Fluctuating latency:
Variable response time
annoys users. Hard to
compensate.

5

5

Clock Sync: Will not
help

6

6

Player A

Improve fairness by artificial delay at the
server. (longer delay for “closer” player)

Player B

Server

lag

lag

7

7

Need to know the RTT
between server and client
to insert artificial lag.

8

8

Fluctuating latency:
Hard to predict RTT.

9

9

Clock Sync: Insert
timestamp to measure
latency.

10

10

Server
(now)

Server
(now - t)

Server estimates latency of message and go
back to the time the message is generated.

11

11

Fluctuating latency:
Hard to estimate RTT

12

12

Clock Sync: Insert
timestamp to measure
latency.

13

13

Slow down/speed up movement of passive objects
to improve consistency among players.

temporal
distortion

rendered position
of ball

A B

14

14

Fluctuating latency:
Hard to estimate RTT.
Speed fluctuates.

15

15

Clock Sync: Accurate
estimation of latency
won’t help.

16

16

Peer-to-Peer
Architecture

17

17

Problem:
Communication between

Every Pair of Peers

18

18

Idea (old): A peer p only
needs to communicate
with another peer q
if p is relevant to q

19

19

Recall: In C/S Architecture, the
server has global information
and decide who is relevant to
who.

20

20

Problem: No global
information in P2P
architecture.

21

21

Naive Solution: Every
peer keeps global information
about all other peers and
make individual decision.

22

22

Maintaining global
information is expensive
(and that’s what we want
to avoid in the first place!)

23

23

Smarter solution:
exchange position, then
decide when should the
next position exchange be.

24

24

Idea: Assume B is static. If
A knows B’s position, A can
compute the region which is
irrelevant to B. Need not
update B if A moves within
that region.

25

25

what if B moves?

26

26

It still works if B also knows A
position and computes the
region that is irrelevant to A.

27

27

Position exchanges occur once
initially, and when a player
moves outside of its irrelevant
region wrt another player.

28

28

Frontier Sets
cell-based, visibility-based IM

29

29

Previously, we learnt how to
compute cell-to-cell visibility.

30

30

Frontier for cells X and Y
consists of

two sets FXY and FYX

31

31

No cell in FXY is visible from
a cell in FYX, and vice versa.

32

32

FXY and FYX are disjoint
if X and Y are not mutually visible.

33

33

FXY and FYX are empty
if X and Y are mutually visible.

34

34

Suppose X and Y are not
mutually visible, then
a simple frontier is

FXY = {X} FYX = {Y}

(many others are possible)

35

35

A B C

D E F

G H I

36

36

A B C

D E F

G H I

37

37

A B C

D E F

G H I

38

38

A B C

D E F

G H I

39

39

A B C

D E F

G H I

NOT a frontier for A and I (D is visible from B).

40

40

Position exchanges occur once
initially, and when a player
moves outside of its irrelevant
region wrt another player.

41

41

Initialize:
Let player P be in cell X
For each player Q
 Let cell of Q be Y
	 Compute FXY (or simply FQ)

42

42

Move to new cell:
Let X be new cell
For each player Q
	 If X not in FQ

	 Send location to Q

43

43

Receive Update:
(location from Q)
Send location to Q
Recompute FQ

44

44

A B C

D E F

G H I

Update is triggered.

45

45

A B C

D E F

G H I

New Frontier.

46

46

A B C

D E F

G H I

Update triggered.

47

47

A B C

D E F

G H I

New frontier (empty since E can see G)

48

48

How to compute frontier?

49

49

A good frontier is as large as
possible, with two almost

equal-size sets.

50

50

A B C

D E F

G H I

Build a visibility graph. Cells are vertices. Two cells are
connected by an edge if they are visible to each other

(EVEN if they don’t share a boundary)

51

51

Let dist(X,Y) be the shortest
distance between two cells X
and Y on the visibility graph.

52

52

A B C

D E F

G H I

0 1 2

212

2 3 3

53

53

Theorem
FXY = { i | dist(X,i) <= dist(Y,i) - 1}
FYX = { j | dist(Y,j) < dist(X,j) - 1}

are valid frontiers.

54

54

A B C

D E F

G H I

0 1 2

212

2 3 3 0

0

11

2 2

33 3

4

55

55

A B C

D E F

G H I

0 1 2

212

2 3 3 0

0

11

2 2

33 3

4

56

56

H

A B C

D E F

G I

0 1 2

212

2 3 3 0

0

11

2 2

33 3

4

57

57

A B C

D E F

G H I

58

58

Theorem
FXY = { i | dist(X,i) <= dist(Y,i) - 1}
FYX = { j | dist(Y,j) < dist(X,j) - 1}

are valid frontiers.

59

59

FXY = { i |dist(X,i) <= dist(Y,i) - 1}
FYX = { j |dist(Y,j) < dist(X,j) - 1}

Proof (by contradiction)
Suppose there are two cells, C in
FXY and D in FYX, that can see each
other.

