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In the previous lecture, we saw the definition of a notion of distance between probability distributions,
and of statistical zero-knowledge proofs. We saw how the simple PZK protocol for Graph Isomorphism
could be extended to a PZK protocol for the Statistical Closeness problem. More generally, the protocol
works for SCβ , which is the problem of deciding whether the distributions sampled by two given circuits
have statistical distance at most β, or 1.

The proof I suggested in class for the zero-knowledge property of this protocol for SCβ was flawed –
see the previous lecture notes for details. The protocol, however, is indeed zero-knowledge, and for SCβ

has completeness error β/2, soundness error 1/2, and zero-knowledge error approximately β. While the
completeness and soundness errors can be amplified by repetition, this only worsens the zero-knowledge
error. While I am not aware of any general procedures to amplify zero-knowledge errors (though some
may exist in the research literature), it turns out that there is an elegant way to get an SZK protocol
with better errors for this particular problem.

In this lecture, we will how this is done. Then, we will move on to an extension of the other PZK
protocol we saw – the one for Graph Non-isomorphism – to a protocol for a complement of the SC
problem. We will see how this problem is, in fact, complete for the class SZK of problems that have SZK
proofs. This completeness enables simple proofs of several closure properties of this class, and also of an
interesting connection to cryptography.

For many of the proofs below, we will need the following facts about the statistical distance between
joint distributions.

Fact 0.1. For any distributions (X0, Y0) and (X1, Y1),

∆((X0, Y0), (X1, Y1)) ≥ max [∆(X0, X1),∆(Y0, Y1)]

Fact 0.2. For any distributions (X0, Y0) and (X1, Y1),

∆((X0, Y0), (X1, Y1)) ≤ ∆(X0, X1) + Ex←X0
[∆(Y0|X0=x, Y1|X1=x)]

In particular, if X0 is independent of Y0 and X1 is independent of Y1,

∆((X0, Y0), (X1, Y1)) ≤ ∆(X0, X1) + ∆(Y0, Y1)

1 Polarising Statistical Distance

As indicated above, the SZK protocol for SCβ we saw earlier has zero-knowledge error approximately
β. More specifically, the distance of the simulated distribution, conditioned on the simulator not failing,
is β. Further, the simulator fails with at most some constant probability, which can be decreased by
repetition to something exponentially small. Thus, given a security parameter 1λ as additional input, it
can simulate a distribution that has distance β + 1/2λ from the actual verifier’s view.

However, in our definition of the SZK property, we required something substantially stronger – that
the zero-knowledge error decrease as a negligible function of λ. So if β also happened to be a negligible
function of λ, then this protocol would be actually SZK, but β is fixed by the problem description. We
will see, however, that for any constant β < 1, the problem SCβ can be reduced to SC2−λ

in about
poly(λ) time.

Given such a reduction, we can get an actual SZK protocol for SCβ by first reducing it to SC2−λ

,
and then running the earlier protocol for that. This would have zero-knowledge error 2−λ and, as a
useful byproduct, completeness error 2−λ/2. The soundness error can then be amplified by sequential
repetition (strictly speaking, we would need to use the auxiliary input definition of SZK for the repetition
to work, but we will ignore this for now).

The reduction follows immediately from what is sometimes called an XOR lemma. Fix any two
distributions D0 and D1. For any bit b and n ∈ N, denote by D⊕nb the distribution that is sampled as
follows:
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1. Sample uniformly random bits b1, . . . , bn ← {0, 1} such that b1 ⊕ · · · ⊕ bn = b

2. For each i ∈ [n], sample xi ← Dbi

3. Output (x1, . . . , xn)

Lemma 1.1. ∆(D⊕n0 , D⊕n1 ) = ∆(D0, D1)
n

The proof of Lemma 1.1 is quite straighforward if you write out the definition of the statistical
distance between the D⊕nb ’s in terms of the difference between probabilities and simplify each term. The
intuition for the operation, however, is the following. Think of the process of picking a random bit b, and
sampling x← Db. Now given just x, what is the probability that a distinguisher, even computationally
unbounded, can guess b correctly? If D0 and D1 had disjoint supports, then b can be guessed perfectly.
If D0 and D1 are close, however, this becomes harder, and by what we saw in the last lecture, the
advantage any distinguisher has in guessing b is at most ∆(D0, D1). In the case of D⊕nb , in order to
guess b, really the best a distinguisher can do is try to guess all the bi’s and take their parity. Thus, its
task becomes much harder, so its success probability can be expected to decrease exponentially with n.
Even allowing for the fact that it can get some of the bi’s wrong but still guess b correctly maintains this
behaviour.

