
Technical Report: BDD-based Discrete Analysis
of Timed Systems

Nguyen Truong Khanh2, Jun Sun1, Yang Liu2, Jin Song Dong2 and Yan Liu2

1 Information System Technology and Design
Singapore University of Technology and Design

sunjun@sutd.edu.sg
2 School of Computing

National University of Singapore
{truongkhanh,liuyang,dongjs,yanliu}@comp.nus.edu.sg

Abstract. Complex timed systems are often composed of many compo-
nents at multiple levels of hierarchy. Timed finite-state machines (TF-
SMs) were proposed to model timed system components, which are de-
signed to capture useful system features like different ways of communi-
cation among system components. In this report, we will present a short
introduction about TFSMs and a rich set of system composition func-
tions accordingly based on TFSMs. Then we will explain how to encode
a TFSM as a BDD and how to generate BDD encoding of these functions
without constructing the composed TFSM.

1 Timed Finite-State Machines

Definition 1. A TFSM is a tuple M = (GV ,LV ,S , init ,Act ,Ch,T) such that
GV is a set of finite-domain shared variables; LV is a set of finite-domain local
variables such that GV ∩ LV = ∅; S is a finite set of control states; init ∈ S is
the initial state; Act is the alphabet; Ch is a set of synchronous channels3; and T
is a labeled transition relation. A transition label is of the form [guard]evt{prog}
where guard is an optional guard condition constituted by variables in GV and
LV ; evt is either an event name, a channel input/output or the special tick event
(which denotes 1-unit time elapsing); and prog is an optional transaction, i.e.,
a sequential program which updates global/local variables.

A transaction (which may contain program constructs like if -then-else or while-
do) associated with a transition is to be executed atomically. A non-atomic
operation is thus to be broken into multiple transitions. TFSM supports many
system features. For instance, TFSM may communicate with each other through
shared variables GV , multi-way event synchronization (common events in par-
allel composition are synchronized) or pair-wise channel communication.

The semantics of M is a labeled transition system (C , initc ,→) such that
C contains finitely many configurations of the form (σg , σl , s) such that σg is

3 Asynchronous channels can be mimicked using shared variables.

the valuation of GV and σl is the valuation of LV and s ∈ S is a control state;
initc = (initg , initl , init) where initg is the initial valuation of GV and initl is
the initial valuation of LV ; and → is defined as follows: for any (σg , σl , s), if

(s, [guard]e{prog}, s ′) ∈ T , then (σg , σl , s)
e→ (σ′g , σ

′
l , s
′) if the following holds:

guard is true given σg and σl ; e is not a synchronous channel input/output; and
prog updates σg and σl to be σ′g and σ′l respectively. Notice that synchronous
input/output cannot occur on its own. Rather, it must be jointly performed by
different TFSMs which execute concurrently. Furthermore, → contains transi-
tions labeled with events to be synchronized, which later will be synchronized
with corresponding transitions from other TFSMs. We remark that timing con-
straints are captured explicitly by allowing/disallowing transitions labeled with
tick . For instance, an urgent state is a state which disallows ticks.

2 System Models and BDD Encoding

A timed system may be built from the bottom up by gradually composing system
components. We propose to model system components using timed finite-state
machines (TFSM), which are designed to capture a variety of system features.
In this following, we introduce TFSM and system compositions based on TFSM.
Furthermore, we show abstractly how to generate BDD encoding of TFSM in a
compositional way.

2.1 Encoding a TFSM

TFSM can be encoded in BDD following the standard approach. That is, a BDD
can be used to encode symbolically the system configuration including valuation
of global and local variables as well as the control states. Using two sequences of
Boolean variables −→x and −→x ′ (which represent system configurations before and
after a transition respectively), transitions of TFSMs can be encoded as BDDs
constituted by −→x and −→x ′. An encoded transition is of the form: g ∧ e ∧ t such
that g (over −→x) is the encoded guard condition; e is the encoded event and t
(over −→x and −→x ′) is an encoded transaction.

The BDD encoding of a TFSM, referred to as a BDD machine, is a tuple
B = (

−→
V ,−→v , Init ,Trans,Out , In,Tick).

−→
V is a set of unprimed Boolean variables

encoding global variables, event names and channel names, which are fixed for
the whole system before encoding. −→v is a set of variables encoding local variables
and local control states; Init is a formula over

−→
V and −→v encoding the initial

valuation of the variables. Trans is a set of encoded transitions excluding tick-
transitions which are OR-implicit. In other words, Trans is equivalent to a logical
disjunction of all its element. Out (In) is a set of Or-implicit encoded transitions
labeled with synchronous channel output (input). Note that transitions in Out
and In are to be matched by corresponding input/output from the environment
and are thus separated from the rest of the transitions. And Tick is also a set
of tick-transitions which indicate a time unit elapses. To encode transition, each
variable x in

−→
V or in −→v has another copy called x ′ which denotes the variable

x’s value after the transition. Similarly the boolean formula f ′ is the formula
created by replacing any variable x in f with the variable x ′.

