
Statistical Zero Knowledge
CS6230: Topics in Information Security

Lecture 6 (Sep 14, 2021)
Lecture and notes: Prashant Nalini Vasudevan

Today, we will see a different, perhaps more natural, relaxation of Perfect Zero-Knowledge that uses
statistical indistinguishability instead of computational indistinguishability. Before we do, however, let
us briefly discuss composition of zero-knowledge proofs.

1 Composition of Zero-Knowledge Proofs
As we saw in previous lectures and problem sets, repetition of an interactive proof is a simple way
to amplify its completeness and soundness. When any interactive proof is repeated k times, either
in sequence or in parallel, with the verifier checking that a majority of these repetitions accept, the
completeness and soundness errors go down almost exponentially with k.

With the zero-knowledge property, however, things are more complicated. For instance, it is possible
to construct simple zero-knowledge protocols that are such that even repeating them twice in parallel
makes them lose the zero-knowledge property. In fact, even the possibility of non-trivial constant-round
public-coin zero-knowledge protocols with negligible soundness error was a major open question until
some very innovative techniques were developed to construct such protocols (see [Gol13] for a more
detailed discussion). We will cover this much later in the class if we have time.

Exercise 1. Construct two protocols that are each zero-knowledge (computational or otherwise) on their
own, but when run together in parallel, are no longer zero-knowledge. That is, a cheating verifier can
somehow exploit the honest prover in the execution of one of the protocols to learn something non-trivial
from the honest prover of the other protocol.

This behaviour is critical to understand, as often zero-knowledge protocols are used as sub-protocols
in larger cryptographic protocols in order to protect secrets that some party might have. These sub-
protocols may be run several times in the course of execution of the larger protocol, and we would like
the secrets to still be protected. The design of zero-knowledge protocols that compose well is the subject
of research in concurrent zero-knowledge, a topic we will not get into.

When it comes to sequential repetition, however, things are much simpler. The definitions of zero-
knowledge we saw earlier were actually weaker versions of the ideal definition, which also allows for what
is known as auxiliary information. This is an additional arbitrary input that is given to the verifier (and
simulator), and represents additional knowledge that the verifier may have from external sources. In the
above example of the larger protocol, this may represent anything the verifier may have learnt from the
execution of other sub-protocols int he past. It turns out that this stronger definition composes well
under sequential repetition, with the zero-knowledge property being preserved, and the completeness
and soundness error going down as expected.

This definition for perfect zero-knowledge with auxiliary information is as follows. In the execution
of a protocol (P, V), the verifier V is given, in addition to the input x, some arbitrary input z (of size
polynomial |x|). The verifier’s view in such an execution is denoted by viewP

V (z)(x). The completeness
and soundness requirements for the protocol are the same as before. For zero-knowledge, for any auxiliary
input z, we give the simulator z and want it to simulate the verifier’s view when it is given z.

Definition 1.1 (PZK with Auxiliary Inputs). An interactive proof (P, V) for a language L is said to
be perfectly zero knowledge with auxiliary inputs if, for every possible PPT verifier algorithm V ∗, there
exists a PPT simulator algorithm SV ∗ such that:

• On any input x and auxiliary input z, SV ∗(x, z) outputs ⊥ with probability at most 1/2

• For any input x ∈ L and any auxiliary input z, the distribution of SV ∗(x, z) conditioned on
SV ∗(x, z) ̸= ⊥ is identical to viewP

V ∗(z)(x)

Note that allowing the verifier an auxiliary input makes it more powerful than just allowing it to be
non-uniform, as this z could even depend on x. Other notions of zero-knowledge are also usually defined
with resistance to such auxiliary inputs, but we will continue to ignore this for simplicity.

1

Exercise 2. Write down a similar definition for CZK with auxiliary inputs. Show that both of these
definitions allow zero-knowledge to be preserved under sequential repetition.