60

60

FXY = { i |dist(X,i) <= dist(Y,i) - 1}
FYX = { j |dist(Y,j) < dist(X,j) - 1}

dist(X,C) <= dist(Y,C) - 1
dist(Y,D) < dist(X,D) - 1
dist(C,D) = dist(D,C) = 1

61

61

dist(X,C) <= dist(Y,C) - 1
dist(Y,D) < dist(X,D) - 1
dist(C,D) = dist(D,C) = 1

We also know that
dist(X,D) <= dist(X,C) + dist(C,D)
dist(Y,C) <= dist(Y,D) + dist(D,C)

62

62

1. dist(X,C) <= dist(Y,C) - 1
2. dist(Y,D) < dist(X,D) - 1
3. dist(C,D) = 1
4. dist(X,D) <= dist(X,C) + dist(C,D)
5. dist(Y,C) <= dist(Y,D) + dist(D,C)

From 4, 1, and 3:
dist(X,D) 	<= dist(Y,C) - 1 + 1
From 5:
dist(X,D) <= dist(Y,D) + 1

63

63

1. dist(X,C) <= dist(Y,C) - 1
2. dist(Y,D) < dist(X,D) - 1
3. dist(C,D) = 1
4. dist(X,D) <= dist(X,C) + dist(C,D)
5. dist(Y,C) <= dist(Y,D) + dist(D,C)

We have
	 dist(X,D) <= dist(Y,D) + 1
Which contradict 2
	 dist(X,D) > dist(Y,D) + 1

64

64

How good is the idea?

(How many messages can we save
by using Frontier Sets?)

65

65

q2dm3 q2dm4 q2dm8

Max dist() 4 5 8

Num of cells 666 1902 966

66

66

Frontier Density:
% of player-pairs with
non-empty frontiers.

67

67

q2dm3 q2dm4 q2dm8

Frontier
Density 83.9 93.0 84.2

68

68

Frontier Size:
% of cells in the frontier
on average

69

69

q2dm3 q2dm4 q2dm8

Frontier
Size 38.3% 67.3% 68.2%

70

70

Compare with
1. Naive P2P
2. Perfect P2P

71

71

Naive P2P
Always send update to
15 other players.

72

72

Perfect P2P
Hypothetical protocol
that sends messages
only to visible players.

73

73

Number of messages per frame per player.

74

74

q2dm3 q2dm4 q2dm8

Number of messages per frame per player.

74

74

q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

Number of messages per frame per player.

74

74

q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

PPP 3.7 1.9 4.2

Number of messages per frame per player.

74

74

q2dm3 q2dm4 q2dm8

NPP 15 15.7 14.4

PPP 3.7 1.9 4.2

Frontier 5.4 2.6 5.9

Number of messages per frame per player.

74

74

Space Complexity
Let N be the number of cells. If
we precompute Frontier for
every pair of cells, we need

O(N3)
space.

75

75

If we store visibility graph and
compute frontier as needed,
we only need

O(N2)
space.

76

76

Frontier Sets
cell-based, visibility-based IM

77

77

Limitations

78

78

Works badly if there’s
little occlusion in the

virtual world.

79

79

Still need to
exchange locations
with every other

players occasionally.

80

80

Frontier Sets
cell-based, visibility-based IM

81

81

Voronoi Overlay Network:
Aura-based Interest Management

82

82

Diagrams and plots in the
sections are taken from
presentation slides by

Shun-yun Hu, available on
http://vast.sf.net

X

83

http://vast.sf.net
http://vast.sf.net

Keep a list of neighbors
within AOI and exchange
messages with neighbors.

83

84

How to initialize list of
neighbors?

How to keep list of neighbors
up-to-date?

84

85

Every node is in charge of a
region in the virtual world.

The region contains points
closest to the node.

85

86

Voronoi Diagram

86

87

AOI Neighbors:
Neighbors in AOI

87

88

Enclosing
Neighbors:
Neighbors in
adjacent region.

(may or may not
be in AOI)

88

89

Boundary
Neighbors:
Neighbors whose
region intersect
with AOI.

(may or may not
be in AOI)

89

90

Boundary and
Enclosing
Neighbor

90

91

Regular AOI
Neighbor:
Non-boundary
and non-enclosing
neighbor in AOI

91

92

Unknown nodes
(not neighbors!)

92

93

A node always
connect to its
enclosing neigbours,
regardless of whether
they are in the AOI.

93

94

A node exchanges
updates with all
neighbors.

94

95

A node maintain
Voronoi of all
neighbors
(regardless of inside
AOI or not)

95

96

Suppose a player X wants to
join. X sends its location to
any node in the system.

96

97

97

X join request is forwarded to the node
in charge of the region (i.e., closest node
to X), called acceptor.

98

98

Forwarding is done greedily
(every step forward to neighbor closest to X)

99

99

Acceptor inform the joining node X of its neighbors.
Acceptor, X, and the neighbors update their Voronoi

diagram to include the new node.

100

100

Suppose X moves. Boundary neighbors of X check if
their enclosing neighbor is now in X’s AOI or has become

X’s enclosing neighbor. X updates its new neighbor
with information about its neighbor. Neighbors outside
region is disconnected. Voronoi diagrams are updated.

101

101

When a node disconnect, Voronoi diagrams are
updated by the affected nodes. New boundary

neighbors may be discovered.

102

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000
Number of Nodes

Si
ze

 (k
b)

basic

basic (fixed density after 500 nodes)

Constant density
after 1000 nodes

Increase density

103

Average Neighbor Size Measurements

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

Number of Nodes

N
ei

gh
bo

r S
iz

e connected

AOI

104

Responsive

Consistent

Cheat-Free

Fair

Scalable

Efficient

Robust

Simple

105