Before giving explanation how to encode a TFSM, we will briefly describe
how to support integer variable in BDD. An integer variable a between mina

and maxa in GV or LV is encoded by a set of dlog2(maxa −mina + 1)e boolean
variables. For example, if the variable a in the range [0..3] then we need 2 boolean
variables {a0, a1} to encode the value of variable a, suppose a0 is the most
significant bit.

Then a BDD machine B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) of a TFSM

M = (GV ,LV ,S , init ,Act ,Ch,T) where

–
−→
V = V ′ ∪ {event0, ..., eventn} where V ′ is the set of boolean variables to
encode global variables in the set GV and event0, ..., eventm−1 are m boolean
variables to encode the actions in Act and channel names in Ch such that
m = dlog2(| Act ∪Ch |)e. Let event is the variable whose value is represented
by these m boolean variables, and for each action or channel name a ∈
Act ∪ Ch, a.index ∈ {0.. | Act ∪ Ch | −1}is the unique index of that action
or channel name. For optimal performance, static analysis is conducted to
get the number of actions and channel names in advance and these boolean
variables describing actions and channel name are fixed before the encoding
procedure starts.

– −→v = v ′∪{state0, ..., staten} where v ′ is the set of boolean variables to encode
local variables in the set LV and state0, ..., staten−1 are n boolean variables
to encode the control states in S such that n = dlog2(| S |)e. Let state is
the variable whose value is represented by these n boolean variables, and for
each state s ∈ S , s.index ∈ {0.. | S | −1}is the unique index of that state.

– Init = (state = init .index)
– Trans =

∨
(state = s0.index ∧ gbdd ∧ event = e.index ∧ progbdd ∧ state ′ =

s ′0.index) for all transition (s, [g]e{prog}, s ′) ∈ T such that e is not a syn-
chronous channel and not a tick action. Note that for simplicity, we don’t
describe how we encode guard expression g to gbdd and program block prog
to progbdd . Interested readers can refer [] for details.

– Out =
∨

(state = s0.index ∧ gbdd ∧ event = e.index ∧ progbdd ∧ state ′ =
s ′0.index) for all transition (s, [g]e{prog}, s ′) ∈ T such that e is a synchronous
channel output.

– In =
∨

(state = s0.index ∧ gbdd ∧ event = e.index ∧ progbdd ∧ state ′ =
s ′0.index) for all transition (s, [g]e{prog}, s ′) ∈ T such that e is a synchronous
channel input.

– Tick =
∨

(state = s0.index ∧ gbdd ∧ event = e.index ∧ progbdd ∧ state ′ =
s ′0.index) for all transition (s, [g]e{prog}, s ′) ∈ T such that e is a tick action.

2.2 Composition Encoding

A complicated system may consist of many components at different level of
hierarchies. Components at the same level may be composed in a variety of ways
according to many behavioral patterns. In the following, we define a commonly

used system composition functions and show how to generate encoding of the
composition without constructing the composed TFSM. Note that explicitly
constructing the composed TFSM could be expensive. In the following, we fix
two TFSMs Mi = (GV ,LVi ,Si , initi ,Acti ,Chi ,Ti) where i ∈ {0, 1} and two

BDD machines Bi = (
−→
V ,−→v i , Initi ,Transi ,Outi , Ini ,Ticki) which encode Mi

respectively. −→v 0 and −→v 1 are disjoint and
−→
V is always shared.

Untime Function

Event Prefix The event prefix e →M0 describes a TFSM M which is ready to
engage the action e, afterward it will pass the control the TFSMM0 . It remains
in the initial state until the action is taken. M = (GV ,LV ,S , init ,Act ,Ch,T)
such that LV = LV0; S = S0 ∪ {init}; Act = Act0 ∪ {e}; Ch = Ch0; T =
{(init , e, init0), (init , tick , init)} ∪ T0

A BDD machine of M is (
−→
V ,−→v , Init ,Trans,Out , In) such that −→v = −→v 0 ∪

{done} where done is a fresh Boolean variable to manage whether the action
e happens and then behave as M0; Init = ¬ done. Trans contains following
transitions

– ¬ done ∧ event = e ∧ done ′ ∧ Init0
– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Trans0

In contains following transitions

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in In0

Out contains following transitions

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Out0

Tick contains following transitions

– ¬ done ∧ event = tick ∧ ¬ done ′

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Tick0

Unconditional Choice The unconditional choice offers a choice between TFSMs,
which is only resolved right after a TFSM engages the first visible event. More-
over in the context of time, the choice is preserved when TFSMs evolve. An un-
conditional choice betweenM0 andM1 is a TFSMM = (GV ,LV ,S , init ,Act ,Ch,T)
such that LV = LV0 ∪LV1; S = ((S0 ∪ done)× (S1 ∪ done)); init = (init0, init1);
Act = Act0 ∪ Act1; Ch = Ch0 ∪ Ch1; and T is the minimum transition re-
lation defined as follows. Notice that we introduce a special state done which
denotes the state of one component after the other component is chosen. For
any (s0, [g0]e0{prog0}, s ′0) ∈ T0; any (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 = e1 = tick , ((s0, s1), [g0 ∧ g1]tick{prog0; prog1}, (s ′0, s ′1)) ∈ T ;
– if e0 6= tick , ((s0, s), [g0]e0{prog0}, (s ′0, done)) ∈ T for all s ∈ S1 ∪ {done};
– if e1 6= tick , ((s, s1), [g1]e1{prog1}, (done, s ′1)) ∈ T for all s ∈ S0 ∪ {done};