2 Statistical Zero Knowledge
Statistical Zero Knowledge (SZK) is a different, perhaps more natural, weakening of Perfect Zero Knowl-
edge. Here, we relax the requirement that the simulator’s output be the same as the view of the verifier,
to requiring that the distributions of the simulator’s output and the verifier’s view be statistically close.
In order to quantify “statistically close”, we will need a meaningful notion of distance between probability
distributions. There are several such measures, but we will be using perhaps the simplest, which is called
total variation distance. As this is the only notion of distance we will be using, we simply refer to it as
“statistical distance”.

2.1 Statistical Distance
Given a distribution D over a domain X, we will use the following notation. As before, x← D denotes
a sample from D. For any x ∈ X, we write D(x) to denote the probability mass of x under D. That
is, D(x) = Prx′←D [x′ = x]. For any set S ⊆ X, D(S) is the probability mass on all elements in the set
– that is, D(S) =

∑
x∈S D(x). Since we are discussing probability distributions, we will often identify

such a set S ⊆ X with the event of a sample from D belonging to S.

Definition 2.1 (Statistical Distance). Given two distributions D0 and D1 over the same (discrete and
finite) domain X, the statistical distance between them is the largest difference in the probability of any
event occurring under the two distributions. That is,

∆(D0, D1) ≜ max
S⊆X

(D0(S)−D1(S)) =
1

2

∑
x∈X
|D0(x)−D1(x)|

Exercise 3. Show that the two expressions in the above definition are indeed equal.

One may verify that this definition has the following properties that justify it as a reasonable notion
of “distance” between distributions.

• For any D0 and D1, ∆(D0, D1) is between 0 and 1

• D0 and D1 are the same distribution if and only if ∆(D0, D1) = 0

• D0 and D1 have disjoint supports if and only if ∆(D0, D1) = 1

This notion of statistical distance is pervasive in cryptography and complexity theory because it
captures the power of any algorithm in telling whether a sample came from one distribution or another.
Recall the following definition of the advantage of an algorithm in distinguishing between distributions.

AdvD0,D1

A =
∣∣Prx←D0,λ

[A(x) = 1]− Prx←D0,λ
[A(x) = 1]

∣∣
Almost by definition, we can see the following:

∆(D0, D1) = max
A

AdvD0,D1

A (1)

where the maximum is over all algorithms A, even computationally unbounded ones. Another simple
corollary of the definition is that, for any set S ⊆ X, the probability that x ∈ S when x is sampled from
D0 and when it is sampled from D1 can only differ by at most as much as the distance between them.
In different terms, for any event E(x) that depends arbitrarily on x, we have:

Prx←D0 [E(x)]−∆(D0, D1) ≤ Prx←D1 [E(x)] ≤ Prx←D0 [E(x)] + ∆(D0, D1) (2)

Finally, similar to computational indistinguishability, we define statistical indistinguishability of two
ensembles of distributions.

Definition 2.2. Two ensembles of distributions D0 = {D0,λ} and D1 = {D1,λ} are said to be statistically
indistinguishable if, for any constant c ∈ N, there exists a λc ∈ F such that for all λ > λc:

∆(D0,λ, D1,λ) <
1

λc

2

2.2 Defining SZK
With this notion of statistical indistinguishability in hand, the definition of statistical zero-knowledge
may be obtained as a natural analogue of that of computational zero-knowledge, which we saw earlier.
Here too the prover and verifier (and simulator) are given as additional input a security parameter
1λ, which specifies the level of security we require of the zero-knowledge. We define the corresponding
distribution ensembles S(x) =

{
S(1λ, x)

}
λ∈N and viewP

V ∗(x) =
{
view

P (1λ)

V ∗(1λ)
(x)

}
λ∈N

Definition 2.3. An interactive proof (P, V) for a language L is said to be statistically zero knowledge
(SZK) if, for every possible PPT verifier algorithm V ∗, there exists a PPT simulator algorithm SV ∗ such
that for any input x ∈ L, the ensembles SV ∗(x) and viewP

V ∗(x) are statistically indistinguishable.

