
The Power of Interactive Proofs
CS6230: Topics in Information Security

Lecture 2 (Aug 17, 2021)
Lecture and notes: Prashant Nalini Vasudevan

Last time, we saw the definition of interactive proofs. Over the next few lectures, we will investigate
several questions about these proofs:

1. How powerful are interactive proofs?

2. How robust is their definition?

3. How are they useful?

We started answering the first question, and shall continue to do so today. We saw that any language
in NP or MA has an interactive proof, and that any language that has an IP is contained in PSPACE.
Today, we will see that the latter is, in fact, a characterisation – any language in PSPACE has an
interactive proof.

Theorem 0.1. PSPACE ⊆ IP

Put together with the theorem we saw last class, this implies that IP = PSPACE. This theorem,
originally proven by Lund et al [LFKN92] and Shamir [Sha92], was a landmark achievement in theoretical
computer science. Today, we shall see a proof of a slightly weaker theorem. More importantly, we will
see the protocol that is central to this proof and is perhaps the most important protocol in the realm of
interactive proofs overall – the sum-check protocol.

1 The Sumcheck Protocol
The sumcheck protocol is a protocol for the prover to prove to the verifier that the sum of evaluations
of a multilinear polynomial on a structured subset of inputs is equal to what it claims. That is, consider
any polynomial g : Fn → F over a finite field F, of degree at most d in each variable. In the sumcheck
protocol, the prover proves statements of the form:∑

x1,...,xn∈{0,1}

g(x1, . . . , xn) = z

with perfect completeness and soundness error O(nd/ |F|). Without the prover, the verifier would have
had to perform 2n evaluations of g in order to verify such a statement. In the sumcheck protocol, the
verifier will run in time O(nd · polylog(|F|)) plus O(1) evaluations of g.

The idea behind the protocol is quite simple once stated. It is based on the following fact about poly-
nomials. (Note that below, we use the term “distinct” to indicate that the evaluations of the polynomials
differ at at least one point in F.)

Fact 1.1. Given any two distinct univariate polynomials f, g of degree d over a finite field F, the number
of points x ∈ F such that f(x) = g(x) is at most d.

Define the following univariate polynomial g1:

g1(x) =
∑

x2,...,xn∈{0,1}

g(x, x2, . . . , xn) (1)

That is, for any x ∈ F, g1(x) is equal to the quantity obtained by setting x1 = x and summing up the
evaluations of g when the other variables are set to 0 or 1. We make the following observations.

Claim 1.1. The degree of g1 is at most d.

This is because the degree of g in x1 is at most d, and the remaining variables are all set in the course
of the summation in (1).

1

Claim 1.2. Given g1 (as a list of coefficients), the statement
∑

x1,...,xn∈{0,1} g(x1, . . . , xn) = z can be
verified with O(d) field operations.

This is because of the following:∑
x1,...,xn∈{0,1}

g(x1, . . . , xn) = g1(0) + g1(1)

Thus, by evaluating g1 at two points, the above sum can be computed. Evaluation of g1 at any point
needs only O(d) operations given the (d+ 1) coefficients of g1.

So if the verifier can somehow obtain the coefficients of g1, it can verify the original statement itself.
Of course, these coefficients are also hard to compute, as this would also involve an exponential sum.
What if we ask the prover to send the verifier these coefficients? If the prover sends g1 correctly, then
the verifier can proceed as above. But what if the prover tries to cheat?

In other words, suppose the prover sends the verifier the coefficients of some polynomial g′1. The
verifier then needs to verify that this is the same as the polynomial g1 as defined in (1). This is where
Fact 1.1 comes in. Notice that both g1 and g′1 are degree-d polynomials. If g′1 is different from g1, then
the evaluations of the two can be equal on at most d points.