– if e0 = tick , ((s0, done), [g0]tick{prog0}, (s ′0, done)) ∈ T ;

– if e1 = tick , ((done, s1), [g1]tick{prog1}, (done, s ′1)) ∈ T ;

The BDD machine ofM is (
−→
V ,−→v , Init ,Trans,Out , In) such that −→v = −→v 0∪

−→v 1 ∪ {choice} where choice ∈ {−1, 0, 1} is a new variable, choice = −1 means
the choice is not resolved, choice = 0 means M0 is selected, and choice = 1
means M1 is selected; Init = Init0 ∧ Init1 ∧ choice = −1. Trans contains
following transitions

– (choice = −1 ∨ choice = i) ∧ gi ∧ ei ∧ ti ∧ choice ′ = i where gi ∧ ei ∧ ti ,
i ∈ {0, 1}, is a transition in Transi

In contains following transitions

– (choice = −1 ∨ choice = i) ∧ gi ∧ ei ∧ ti ∧ choice ′ = i where gi ∧ ei ∧ ti ,
i ∈ {0, 1}, is a transition in Ini

Out contains following transitions

– (choice = −1 ∨ choice = i) ∧ gi ∧ ei ∧ ti ∧ choice ′ = i where gi ∧ ei ∧ ti ,
i ∈ {0, 1}, is a transition in Outi

Tick contains the following transitions

– choice = −1 ∧ (g0 ∧ e0 ∧ t0) ∧ (g1 ∧ e1 ∧ t1) ∧ choice ′ = −1 where
g0 ∧ e0 ∧ t0 is a transition in Tick0, and g1 ∧ e1 ∧ t1 is a transition in Tick1

– choice = i ∧ gi ∧ ei ∧ ti ∧ choice ′ = i where gi ∧ ei ∧ ti , i ∈ {0, 1}, is a
transition in Ticki

Parallel Composition If TFSMs are running in parallel, they need to synchro-
nize on common actions, but they can dependently perform actions besides this
intersection. In addition it is required that time progresses at the same rate in
both TFSMs; therefore they must synchronize on timed transitions. The parallel
composition ofM0 andM1 is a TFSMM = (GV ,LV ,S , init ,Act ,Ch,T) such
that LV = LV0 ∪ LV1; S = S0 × S1; init = (init0, init1); Act = Act0 ∪ Act1;
Ch = Ch0 ∪ Ch1; T is the minimum transition relation such that for any
(s0, [g0]e0{prog0}, s ′0) ∈ T0; (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 6∈ (Act0 ∩Act1) ∪ {tick}, ((s0, s1), [g0]e0{prog0}, (s ′0, s1)) ∈ T ;

– if e1 6∈ (Act0 ∩Act1) ∪ {tick}, ((s0, s1), [g1]e1{prog1}, (s0, s ′1)) ∈ T ;

– ((s0, s1), [g0 ∧ g1]e0{prog0; prog1}, (s ′0, s ′1)) ∈ T if e0 = e1 and e0 ∈ (Act0 ∩
Act1)∪{tick}. In order to prevent data race, we assume that prog0 and prog1
do not conflict, i.e., update the same variables to different values.

– if e0 = ch!v is an output on channel ch with value v ; and e1 = ch?x is a
matching channel input, ((s0, s1), [g0 ∧ g1]ch.v{prog0; prog1}, (s ′0, s

′
1)) ∈ T ;

– if e1 = ch!v is a channel output; and e0 = ch?x is a matching channel input,
((s0, s1), [g0 ∧ g1]ch.v{prog1; prog0}, (s ′0, s ′1)) ∈ T ;

Notice that a channel input/output from Mi may be matched with an out-
put/input fromM1−i to form a transition in T . It is promoted to Ch at the same
time because a channel input/output from Mi may synchronize with another
TFSM in the rest of the system. In the contrast, an event in Act0∩Act1∪{tick}
must be synchronized by both machines. If Act0 ∩ Act1 = ∅, then M0 and M1

communicate only through shared variables or channels, which is often referred
to as interleaving.

Let (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding the par-

allel composition of B0 and B1. We have −→v = −→v 0 ∪ −→v 1; Init = Init0 ∧ Init1.
Trans contains three kinds of transitions.

– local transition: if gi ∧ ei ∧ ti is a transition in Transi and ei is an event
which is not to be synchronized (i.e., e 6∈ (Act0 ∩ Act1) ∪ {tick}), Trans
contains a transition gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′1−i), where (−→v 1−i = −→v ′1−i)
denotes that the local variables of B1−i are unchanged.