Note that any PZK protocol is also an SZK protocol, and that any SZK protocol is also a CZK
protocol. The latter is because two distribution ensembles that are statistically indistinguishable are also
computationally indistinguishable (compare (1) and the definition of computational indistinguishability
from the previous lecture). Thus, statistical zero-knowledge is a “stronger” property than computational
zero-knowledge. In practical terms, SZK protocols are not as useful as CZK protocols since (i) In
most applications the security provided by computational zero-knowledge is sufficient, and, (ii) as the
requirements on them are weaker, CZK protocols can be obtained for a much larger set of languages
than SZK, while also being more efficient in various ways.

Of course, if security is desired against a computationally very powerful adversary, the stronger
guarantees provided by statistical zero-knowledge become more relevant. Further, SZK protocols and
the languages that have them turn out to have interesting connections to cryptography and complexity
theory. This is the primary reason for our (at least, my) interest in them. The class of problems that have
SZK protocols – which we will denote by SZK – contains many problems that are central to cryptography,
and has some very natural complete problems. In this and the next lecture, we will see some examples
of simple SZK protocols, complete problems, closure properties, and some of these connections. The
canonical reference for SZK is Salil Vadhan’s PhD thesis [Vad99]. Almost everything we will cover is
contained there, and some of the proofs we will see are adapted from his.

2.3 Closeness of Samplable Distributions
The first SZK protocol we will see is a generalisation of a PZK protocol we have seen before – the one
for Graph Isomorphism. Recall that this was a protocol (P, V) where P wishes to prove that a given
pair of graphs (G0, G1) are isomorphic, and it worked as follows:

1. If G0 and G1 are not isomorphic, P sends ⊥ to V and terminates.

2. If not, P samples a uniformly random relabelling permutation R : [n] → [n], and a uniformly
random bit b. It sends H = R(Gb) to V .

3. V samples a random bit b′ and sends it to P .

4. P finds a uniformly random relabelling R′ such that R′(Gb′) = H, and sends R′ to V .

5. V accepts iff R′(Gb′) = H.

Pay attention here to the distribution of R(G0), where R is a random relabelling – call it D0. Similarly
define the distribution D1 of R(G1). For any graph H, there exists R′ such that R′(Gb′) = H if and only
if H is in the support of Db. We can now briefly restate the arguments for the various properties of this
protocol as follows.

• Completeness: If G0 and G1 are isomorphic, D0 and D1 are identical, so any H sampled from either
of them is contained in the support of the other. Thus, P can always find such an R′, irrespective
of what b′ is.

• Soundness: If G0 and G1 are not isomorphic, then D0 and D1 are disjoint, so H is in the support
of at most one of them. So irrespective of the prover strategy P ∗, such an R′ does not exist for at
least one value of b′.

3

• Perfect zero-knowledge: The simulator SV ∗ samples b and R as P does, computes H and b′ ←
V ∗(H), and if b = b′, outputs all of these. If G0 and G1 are isomorphic, D0 and D1 are identical.
So V ∗ cannot tell whether H was drawn from D0 or D1 at all. So b′ is independent of b, and is
equal to it with probability 1/2. So SV ∗ aborts with probability at most 1/2, and when it doesn’t,
its output is identical to the actual protocol (this requires argument, which we will leave out here).

In essence, we reduced the graph isomorphism problem to this: given distributions D0 and D1 that
are either identical or have disjoint supports, tell which is the case. In the above protocol, then, the
prover is really proving that D0 and D1 are identical. Here, we dealt with the special case where D0 and
D1 were obtained by randomly relabelling a given graph. We can consider the much more general case
where these distributions are sampled by some algorithm that is given as input.

