
Hardness of Approximation,
Constructing PCPs

CS6230: Topics in Information Security
Lecture 9 (Oct 12, 2021)

Lecture and notes: Prashant Nalini Vasudevan

In the previous lecture, we started looking at Probabilistically Checkable Proofs (PCPs), which are
proofs that can be checked by looking at only a small number of bits of the proof. Such proofs are
interesting for several reasons – first, they represent a rather surprising answer to the question of what it
means to prove something, second, they have found widespread use in proving that optimisation problems
are hard to solve even approximately, and third, they are used in cryptography to construct very efficient
zero-knowledge proof systems.

One possibility that suggests itself naturally is that PCPs might allow for computationally very
efficient verifiers for non-trivial languages, as PCP verifiers only look at a few bits of the proof. However,
this is not always the case. Even though the verifier only sees a small part of the proof, often the
computation it does to check the proof is comparable to that of an interactive proof or NP proof for the
same language. The benefits of a PCP are really the small number of queries and random bits used.
Over the next couple of lectures, we will see the aforementioned applications of PCPs that indicate why
these are significant.

1 The PCP Theorem
Any language that has a PCP where the verifier uses bounded randomness can be decided by a non-
deterministic verifier that guesses the PCP proof and checks the probability that the PCP verifier accepts
this proof. This implies the following.

Claim 1.1. PCP[q, ρ] ∈ NTIME[q · 2ρ]

Corollary 1.1. PCP[poly, log] ∈ NP

The primary question surrounding early research in PCPs was whether a strong converse of Corol-
lary 1.1 was true – whether all languages in NP had PCPs with small query complexity. It is easy to
see that NP ⊆ PCP[poly, 0], as the verifier can just read the entire NP proof, but can we do better than
this? In a remarkable sequence of papers in the early 90’s, it was shown that we indeed could.

Theorem 1.2 ([AS92, ALM+92]). NP ⊆ PCP[1, log]

The number of queries in the PCP in the theorem above can actually be set to 3 (but not 2) [Hås97]
(with the soundness error being 0.49 or so). Further, the prover in this PCP for NP is efficient in the
sense that, given a witness, its running time is a polynomial in the length of the PCP proof that it
constructs. This is also the case for almost all PCP constructions.

A different, arguably simpler, proof of this theorem was given later by Irit Dinur [Din06]. All of these
constructions draw on a number of disparate tools from combinatorics and algebra, involving, among
other things, error-correcting codes, expander graphs, random graphs, linearity testing, Fourier analysis,
etc.. Covering either of these in any meaningful detail would be beyond the scope of this course, but we
will see a simpler construction of much weaker, but still remarkable, PCP for NP.

2 Hardness of Approximation
First, though, we will see the application of PCPs to hardness of approximation that spurred this line
of research, and which will highlight the importance of constant queries and logarithmic randomness
complexity. The simplest example of such an application is to optimising constraint satisfaction problems.

Definition 2.1. In the k-CSP problem, an instance consists of a list of k-ary constraints over m variables.
There are m variables x1, . . . , xm, and some number t of constraints ϕ1, . . . , ϕt where each ϕi is a Boolean
formula over k of the m variables – ϕ(xi1 , . . . , xik). The problem, given such an instance ϕ = (ϕ1, . . . , ϕt),
is to decide whether there exists an assignment to the variables x1, . . . , xm such that all the ϕi’s are
satisfied.

1



This problem is clearly in NP, and is also NP-complete. We will be concerned with the optimisation
version of this problem.

Definition 2.2. In the Max-k-CSP problem, given such an instance ϕ = (ϕ1, . . . , ϕm), the task is to find
an assignment to x = (x1, . . . , xm) that maximises the number of ϕi’s that are satisfied.

Clearly, solving this problem exactly would also lead to a solution for k-CSP itself, and so Max-k-CSP
is also NP-hard. But what if we only want to solve it approximately? This is one of the ways to
deal with hard problems that show up in practice – to make do with an approximation to the optimal
solution. For any ϕ, let OPT(ϕ) denote the maximum number of constraints in ϕ that are satisfied by
any assignment. Could there be an efficient algorithm that, given ϕ, finds an assignment that satisfies
more than a δ ·OPT(ϕ) of its constraints? Such an algorithm is said to be a δ-approximation algorithm
for Max-k-CSP. PCPs provide a way to show that such even computing such approximation solutions is
hard. In particular, the PCP theorem implies the following.