– channel communication: if gi ∧ ei ∧ ti is a transition in Outi ; and g1−i ∧
e1−i ∧ t1−i is a transition in In1−i ; and ei and e1−i are matching channel
input/output, Trans contains a transition gi ∧ g1−i ∧ ei ∧ ti ∧ t1−i

4.
– barrier synchronization: if gi ∧ ei ∧ ti is a transition in Transi and g1−i ∧

ei ∧ t1−i is a transition in Trans1−i and ei ∈ (Act0 ∩ Act1) is a synchro-
nization barrier and ti and t1−i do not conflict, Trans contains transition
gi ∧ g1−i ∧ ei ∧ ti ∧ t1−i .

Out/In contains a transition gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′1−i) if gi ∧ ei ∧ ti is a
transition in Outi/Ini respectively. Transitions in Out , In cannot occur on its
own, but could be paired with matching input/output from a TFSM running
in parallel later. Lastly, Tick contains transition gi ∧ g1−i ∧ tick ∧ ti ∧ t1−i if
gi ∧ tick ∧ ti is a transition in Ticki and g1−i ∧ tick ∧ t1−i is in Tick1−i .

Interleave Composition The semantic of interleaving composition is entirely sim-
ilar to the one of parallel composition except that common actions are not re-
quired to be synchronized. In other words, actions is performed independently
by exactly one TFSM, while the other TFSMs make no progress at all. The inter-
leave composition ofM0 andM1 is a TFSMM = (GV ,LV ,S , init ,Act ,Ch,T)
such that LV = LV0 ∪LV1; S = S0× S1; init = (init0, init1); Act = Act0 ∪Act1;
Ch = Ch0 ∪ Ch1; T is the minimum transition relation such that for any
(s0, [g0]e0{prog0}, s ′0) ∈ T0; (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 6= tick , ((s0, s1), [g0]e0{prog0}, (s ′0, s1)) ∈ T ;
– if e1 6= tick , ((s0, s1), [g1]e1{prog1}, (s0, s

′
1)) ∈ T ;

– if e0 = ch!v is an output on channel ch with value v ; and e1 = ch?x is a
matching channel input, ((s0, s1), [g0 ∧ g1]ch.v{prog0; prog1}, (s ′0, s ′1)) ∈ T ;

– if e1 = ch!v is a channel output; and e0 = ch?x is a matching channel input,
((s0, s1), [g0 ∧ g1]ch.v{prog1; prog0}, (s ′0, s ′1)) ∈ T ;

– ((s0, s1), [g0 ∧ g1]e0{prog0; prog1}, (s ′0, s ′1)) ∈ T if e0 = e1 = tick

4 In our encoding, matching synchronous input/ouput is labeled with the same event.

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding

of the interleave composition of two components M0 and M1 such that −→v =
−→v 0 ∪ −→v 1; Init = Init0 ∧ Init1. Trans contains two kinds of transitions.

– Local transitions: gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′1−i) where gi ∧ ei ∧ ti ,
i ∈ {0, 1}, is a transition in Transi

– Synchronous channel communication: gi ∧ ei ∧ ti ∧ g1−i ∧ e1−i ∧ t1−i
where gi ∧ ei ∧ ti , and g1−i ∧ e1−i ∧ t1−i are transitions in Ini and Out1−i ,
i ∈ {0, 1}respectively

In contains following transitions:

– gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′1−i) where gi ∧ ei ∧ ti is a transition in Ini

Out contains following transitions:

– gi ∧ ei ∧ ti ∧ (−→v 1−i = −→v ′1−i) where gi ∧ ei ∧ ti is a transition in Outi

Tick contains following transitions:

– (g0 ∧ e0 ∧ t0) ∧ (g1 ∧ e1 ∧ t1) where g0 ∧ e0 ∧ t0, and g1 ∧ e1 ∧ t1 are tick
transitions in Tick0, and Tick1 respectively.

Sequential Composition Sequential composition allows to pass the control to
a second process after the first process terminates successfully. When the first
process terminates, its X action becomes internal to the sequential composition,
because the sequential composition should not indicate that it has terminated
until the second process does. The sequential composition ofM0; M1 is a TFSM
M = (GV ,LV ,S , init ,Act ,Ch,T) such that LV = LV0 ∪ LV1; S = S0 ∪ S1;
init = init0; Act = Act0 ∪ Act1; Ch = Ch0 ∪ Ch1; T is the minimum transition
relation such that for any (s0, [g0]e0{prog0}, s ′0) ∈ T0; (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 6= X, (s0, [g0]e0{prog0}, s ′0) ∈ T ;
– (s1, [g1]e1{prog1}, s ′1) ∈ T ;
– if e0 = X, (s0, [g0]e0{prog0}, init1) ∈ T

The BDD machine ofM0; M1 is (
−→
V ,−→v , Init ,Trans,Out , In) such that −→v =

−→v 0∪−→v 1∪{terminated} where terminated is a fresh Boolean variable to manage
whether M0 terminates; Init = Init0 ∧ ¬ terminated . Trans contains following
transitions

– ¬ terminated ∧ g0 ∧ e0 ∧ t0 ∧ event 6= X ∧ ¬ terminated ′ where g0 ∧ e0 ∧ t0
is a transition in Trans0

– ¬ termniated ∧ g0 ∧ event = τ ∧ t0 ∧ terminated ′ ∧ Init1 where g0 ∧ e0 ∧ t0
is a transition in Trans0. Note that as the composition, we replace the X
action of M0 with the internal action τ .