We will model such an algorithm by a boolean circuit. That is, given a circuit C : {0, 1}m → {0, 1}n,
consider the following process: sample a random input r ← {0, 1}m, and output C(x). This process
defines a distribution over {0, 1}n that we will denote by DC . In the case of graph isomorphism, we can
think of the circuit CG0 that has the graph G0 hardcoded into it, uses its input r to sample a relabelling
R, and outputs R(G0) (and similarly CG1

). The distribution D0 we defined above, then, was simply the
distribution DCG0

(and similarly D1 and DCG1
). The graph isomorphism problem, then, is equivalent

to the following promise problem:

LY =
{
(G0, G1) | ∆(DCG0

, DCG1
) = 0

}
LN =

{
(G0, G1) | ∆(DCG0

, DCG1
) = 1

}
With this setup, we can define languages that deal with distributions by dealing with the circuits that

sample them in the above manner. We then define the following generalisation of the above problem,
which we call the Statistical Closeness (SC) problem:

SCY = {(C0, C1) | ∆(DC0
, DC1

) = 0}
SCN = {(C0, C1) | ∆(DC0

, DC1
) = 1}

Actually, we need the additional specification in the sets above that C0 and C1 have the same output
length, but we skip it for brevity. They need not have the same input length, but for simplicity, in
the rest of the document, we will assume both take inputs from {0, 1}m and output a string in {0, 1}n.
Following along the same lines as the protocol for GI, we can construct a PZK protocol (P, V) for SC
that works as follows given input (C0, C1):

1. If DC0 and DC1 are not identical, P sends ⊥ to V and terminates.

2. If not, P samples a uniformly random input r ← {0, 1}m, and a uniformly random bit b. It sends
y ← Cb(r) to V .

3. V samples a random bit b′ and sends it to P .

4. P finds a uniformly random input r′ such that Cb′(r
′) = y, and sends r′ to V .

5. V accepts iff Cb′(r
′) = y.

Note the analogies to the case of GI. The random choice of the relabelling R there corresponds to
the random input r here. The circuit Cb, which takes input r, corresponds to the process of relabelling
the graph Gb with a relabelling R. The output y of the circuit thus corresponds to the result H of the
relabelling. The arguments of completeness, soundness, and perfect zero-knowledge of the above protocol
follow almost identically to those of the GI protocol.

Exercise 4. Write out the arguments for the completeness, soundness, and perfect zero-knowledge of the
above protocol for SC.

2.4 Relaxing SC
It turns out that the above protocol is actually even more powerful that stated above. We will see that
most of the arguments for its completeness, soundness and zero-knowledge could still have been made
if the distributions of DC0

and DC1
, instead of being identical, were just statistically very close. The

4

only catch is that the protocol will lose the perfectness of zero-knowledge, and only be statistically zero-
knowledge. This allows it to work for the natural generalistion of the SC problem that, instead of asking
whether two distributions are identical or disjoint, asks whether they are statistically close or disjoint.
For any β ∈ [0, 1), this is the SCβ problem defined below:

SCβ
Y = {(C0, C1) | ∆(DC0

, DC1
) ≤ β}

SCβ
N = {(C0, C1) | ∆(DC0

, DC1
) = 1}

The protocol then needs to be modified slightly, and works as follows:

1. If DC0 and DC1 are not identical, P sends ⊥ to V and terminates.

2. If not, P samples a uniformly random input r ← {0, 1}m, and a uniformly random bit b. It sends
y ← Cb(r) to V .

3. V samples a random bit b′ and sends it to P .

4. P finds a uniformly random input r′ such that Cb′(r
′) = y, and sends r′ to V . If no such r′ exists,

it sends ⊥ to V instead.

5. V accepts iff Cb′(r
′) = y.

The proofs of the properties of the above protocol when applied to this language are still along the
lines of those when it is applied for SC, just a little more complicated.