So if the verifier can evaluate both these polynomials at a random point x1 and compare them, it
can check, with some confidence, whether they are the same polynomial. It can, of course, evaluate g′1
anywhere it wants since it known the coefficients. But what about the implicitly defined g1? How can it
check that g1(x

1) = g′1(x
1)? Well, notice that this is the same problem we started with! Expanding the

definition of g1, this is the same as checking the following:∑
x2,...,xn∈{0,1}

g(x1, x2, . . . , xn) = g′1(x
1)

So, the verifier can pick such a random x1, send it to the prover, and run the protocol again recursively
for the variables x2, . . . , xn. The entire protocol may be described as follows. Given a polynomial
g : Fn → F of degree at most d in each variables and a z ∈ F,

Sumcheck(n,g,z):

1. If n = 1, the verifier evaluates and checks whether (g(0)+ g(1) = z). Accept if so, reject otherwise.

2. The prover sends the verifier the univariate polynomial g1 (in (1) as a list of (d + 1) coefficients.
Denote the polynomial that the prover sends as g′1.

3. The verifier checks whether (g′1(0) + g′1(1) = z). If not, reject.

4. The verifier picks a random x1 ← F and sends it to the prover.

5. Define the polynomial g′(x2, . . . , xn) ≜ g(x1, x2, . . . , xn).

6. The prover and verifier run Sumcheck(n− 1,g′,g′1(x
1)).

Efficiency. Note that the degree of g′ in any variable is at most that of g in the same variable, which
is bounded by d to begin with. This, in each recursion, the degree of g1 is at most d, and so each of the
steps of the verifier can be completed with O(d) field operations. Since there are n variables, the verifier
runs in O(nd) field operations, plus two evaluations of g (when n = 1).

Exercise 1. Show that the prover above can be implemented with O(nd2n) evaluations of g.

Completeness. We prove completeness by induction on the number of variables n. For n = 1, it is
clear that the protocol is perfectly sound, as the verifier simply evaluates g and checks the sum on its
own.

Suppose the sumcheck protocol was perfectly complete for polynomials with (n− 1) variables. Then,
if the statement being proven is indeed true, the prover will honestly report the polynomial g1 as its g′1.
So it will indeed be the case that g′1(0) = g′1(1) = z and the verifier will not reject in Step 3. The recursive

2

call to sumcheck is now on an (n−1)-variate polynomial g′, and, following the induction hypothesis, will
accept because the following is true:∑

x2,...,xn∈{0,1}

g′(x2, . . . , xn) =
∑

x2,...,xn∈{0,1}

g(x1, x2, . . . , xn) = g1(x
1) = g′1(x

1)

Thus, the verifier will always accept when the statement is true. This proves perfect completeness.

Soundness. Soundness is also proven inductively. For n = 1, again the protocol is perfectly sound
since the verifier checks the sum on its own. Suppose the soundness error with polynomials over n
variables is εn. We will first compute a bound on εn in terms of εn−1.

Suppose the statement being proven – that
∑

x1,...,xn∈{0,1} g(x1, . . . , xn) = z – is not true. Then, in
order to pass the check in Step 3, the polynomial g′1 that a cheating prover sends has to be distinct from
the actual g1. As both of these are polynomials of degree at most d, the probability that g1(x1) = g′1(x

1)
for a random x1 ← F is at most d/ |F|. If this does not happen, the recursive call to sumcheck is for a
false statement with (n − 1) variables, and thus is accepted with probability at most εn−1. Thus, by a
union bound, the probability that the verifier accepts – which is εn – is at most (d/ |F|+ εn−1).

This implies that εn ≤ (n− 1)d/ |F|. Thus, if F is large enough, this protocol is sound.

2 IP and coNP

We can now start working towards Theorem 0.1, though we will only prove a weaker version of it.
For the complete proof, you are encouraged to read the original paper by Shen [She92] that presents a
simplification of Shamir’s proof, or the corresponding section in Chapter 8 of the book by Arora and
Barak [AB09]. We will start by trying to prove the following relatively weak statement.

Theorem 2.1. coNP ⊆ IP

We will prove this by showing an interactive proof for the coNP-complete problem UNSAT, which
consists of all unsatisfiable Boolean formulas. While there are perhaps simpler complete problems we
could use for this purpose, using UNSAT will demonstrate some interesting techniques that will be useful
later.