– terminated ∧ g1 ∧ e1 ∧ t1 ∧ termniated ′ where g1 ∧ e1 ∧ t1 is a transition in
Trans1

In contains following transitions

– ¬ terminated ∧ g0 ∧ e0 ∧ t0 ∧ ¬ terminated ′ where g0 ∧ e0 ∧ t0 is a
transition in In0

– terminated ∧ g1 ∧ e1 ∧ t1 ∧ termninated ′ where g1 ∧ e1 ∧ t1 is a transition
in In1

Out contains following transitions

– ¬ terminated ∧ g0 ∧ e0 ∧ t0 ∧ ¬ terminated ′ where g0 ∧ e0 ∧ t0 is a
transition in Out0

– terminated ∧ g1 ∧ e1 ∧ t1 ∧ termninated ′ where g1 ∧ e1 ∧ t1 is a transition
in Out1

Tick contains following transitions

– ¬ terminated ∧ g0 ∧ e0 ∧ t0 ∧ ¬ terminated ′ where g0 ∧ e0 ∧ t0 is a
transition in Tick0

– terminated ∧ g1 ∧ e1 ∧ t1 ∧ termninated ′ where g1 ∧ e1 ∧ t1 is a transition
in Tick1

Interrupt The interrupt constructionM0∆M1 allows the first TFSM to execute;
however the second TFSM can interrupt at any time by an action from TFSM
M1. Different from sequential composition, in the interrupt construction, both
M0, and M1 must evolve together. The interrupt construction of M0∆M1

is a TFSM M = (GV ,LV ,S , init ,Act ,Ch,T) such that LV = LV0 ∪ LV1;
S = ((S0 ∪ done)× S1); init = (init0, init1); Act = Act0 ∪Act1; Ch = Ch0 ∪Ch1;
and T is the minimum transition relation defined as follows. Notice that we
introduce a special state done which denotes the interrupted state of the first
component. For any (s0, [g0]e0{prog0}, s ′0) ∈ T0; any (s1, [g1]e1{prog1}, s ′1) ∈ T1,

– if e0 6= tick , ((s0, s1), [g0]e0{prog0}, (s ′0, s1)) ∈ T ;
– if e1 6= tick , ((s0, s1), [g1]e1{prog1}, (done, s ′1)) ∈ T ;
– ((done, s1), [g1]e1{prog1}, (done, s ′1)) ∈ T ;
– ((s0, s1), [g0 ∧ g1]e0{prog0; prog1}, (s ′0, s

′
1)) ∈ T if e0 = e1 = tick

A BDD machine of M0∆M1 is (
−→
V ,−→v , Init ,Trans,Out , In) such that −→v =

−→v 0∪−→v 1∪{interrupted} where interrupted is a fresh Boolean variable to manage
whetherM1 interruptsM0; Init = Init0 ∧ Init1 ∧ ¬ interrupted . Trans contains
following transitions

– ¬ interrupted ∧ g0 ∧ e0 ∧ t0 ∧ ¬ interrupted ′ ∧ (−→v 1 = −→v ′1) where g0 ∧ e0 ∧
t0 is a transition in Trans0

– g1 ∧ e1 ∧ t1 ∧ interrupted ′ where g1 ∧ e1 ∧ t1 is a transition in Trans1

In contains following transitions

– ¬ interrupted ∧ g0 ∧ e0 ∧ t0 ∧ ¬ interrupted ′ ∧ (−→v 1 = −→v ′1) where g0 ∧ e0 ∧
t0 is a transition in In0

– g1 ∧ e1 ∧ t1 ∧ interrupted ′ where g1 ∧ e1 ∧ t1 is a transition in In1

Out contains following transitions

– ¬ interrupted ∧ g0 ∧ e0 ∧ t0 ∧ ¬ interrupted ′ ∧ (−→v 1 = −→v ′1) where g0 ∧ e0 ∧
t0 is a transition in Out0

– g1 ∧ e1 ∧ t1 ∧ interrupted ′ where g1 ∧ e1 ∧ t1 is a transition in Out1

Tick contains following transitions

– ¬ interrupted ∧ (g0 ∧ e0 ∧ t0) ∧ (g1 ∧ e1 ∧ t1) ∧ ¬ interrupted ′ where
g0 ∧ e0 ∧ t0 is a transition in Tick0, and g1 ∧ e1 ∧ t1 is a transition in Tick1