Soundness. The proof of soundness is identical to the case of SC. If DC0
and DC1

have statistical
distance 1, this means their supports are disjoint, and that there is no y ∈ {0, 1}n that is in the image
of both C0 and C1. So, irrespective of the prover’s strategy, there is always at least one value of b′ such
that there is no r′ for which Cb′(r

′) = y. Thus the verifier can be made to accept with probability at
most 1/2.

Completeness. If β = 0, the argument for completeness would have been the same as in the protocol
for GI – any y in the image of C0 is also in the image of C1. However, this statement is no longer true.
For any β that is larger than 0, there could potentially be y’s in the image of C0 that is not in the image
of C1. But the statement that their output distributions have statistical distance at most β implies that
the number of such y’s cannot be large.

Claim 2.1. For any circuits C0 and C1 such that ∆(DC0
, DC1

) ≤ β, the probability that a random
y ← DC0 does not have a pre-image under C1 is at most β

Proof of Claim 2.1. This follows from an application of property of statistical distance stated as (2).
Note that for a y sampled from DC1

, the probability that it does not have a pre-image under C1 is 0.
Thus, the probability that y ← DC0

does not have a pre-image under C1 is at most β.
In other terms, define E(y) to be the event that y does not have a pre-image under C1. Then, by (2),

Pry←DC0
[E(y)] ≤ Pry←DC1

[E(y)] + ∆(DC0 , DC1) ≤ 0 + β

In the protocol, the verifier would reject only if b′ ̸= b, and further the y that the prover sampled
from DCb

does not have a pre-image under Cb′ . Thus, using Claim 2.1, the probability that the verifier
rejects is at most β/2.

Statistical Zero Knowledge. The simulator works in the same manner as the one for the GI protocol.
For any V ∗, given input (C0, C1), the simulator SV ∗ works as follows:

1. Sample uniformly random r ← {0, 1}m and b← {0, 1}, and compute y ← Cb(r)

2. Sample rV ∗ uniformly at random from the appropriate domain, and compute b′ ← V ∗((C0, C1), y; rV ∗).

3. If b ̸= b′, output ⊥ and terminate.

4. if b = b′, compute the output of the verifier out← V ∗((C0, C1), y, b, r; rV ∗), and output (rV ∗ , y, b, r, out).

5

We will now need to prove two things: (i) SV ∗ outputs ⊥ with probability less than some constant,
and, (ii) conditioned on not outputting ⊥, the distribution of its output is statistically close to the actual
view of V ∗. Fix some input (C0, C1) such that ∆(DC0

, DC1
) ≤ β.

The probability that SV ∗ outputs ⊥ may be written as follows:

Pr [b ̸= b′] = Pr [b = 0] · Pr [b′ = 1 | b = 0] + Pr [b = 1] · Pr [b′ = 0 | b = 1]

=
1

2
· Pr [b′ = 1 | b = 0] +

1

2
· (1− Pr [b′ = 1 | b = 1])

=
1

2
+

Pr [b′ = 1 | b = 0]− Pr [b′ = 1 | b = 1]

2
(3)

Consider the event b′ = V ∗((C0, C1), y; rV ∗) = 1 – this is determined completely by y and rV ∗ , and does
not involve b otherwise. By (2), the probability that this happens when y is sampled from DC0

or from
DC1 (and r∗V is sampled in the same way and independently of y in both cases) can differ by at most
β. In other words, Pr [b′ = 1 | b = 0] and Pr [b′ = 1 | b = 1] can differ by at most β, and so by (3), the
probability that b ̸= b′ is at most 1/2 + β/2. This proves the first part.

The second part of the proof is a little complicated. In class, I said it follows in the same way as
this part of the proof for the GI protocol. I was wrong. I forgot to account for that fact that the
conditioning b = b′, together with DC0

and DC1
not being identical leads to some non-trivial skewing

of the distribution of the simulator’s output. That is, the distribution of rV ∗ and y in the simulator’s
output, upon conditioning on b = b′, may be different from the distribution of rV ∗ and y in the actual
view of the verifier. Note that, without the conditioning b = b′, these two distributions are indeed the
same. Conditioning, however, often causes issues like this. This was not a problem in the case of the GI
protocol (or the earlier protocol for SC) because there the two distributions DC0

and DC1
were identical,

leading to the event b = b′ being independent of the value of rV ∗ . Here, though, that is not the case. To
illustrate, let us write out this proof in the case of β = 0 (that is, the SC problem) in a slightly more
roundabout way than necessary.