Exercise 1. Given Lemma 1.1, write down the reduction from SCβ to SC2−λ

. Prove Lemma 1.1.

More generally, Lemma 1.1 is a process by which, given two distributions that are somewhat close,
we can obtain distributions that are very close. Further, the rate at which the distance between the
distributions decreases is a function of their initial distance. In particular, if D0 and D1 are disjoint,
D⊕n0 and D⊕n1 remain disjoint. There is also a simple process that increases the distance between
distributions. Denote by D⊗nb the distribution obtained by sampled x1, . . . , xn ← Db, and outputting all
of them.

Lemma 1.2. 1− 2e−n∆(D0,D1)
2/2 ≤ ∆(D⊗n0 , D⊗n1 ) ≤ n ·∆(D0, D1)

The intuition here is again to look at statistical distance as the best advantage of a distinguisher in
recovering b given a sample from Db. If we want the give the distinguisher more information about b,
the simplest thing to do is to just give it many samples from Db, which is what the above operation
does. The lower-bound in the lemma can be proven using Chernoff bounds, and the upper bound using
Fact 0.2.

Exercise 2. Prove Lemma 1.2.

So now we have two operations, one of which brings distributions closer (at different rates), and
another that pushes them apart. Interestingly, a combination of these two operations can be used to
“polarise” distributions – that is, bring them closer if they are already somewhat close, and push them
apart if they are already somewhat far. This is captured by the following theorem that was proven by
Sahai and Vadhan [SV03]

Theorem 1.3 (Polarisation Lemma). For any constants α, β ∈ [0, 1] such that α2 > β, there is an
algorithm that, given a bit b, security parameter λ, and sample access to distributions D0 and D1, runs
in time poly(λ) and outputs a sample from distribution D′b, such that these distributions D′0 and D′1
satisfy the following properties:

• If ∆(D0, D1) > α, then ∆(D′0, D
′
1) > 1− 2−λ

• If ∆(D0, D1) < β, then ∆(D′0, D
′
1) < 2−λ

Whether the condition α2 > β can be removed from the above theorem is still unknown.

2 Generalest Statistical Closeness
We will see now how the honest-verifier PZK protocol for Graph Non-Isomorphism (GNI) can be extended
to work for an even broader generalisation of the Statistical Closeness problem. This generalisation will
also be significant as a complete problem for the class SZK itself. A natural way to extend the SCβ
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problem is to allow the distributions in the NO case to be not necessarily disjoint, but just far. For any
β < α ∈ [0, 1], define the following promise problem:

SCβ,α
Y = {(C0, C1) | ∆(DC0 , DC1) ≤ β}

SCβ,α
N = {(C0, C1) | ∆(DC0 , DC1) ≥ α}

Note that the protocol for SCβ is not sound for SCβ,α if α < 1, as then the ranges of the cicuits
C0 and C1 could be identical even if their output distributions are very far. We will see later how to
get a protocol for SCβ,α. For now, we focus on the complement of this problem called the Statistical
Difference problem, which we will denote by SDα,β . That is, SDα,β

Y = SCβ,α
N and SDα,β

N = SCβ,α
Y .

In an interactive proof for SD, the prover would like to prove that the output distributions of two
given circuits are far apart. Just as SC represented a generalisation of the principles we used to get a
protocol for GI, SD does the same for its complement GNI. Recall the HVPZK protocol (P, V ) for GNI
that, given graphs (G0, G1), works as follows:

1. V samples a uniformly random relabelling permutation R : [n]→ [n], and a uniformly random bit
b← {0, 1}. It sends R(Gb) to the prover.