– interrupted ∧ g1 ∧ e1 ∧ t1 ∧ interrupted ′ where g1 ∧ e1 ∧ t1 is a transition
in Tick1

Channel Out Let a is a channel name of type T , and exps is a particular value
of type T, then then channel output a?exps → M0 describes a TFSM which
can output exps along channel a and subsequently behaves asM0. However this
output can not occur on its own but must be synchronized with a corresponding
channel input from other components. The TFSM of a?exps → M0 is a new
TFSMM = (GV ,LV ,S , init ,Act ,Ch,T) such that LV = LV0 ∪LV1; S = S0 ∪
{init}; Act = Act0∪{a?exps}; Ch = Ch0∪{a}; T = {(init , a?exps, init0), (init , tick , init)}∪
T0; and Ch = Ch0.

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding of

a?exps →M0. We have −→v = −→v 0 ∪ {done}; Init = ¬ done. Trans contains the
following transitions

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Trans0

In contains the following transitions

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in In0

Out contains the following transitions

– ¬ done ∧ (counta < L) ∧ [
∧

i=1..exps.count(a[topa][i]′ = exps[i])] ∧ (sizea [topa]′ =
exps.count) ∧ (count ′a = counta + 1) ∧ topa = (topa + 1)%L ∧ done ′ ∧ Init0
where counta is the number of the elements in the channel buffer, topa is
the position to put new element int the buffer, L is the buffer length of the
channel a, and sizea is an array to manage the number of the messages in
the buffer. The guard of the channel out transition includes done is false,
and the channel buffer is not full. After the channel in transition, elements
from the expression exps is pushed to the buffer. The size of the expression
is also updated to sizea [topa]. Moreover the channel buffer updates its size
counta and tail position topa . done is set false to constrain the channel out
transition to happen once and then pass the control to the process P0.

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Out0

Tick contains the following transitions

– ¬ done ∧ event = tick ∧ ¬ done ′

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Tick0

Channel In A channel in is similar to channel out, but is ready to accept any
value x of type T along channel a. The TFSM of a!exps →M0 is a new TFSM
M = (GV ,LV ,S , init ,Act ,Ch,T) such that LV = LV0 ∪ LV1; S = S0 ∪ {init};
Act = Act0 ∪ {a!exps}; Ch = Ch0; T = {(init , a!exps, init0), (init , tick , init)} ∪
T0; and Ch = Ch0 ∪ {a}.

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding of

[b]a!exps → P1. We have −→v = −→v 0 ∪ {done}; Init = ¬ done. Trans contains the
following transitions

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Trans0

In contains the following transitions

– ¬ done ∧ b ∧ (counta > 0) ∧ (sizea [(topa − counta)%L] = exps.count) ∧
[
∧

i=1..exps.count(exps[i]′ = a[(topa − counta)%L][i])] ∧ (count ′a = counta −
1) ∧ done ′ ∧ Init0. The guard of the channel in transition includes done
is false, the guard condition b is satisfied, the channel buffer is not empty
and the size of the message in the top of the buffer is equal to the size of
the channel in expression. After the transition, variable in the channel in
expression is updated with the element in the channel buffer and the buffer
also updates its size.

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in In0

Out contains the following transitions

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Out0

Tick contains the following transitions

– ¬ done ∧ event = tick ∧ ¬ done ′

– done ∧ g0 ∧ e0 ∧ t0 ∧ done ′ where g0 ∧ e0 ∧ t0 is a transition in Tick0

Time Function

Delay A TFSM Wait [t] exactly delays for a period of t time units then termi-
nates. Wait [t] is a TFSM M = (GV ,LV ,S , init ,Act ,Ch,T) where LV = ∅;
S = {si | 0 ≤ i ≤ t +1}, init = s0, Act = {X}, Ch = ∅ and T contains following
transitions

– (si , tick , si+1) where 0 ≤ i ≤ t − 1

– (st , tick , st)

– (st ,X, st+1)

Because the Wait [t] is a simple TFSM which is not composed by other TF-
SMs, the BDD machine encoding of Wait [t] is achieved by directly encoding its
TFSM.

Timeout The timeout operator M0timeout [t]M1 offers a time sensitive choice
between M0, and M1. Initially the control belongs to the TFSM M0. If M0

performs any visible action, then the timeout is resolved in favor ofM0 andM1

is discarded. However if after t time units,M0 does not engage any visible action,
the control is passed to M1 and M0 is discarded. The timeout construction
of M0timeout [t]M1 is a TFSM M = (GV ,LV ,S , init ,Act ,Ch,T) such that
LV = LV0 ∪ LV1; S = S0 ∪ S1 ∪ {statei | 1 ≤ i ≤ t}; init = init0; Act =
Act0 ∪Act1; Ch = Ch0 ∪Ch1; and T is the minimum transition relation defined
as follows. Notice that we introduce t states to remember the time passage while
the M0 delays its first visible action. For any (s0, [g0]e0{prog0}, s ′0) ∈ T0; any
(s1, [g1]e1{prog1}, s ′1) ∈ T1, T contains below transitions

– (init0, tick , state1)
– (statei , tick , statei+1) where 1 ≤ i ≤ t − 1
– (statet , τ, init1). The timeout occurs and the control is passed to M1.
– (s, [g0]e0{prog0}, s ′0) where e0 is a visible action and s ∈ init0∪{state1, ..., statet}.