The first thing to notice is that, for any fixed value of rV ∗ and y, conditioning on b = b′, the rest of
the simulated distribution is identical to the corresponding parts of the view of V ∗. This is because once
rV ∗ and y are fixed, the value of b′ is determined, and the r that V ∗ sees in the protocol is a random
pre-image of y under Cb′ , which is exactly what the simulator also outputs conditioned on b = b′. Our
task, then, is to show that, even with the conditioning b = b′, the distribution of (rV ∗ , y) output by the
simulator is the same as the distribution in the view. To be more precise, let R and Y denote the random
variables corresponding to rV ∗ and y in the actual view of V ∗, and RS and YS the respective parts of
the simulator’s output. For any value of (rV ∗ , y), denote by b′rV ∗ ,y the output of V ∗((C0, C1), y; rV ∗).
Suppose rV ∗ is drawn uniformly from {0, 1}ℓ. The probability mass on this pair (rV ∗ , y) under the actual
view of V ∗ is given by:

Pr [(R, Y) = (rV ∗ , y)] = Pr [R = rV ∗] · Pr [Y = y | R = rV ∗]

= Pr [R = rV ∗] · Pr [Y = y]

=
1

2ℓ
· DC0

(y) +DC1
(y)

2
(4)

where the Pr [Y = y] is calculated by noting that in the protocol the bit b is set to 0 or 1 with probability
1/2, and then y is sampled from DCb

.
In the simulated distribution, the conditioning b = b′ means that YS is sampled only from DCb′ , and

not DC1−b′ . The probability mass on (rV ∗ , y) in the simulated distribution, conditioned on b = b′, is as
follows:

Pr [(RS , YS) = (rV ∗ , y) | b = b′] = Pr [RS = rV ∗ | b = b′] · Pr [YS = y | b = b′ ∧RS = rV ∗]

= Pr [RS = rV ∗] · Pr [YS = y | b = b′]

=
1

2ℓ
·DCb

(y)

(5)

where the equalities follow from two facts:

6

(i) The event b = b′ happens with probability 1/2 independently of the value of YS and RS , as y
contains no information about b if DC0

and DC1
are identical. So the distribution of RS is also

independent of the event b = b′.

(ii) Given that b = b′, YS is just the distribution DC′
b
, and no longer depends on the value of RS .

Noting that DCb
(y) is the same as (DC0 + DC1)/2 for any value of b then tell us that the above two

distributions are identical.
If the two distributions DC0

and DC1
had not been the same, however, we would not have been the

first fact (i) above. That is, RS would not necessarily have been independent of the event b = b′. It
turns out that we can use the fact that DC0

and DC1
are β-close to show that this is approximately true,

but it requires more work. This can be done with some general lemmas about the interaction between
statistical distance and conditioning, but we leave this out for now. It turns out that the statistical
distance between the simulated distribution conditioned on b = b′ and the actual view is at most β.
Refer to Section 6.2 of Vadhan’s thesis [Vad99] for the complete proof.

References
[Gol13] Oded Goldreich. A short tutorial of zero-knowledge. In Manoj Prabhakaran and Amit Sahai,

editors, Secure Multi-Party Computation, volume 10 of Cryptology and Information Security
Series, pages 28–60. IOS Press, 2013.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Massachusetts
Institute of Technology, 1999.

7

	Composition of Zero-Knowledge Proofs
	Statistical Zero Knowledge
	Statistical Distance
	Defining SZK
	Closeness of Samplable Distributions
	Relaxing SC