Theorem 2.1. If P ̸= NP, for all large enough k, there is no polynomial-time 0.51-approximation
algorithm for Max-k-CSP.

Proof Sketch. The idea is to start from an NP-complete problem, and use a PCP[1, log] proof for it to
reduce it to 0.51-approximating the Max-k-CSP problem for some k. Suppose an NP-complete language
L has a PCP proof system with verifier V that makes some constant k queries, and has randomness
complexity c log n on inputs of length n. Such a system is guaranteed to exist by the PCP theorem. Fix
some input length n, and suppose the length of the corresponding PCP proof is m.

Given any input x for L, and a random string r ∈ {0, 1}c logn of the verifier, consider the algorithm
that the verifier runs. It makes queries to k bits of the proof π, and then computes some function of
them that determines whether it accepts or rejects. This specifies a constraint – call it Vx,r(πr,1, . . . , πr,k)
– on k bits of π that determine whether the verifier accepts or rejects. Consider then the set of all of
these constraints for all the possible random strings r: Vx = {Vx,r}r∈{0,1}c log n . Vx contains at most
2c logn = nc constraints. By the property of the PCP, this set has the following properties:

• If x ∈ L, then there exists a proof π that satisfies all the constraints in Vx

• If x /∈ L, the any possible string π′ satisfies at most a 0.5-fraction of the constraints in Vx

Thus, if there is a polynomial-time algorithm that, given Vx can distinguish between whether there
exists a π that satisfies either all of the constraints in Vx or at most half of them, then it can be used
to decide L in polynomial-time. A 0.51-approximation algorithm for Max-k-CSP can do this trivially.
Thus, if L is indeed not contained in P, then no such polynomial-time algorithm can exist.

Above, the number of queries being constant allowed the reduction to work for Max-k-CSP for a
constant k. This is important because this captures a set of natural and important problems that come
up in complexity theory, graph theory, etc.. The O(log n) bound on the number of random bits allowed
the resulting set of constraints to be of polynomial size. If the number of random bits were ω(log n), the
reduction would no longer work in polynomial time, and we would not be able to use the assumption
that L is hard for polynomial-time algorithms.

Exercise 1. Prove that the PCP theorem is, in fact, equivalent to the NP-hardness of approximating
Max-k-CSP for some constant k.

3 A Simple PCP
Next, we will see a construction of a simple PCP for NP that has much worse parameters than those
promised by the PCP theorem. Specifically, we will partially prove the following.

Theorem 3.1. NP ⊆ PCP[1, poly]

While it is indeed much weaker than Theorem 1.2, this is already a remarkable statement that shows
that constant-query PCPs can do very non-trivial things. Its proof will illustrate the central components
of many PCP constructions, though at a very basic level. We will start by constructing a PCP for a

2



problem that is actually in P – that of solving a system of linear equations. Later, we will see how this
can be extended to a similar PCP for the problem of solving a system of quadratic equations, which is
NP-hard.

Definition 3.1. In the Multivariate Linear equation problem (ML), an instance consists of a set of m
vectors A = (a1, . . . , am), where each ai ∈ Fn

2 , and m bits b = (b1, . . . , bm), where bi ∈ F2. The instance
(A, b) is in ML if and only if there exists an x ∈ Fn

2 such that for all i ∈ [m], we have ⟨ai, x⟩ = bi.

For simplicity, we will also assume that the matrix A in the instance is always full rank – that is, its
rows ai span the space Fn

2 . Clearly ML ∈ NP, as the assignment x serves as a witness. Further, ML ∈ P,
as Gaussian elimination can be used to determine whether such an x exists, and to recover it if it does.
So there is a trivial PCP for it where the verifier makes no queries and just solves the problem on its
own, but let us ignore that for now.