We are copying the first visible action to the new t states statei to allow it
happens within t time units.

– any transition from T1, (s1, [g1]e1{prog1}, s ′1)
– (s0, [g0]e0{prog0}, s ′0) where s0 6= init0

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding of

P0timeout [t]P1. We have −→v = −→v 0 ∪−→v 1 ∪ {clk} where −1 ≤ clk ≤ t + 1 records
the number time units elapsed so far, clk = −1 indicates that an visible event of
P0 is engaged, and clk = t +1 indicates that t time units elapse and P1 takes the
control, and Init = Init0 ∧ clk = 0; and Trans contains following transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ [(event = τ ∧ clk ′ = clk) ∨ (event 6= τ ∧ clk ′ =
−1)] where g0 ∧ e0 ∧ t0 is a transition in Trans0

– clk = t ∧ event = τ ∧ clk ′ = t + 1 ∧ Init ′1
– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in

Trans1

Out , In are defined like Trans. In contains following channel transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = −1 where g0 ∧ e0 ∧ t0 is a transition in In0

– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in
In1

Out contains following channel transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = −1 where g0 ∧ e0 ∧ t0 is a transition in Out0
– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in

Out1

Tick includes below transitions.

– g0 ∧ e0 ∧ t0 ∧ (clk ≥ 0 ∧ clk < t ∧ clk ′ = clk + 1) ∨ (clk = −1 ∧ clk ′ = −1)
where g0 ∧ e0 ∧ t0 is a transition in Tick0

– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in
Tick1

Time Interrupt The TFSMM0interrupt [t]M0 behaves as P0 until t time units
elapse and then switches toM1. There is no need forM1 to execute concurrently
withM0 because it is not invoked after t time units. It is not trivial to generate
the TFSM of the time interrupt without the presence of a new variable because
we need to count the number of happening tick transitions which can occurs at
any time. Therefore for the time interrupt, a new variable is presented. The time
interrupt of M0interrupt [t]M1 is a TFSM M = (GV ,LV ,S , init ,Act ,Ch,T)
such that LV = LV0 ∪ LV1 ∪ {clk} where clk ∈ {−1..t + 1} is a new variable to
count the time passage which is initialized with 0; clk = −1 to discardM1 after
M0 terminates and clk = t + 1 to discardM0 afterM1 interrupts, S = S0 ∪S1;
init = init0; Act = Act0 ∪ Act1; Ch = Ch0 ∪ Ch1; and T is the minimum
transition relation defined as follows. For any (s0, [g0]e0{prog0}, s ′0) ∈ T0; any
(s1, [g1]e1{prog1}, s ′1) ∈ T1, T contains below transitions

– (s0, [g0]e0{prog0}, s ′0) if e0 6= tick ∧ e0 6= X
– (s0, [g0]e0{prog0; clk = −1}, s ′0) if e0 6= tick ∧ e0 = X
– (s0, [g0]e0{prog0; if {0 ≤ clk < t}clk + +elseif {clk = −1}clk = −1}, s ′0) if

e0 = tick
– (s, [clk = t]τ{clk = t + 1}, init1) for all s ∈ S0

– (s1, [g1 ∧ clk = t + 1]e1{prog1}, s ′1)

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding

P0interrupt [t]P1. We have −→v = −→v 0 ∪ −→v 1 ∪ {clk}, −1 ≤ clk ≤ t + 1 and Init =
Init0 ∧ clk = 0; and Trans contains following transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ [(event = X ∧ clk ′ = −1) ∨ (event 6= X ∧ clk ′ =
clk)] where g0 ∧ e0 ∧ t0 is a transition in Trans0

– clk = t ∧ event = τ ∧ clk ′ = t + 1 ∧ Init ′1
– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in

Trans1

In contains following transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = clk where g0 ∧ e0 ∧ t0 is a transition in In0

– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in
In1

Out contains following transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = clk where g0 ∧ e0 ∧ t0 is a transition in Out0
– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in

Out1

Tick includes below transitions:

– g0 ∧ e0 ∧ t0 ∧ [(0 ≤ clk < t ∧ clk ′ = clk + 1) ∨ (clk = −1 ∧ clk ′ = −1)]
where g0 ∧ e0 ∧ t0 is a transition in Tick0

– clk = t + 1 ∧ g1 ∧ e1 ∧ t1 ∧ clk ′ = t + 1 where g1 ∧ e1 ∧ t1 is a transition in
Tick1

Deadline A timed system requirement may put an bound on the execution time
of a component, i.e., a component must terminate before certain time units. A
TFSM M0 with a deadline d is a TFSM M = (GV ,LV ,S , init ,Act ,Ch,T)
such that LV = LV0; S = S1 × {0, 1, · · · , d} where the number is the number of
time unit that has elapsed; init = (init0, 0); Act = Act0; Ch = Ch0; and T is
the minimum transition relation such that:

– for any (s, [g]e{prog}, s ′) ∈ T0 and e 6= tick , ((s, d1), [g]e{prog}, (s ′, d1)) ∈
T for all d1 ∈ {0, 1, · · · , d}.