Recall that a Boolean formula of size s over n variables is given by a rooted tree with S nodes where
each of the leaves is labelled by one of the variables x1, . . . , xn, and each internal node by an AND, OR,
or NOT gate. Each internal node computes the specified function on its children (the inputs), and the
output of the formula is the output of the root. Each NOT gate has only one input, and for simplicity,
suppose that each OR and AND gate has two inputs – our proof will only need to be modified slightly
otherwise.

The set of all such formulas that have no assignments to the inputs for which the output of the formula
is TRUE is the language UNSAT. It is quite easy to prove that a given formula has a satisfying assignment
– simply provide the assignment, which can then be checked by evaluating the formula. Proving that a
formula does not have a satisfying assigment is much harder, and we will use the sumcheck protocol for
this.

2.1 Low-Degree Extensions
In order to do so, we will first need to convert the lack of satisfying assignments to a formula into a
statement about polynomials. Given a formula ϕ of size s over n variables and a large enough field F,
we will define an associated n-variate polynomial gϕ : Fn → F. This polynomial is defined inductively,
going up the tree corresponding to the formula, and defining a polynomial gu for every node u. (Below,
x represents the vector of variables (x1, . . . , xn).)

• If u is a leaf labelled with input xi, then gu(x) = xi

• If u is labelled by NOT and its child is v, then gu(x) = (1− gv(x))

• If u is labelled by AND and its children are v and w, then gu(x) = gv(x) · gw(x)

3

• If u is labelled by OR and its children are v and w, then gu(x) = 1− (1− gv(x))(1− ·gw(x))

Adopting the semantics that TRUE corresponds to the element 1 in the field F and FALSE corresponds
to 0, the following claim may be verified inductively. This is left as an exercise.

Claim 2.1. For any formula ϕ of size s over n variables and any setting of the variables x1, . . . , xn ∈
{0, 1}:

• The degree of gϕ is at most s.

• If ϕ is satisfied by the assignment x, gϕ(x) = 1.

• If ϕ is not satisfied by the assignment x, then gϕ(x) = 0.

Such a polynomial gϕ is referred to as a low-degree extension of ϕ. More generally, a low-degree
extension of a Boolean function f : {0, 1}n → {0, 1} over a field F is a polynomial g : Fn → F that is
of relatively low degree (as appropriate in the context), and agrees with f on all inputs in {0, 1}n. The
significance of these extensions comes from the fact that they form an “error-correcting” encoding of the
function f . That is, given two functions f and f ′ that are different in even one input, their low-degree
extensions will be different on almost all inputs. We will see more about them later in the class.

2.2 PH and IP

To prove Theorem 2.1, we only need the following two observations about the extension gϕ of any formula
ϕ of size s over n variables:

1. The degree of gϕ is at most s.

2. The number of satisfying assignments of ϕ is given by:
∑

x1,...,xn∈{0,1} gϕ(x1, . . . , xn).

Thus, all a prover needs to do to prove that ϕ has no satisfying assignments is to run a sumcheck
protocol to show that the above sum is 0, and make sure to use a field that is much larger than s.

Note that this enables the prover to prove not just that there are no satisfying assignments, but also
to prove that the number of satisfying assignments is equal to z for some z ∈ [2n]. This problem of
counting the number of satisfying assignments to a Boolean formula is called #SAT, and is complete
for the class #P of counting problems. Further, by Toda’s theorem that the polynomial hierarchy is
contained in P#P, this implies that the hierarchy is also contained in IP.

Theorem 2.2. PH ⊆ IP

The proof of Theorem 0.1 is not far from here. It involves identifying a PSPACE-complete problem
that can also be subjected to a process similar to the above, and a few more steps.

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[She92] Alexander Shen. IP = PSPACE: simplified proof. J. ACM, 39(4):878–880, 1992.

4

	The Sumcheck Protocol
	IP and coNP
	Low-Degree Extensions
	PH and IP