2. If G0 and G1 are isomorphic, P sets b′ = ⊥. Else, P sets the bit b′ = 0 if G′ is isomorphic to G0,
and b′ = 1 otherwise. It sends b′ to V .

3. V accepts if b = b′, and rejects otherwise.

To get soundness, this protocol uses the fact that ∆(R(G0), R(G1)) = 0 if G0 and G1 are isomorphic.
Completeness and zero-knowledge come from the fact that ∆(R(G0), R(G1)) = 1 if the graphs are not
isomorphic. A natural extension of the principles here gives us the following protocol (P, V ) for SDα,β

on input (C0, C1) (supposing the circuits both map {0, 1}m to {0, 1}n):

1. V samples a uniformly random r ← {0, 1}m and bit b. It computes y ← Cb(r) and sends it to the
prover.

2. If ∆(DC0 , DC1) ≤ α, P sets b′ = ⊥. Else, it sets b′ = 0 if DC0(y) > DC1(y), and b′ = 1 otherwise.
It sends b′ to V .

3. V accepts if b = b′, and rejects otherwise.

Completeness. The comparison of the probability masses DC0(y) and DC1(y) above comes from the
fact that this is the ideal distinguisher that has the greatest advantage in distinguishing between DC0

and DC1
given sample y. That is, let S ⊆ {0, 1}n be the set of y’s for which DC0

(y) > DC1
(y). Then,

we have the following relation:

∆(DC0
, DC1

) =
∑
y∈S

DC0
(y)−DC1

(y) = DC0
(S)−DC1

(S)

Proving this is left as an exercise. Now, the probability that the prover guesses b correctly is given by:

Pr [b′ = b] =
1

2
· Pr [b′ = 0 | b = 0] +

1

2
· Pr [b′ = 1 | b = 1] (1)

=
1

2
+

Pr [b′ = 0 | b = 0]− Pr [b′ = 0 | b = 1]

2
(2)

The prover sets b′ = 0 iff y ∈ S. So the probability that b′ = 0 given b = 0 is exactly the probability
that y ∈ S when it is sampled from DC0 , which is DC0(S). Similarly, the probability that b′ = 0 when
b = 1 is DC1(S). Thus, the probability that b′ = b is exactly 1/2 + ∆(DC0 , DC1)/2 ≥ (1 + α)/2.

Soundness. In order to guess b correctly, the prover’s task is precisely to distinguish between DC0

and DC1 given just one sample. By the fact that statistical distance bounds the advantage of any
adversary in doing this, we have that (Pr [b′ = 0 | b = 0] − Pr [b′ = 0 | b = 1]) is at most ∆(DC0 , DC1).
It then follows from Eq. (1) that the probability that any prover can make the verifier accept is at most
1/2 + ∆(DC0

, DC1
)/2 ≤ (1 + β)/2, which is smaller than (1 + α)/2.
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Honest-Verifier Zero-Knowledge. The simulator S for the honest verifier V takes advantage of the
fact that it knows V ’s secret randomness, which the prover in an actual execution of the protocol does
not. On input (C0, C1), it works as follows:

1. S samples a uniformly random r ← {0, 1}m and bit b.

2. It computes y ← Cb(r) and outputs ((r, b), y, b).

The only difference between the simulated distribution and the actual view of V , which is ((r, b), y, b′),
is that sometimes in the actual view, b′ is not the same as b. In fact, as argued in the proof of completeness,
b′ ̸= b with probability exactly (1− α)/2. This is the zero-knowledge error.

Exercise 3. Prove the above bound on the zero-knowledge error formally using Fact 0.2.

Reducing the errors. Again, for constants α and β, the above zero-knowledge error is not good
enough, and cannot be generically amplified. However, we can take the same approach as we did in the
case of SCβ , and first use the polarisation lemma (Theorem 1.3) to first reduce SDα,β to SD1−2−λ,2−λ

and then run the above protocol. This is only possible, however, if α2 > β.
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