– for any (s, [g]tick{prog}, s ′) ∈ T0, ((s, d1), [g]tick{prog}, (s ′, d1 + 1)) ∈ T for
all d1 ∈ {0, 1, · · · , d − 1}.

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding of

P0deadline[t] where −→v = −→v 0∪{clk}, −1 ≤ clk ≤ t records the number of elapsed
time units so far, clk = −1 when the deadline is resolved; Init = Init0 ∧ clk = 0;
and Trans includes below transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ [(event 6= X ∧ clk ′ = clk) ∨ (event = X ∧ clk ′ =
−1)] where g0 ∧ e0 ∧ t0 is a transition in Trans0

In includes below transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = clk where g0 ∧ e0 ∧ t0 is a transition in In0

Out includes below transitions:

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = clk where g0 ∧ e0 ∧ t0 is a transition in Out0

Tick includes below transitions:

– [(0 ≤ clk < t ∧ clk ′ = clk + 1) ∨ (clk = −1 ∧ clk ′ = −1)] ∧ g0 ∧ e0 ∧ t0
where g0 ∧ e0 ∧ t0 is a transition in Tick0

Within: The Within operator on the TFSMM0 forces it to make an observable
move within the given time frame. The Within operator of M0within[t] is a
TFSM M = (GV ,LV ,S , init ,Act ,Ch,T) such that LV = LV0; S = S0 ∪
{statei | 1 ≤ i ≤ t}; init = init0; Act = Act0; Ch = Ch0; and T is the minimum
transition relation defined as follows. For any (s0, [g0]e0{prog0}, s ′0) ∈ T0, T
contains below transitions

– (init0, tick , state1)
– (statei , tick , statei+1) where 1 ≤ i ≤ t − 1
– (s, [g0]e0{prog0}, s ′0) where e0 is a visible action and s ∈ init0∪{state1, ..., statet}.

We are copying the first visible action to the new t states statei to allow it
happens within t time units.

– (s0, [g0]e0{prog0}, s ′0) where s0 6= init0

Let B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding of

M0within[t] where −→v = −→v 0 ∪ {clk}, −1 ≤ clk ≤ t records the number elapsed
time units so far and clk = −1 indicates an visible action just happens and
Init = Init0 ∧ clk = 0; and Trans includes below transitions

– clk ≤ t ∧ g0 ∧ e0 ∧ t0 ∧ [(event 6= τ ∧ clk ′ = −1) ∨ (event = τ ∧ clk ′ =
clk)] where g0 ∧ e0 ∧ t0 is a transition in Trans0

In includes below transitions

– clk < t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = −1 where g0 ∧ e0 ∧ t0 is a transition in In0

Out includes below transitions

– clk < t ∧ g0 ∧ e0 ∧ t0 ∧ clk ′ = −1 where g0 ∧ e0 ∧ t0 is a transition in Out0

Tick includes below transitions:

– g0 ∧ e0 ∧ t0 ∧ [(clk ≥ 0 ∧ clk < t ∧ clk ′ = clk +1) ∨ (clk = −1 ∧ clk ′ = −1)]
where g0 ∧ e0 ∧ t0 is a transition in Tick0

3 Conclusion

In this report, we present two ways of encoding a TFSM. The first way is directly
encoding it as a TFSM to BDD. The second way is encoding its components and
then combining them by using composition functions. Each way has its own pros
and cons. The former does not need to create new variables but extend the set
of control states S and transition function T . This may get a smaller BDD in
two aspects. First having more variables makes the BDD more complex. Second,
we may utilize some redundant values of some variables when extending the
value range. For example, suppose the event prefix e → M0 where S0 has 3
states. If we use the second way to encode it, we will use 2 boolean variable
to encode the set of states S0 then one more variable is introduced when using
event prefix composition function. However if we use the first way, then a new
TFSM is generated based onM0 which has 4 states. Therefore we also use only 2
boolean variables to encode the control state set, compared to the first way using
3 boolean variables to encode 2 separate variables. However the first way may
have trouble when generating the TFSM for parallel or interleaving composition
when the control set becomes complex, in the form of Cartesian product of other
control set products. The latter approach offers a clear advantage in these cases.
Therefore the first way should be used instead of the second way until parallel
or interleave composition is needed. In our work, some static analysis is run to
find the largest components which can be represented as a TFSM. After these
TFSMs are encoded as the first way, composition functions are used to compose
these components.