3.1 Encoding a solution
Given a feasible linear system (A, b), suppose it has a solution u ∈ Fn

2 – that is, Au = b. We would
like our PCP proof π to encode this solution u in a manner that can be verified with few queries. Our
encoding will be to simply write down the values of ⟨a, u⟩ for all a ∈ Fn

2 . That is, π is a string of length
2n that is indexed by a ∈ Fn

2 , and is such that π[a] = ⟨a, u⟩. Note that this contains, in particular, the
evaluations of ⟨ai, u⟩ for all the ai’s in the given system A, but also the evaluations of all other possible
linear functions. We will denote such an encoding of any string x ∈ Fn

2 by Hx, for reasons that will
become clear later.

3.2 Verification
Given such a proof string π that claims to encode an solution u to the given system (A, b), the task of
the PCP verifier can be broken down as follows:

1. Check that π is actually equal to Hu for some string u ∈ Fn
2

2. Check that this encoded string u satisfies Au = b

We will defer the first part above for now, and look at how to do the second. Clearly, if π = Hu, then
the statement Au = b can be verified by checking whether, for each i ∈ [m], π[ai] = Hu[ai] = ⟨ai, u⟩ = bi.
But this requires m queries to the proof, which is bad. Instead, we will use a variation of a technique that
we have seen in the past with low-degree polynomials, which is to perform this verification at random
points. Corresponding to the fact there that two low-degree polynoimals cannot agree on too many
locations, here we have the following.

Lemma 3.2. For any two distinct u, v ∈ Fn
2 ,

Pra←Fn
2
[⟨a, u⟩ = ⟨a, v⟩] = 1

2

In other terms, for any distinct u and v, the encodings Hu and Hv will agree on exactly half of the
2n coordinates. This is close to a special case of what is known as the Schwarz-Zippel Lemma, which
generalises to multivariate polynomials the property that univariate polynomials of degree d can have
only d zeroes. To see this, note that the string Hu is actually the truth table of the multivariate linear
function hu(a) = ⟨u, a⟩.

Exercise 2. Prove Lemma 3.2.

We are guaranteed (by the first part of verification, which we skipped) that π is an encoding Hv

for some vector v ∈ Fn
2 , and wish to check that it is indeed an encoding Hu of a vector u that satisfies

Au = b. By Lemma 3.2, if we could evaluate Hu at random locations, we could perform this checking
by picking a random a← Fn

2 , and checking that π[a] = Hu[a].
And we can indeed compute Hu[a] as, even though we do not know u itself, we know a full rank

system of linear equations that it satisfies. So if a is given by some linear combination of the rows of A,
then Hu[a] = ⟨a, u⟩ will simply be the same combination of the entries in b. The verifier thus operates
as follows:

3



1. Sample random r ← Fm
2 , and compute a← rTA

2. Verify that π[a] = ⟨r, b⟩

Claim 3.1. If π is an encoding Hv of v ∈ Fn
2 such that Av ̸= b, then the above procedure rejects with

probability 1/2.

This probability can then be improved by repetition. Conditioned on π actually being an encoding
of some string, this claim proves soundness of the PCP. Completeness is easily verified. The verifier here
makes only one query, and uses m bits of randomness. It remains, then, to specify how the verifier checks
that the proof is indeed such an encoding.

References
[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and hardness of approximation problems. In 33rd Annual Symposium on Foun-
dations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992 [DBL92],
pages 14–23.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characterization of
NP. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsyl-
vania, USA, 24-27 October 1992 [DBL92], pages 2–13.

[DBL92] 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania,
USA, 24-27 October 1992. IEEE Computer Society, 1992.

[DEL+21] Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes. Locally Testable Codes
with Constant Rate, Distance, and Locality. https://simons.berkeley.edu/events/
breakthroughs-locally-testable-codes-constant-rate-distance-and-locality,
2021. [Online; accessed 11-October-2021].

[Din06] Irit Dinur. The PCP theorem by gap amplification. In Jon M. Kleinberg, editor, Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23,
2006, pages 241–250. ACM, 2006.

[Hås97] Johan Håstad. Some optimal inapproximability results. In Frank Thomson Leighton and
Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 1–10. ACM, 1997.

4

https://simons.berkeley.edu/events/breakthroughs-locally-testable-codes-constant-rate-distance-and-locality
https://simons.berkeley.edu/events/breakthroughs-locally-testable-codes-constant-rate-distance-and-locality

	The PCP Theorem
	Hardness of Approximation
	A Simple PCP
	Encoding a solution
	Verification


