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In the previous lecture, we saw the application of PCPs to proving the hardness of approximating
optimisation problems, and started looking at the construction of a PCP for the problem of solving a
system of linear equations. Today, we will wrap up this construction, though we will leave the proof of
an important part of it to the next problem set. The problem set will also cover the extension of this
PCP to solving systems of quadratic equations. This is an NP-complete problem, and thus the PCP
will lead to a weak version of the PCP theorem – one with constant queries, but polynomial randomness
complexity and an exponentially long proof.

Later in this lecture, we will see a different application of PCPs that has led to a lot of exciting
developments in recent years – constructing efficient computationally sound interactive proofs.

1 A Simple PCP for ML
Recall that the problem we wished to construct a PCP for was the Multivariate Linear (ML) problem
– given matrix A ∈ Fm×n

2 and vector b ∈ Fm
2 , determine whether there exists a solution to the system

of linear equations Ax = b. The PCP proof for an instance (A, b) that had a solution u ∈ Fn
2 consisted

of the encoding Hu of u, which was a string of length 2n, where for any a ∈ Fn
2 , Hu[a] was the inner

product ⟨a, u⟩. Given a promise that a candidate proof π had the form Hv for some vector v, the verifier’s
strategy was to pick a random a ∈ Fn

2 , and check that π[a] was indeed the inner product of a with some
vector u that satisfied Au = b. For this, we used the fact that two linear functions over F2 agree on
exactly half of all inputs.

1.1 Error-Correcting Codes
The set of encodings {Hu}u∈Fn

2
we used above is what is known as an Error-Correcting Code (ECC). We

have seen examples of such codes multiple times so far, but we never really referred to them by name. An
error-correcting code is an encoding of strings such that any two strings that differ even in one location
are mapped to strings that are very different. These encodings are one of the most pervasive objects in
computer science, and have found widespread use in data storage, communication, cryptography, etc..
They are fascinating, but unfortunately, we will not have time to cover them in much detail here.

For historical reasons, such an encoding E : Fn → Ft is said to map a message x to a codeword E(x).
Generally in ECCs, two parameters are of importance:

• The rate, which is the ratio of the size of the message to the size of the codeword – n/t. Generally,
in a good code, this should be close to 1. This would mean that the encoding does not have much
overhead.

• The distance, which is the minimum (relative) Hamming distance between the encodings of any
two distinct messages. In a good code, this should also be close to 1. This would mean that, even
if some large fraction of bits of the codeword were adversarially changed, it would still be possible
to recover what the message it encoded was.

The specific code we used above – where a codeword consists of the inner product of the message
with all the vectors in the space – is called the Hadamard code. This code has very bad rate (n/2n), but
very good distance (1/2). It also has two useful properties – it is locally testable and locally correctable.
Local testing enables the first part of the verification task as noted earlier. Local correction helps deal
with the fact that local testing is not perfect. In other contexts, local correction also helps get worst-case
to average-case reductions between problems.

The first step in getting better PCP constructions is to use a code that has both of these properties,
but also has much better rate than the Hadamard code. This would lead to a shorter proof string and
often less randomness complexity. One such code is the Reed-Solomon code, which consists of evaluations
of a low-degree univariate polynomial, whose co-efficients are specified by the message. This is much like
how the linear function in the Hadamard code was specified. Another is the Reed-Muller code, which
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is the same but with low-degree multivariate polynomials (much like how the Hadamard code involved
linear multivariate polynomials). These codes were implicit in many of the interactive protocols we saw
earlier in the class.

1.2 Linearity Testing
The first task of the verifier, which we skipped over earlier, was, given oracle access to the proof string
π, to check that it is the Hadamard encoding Hv of some string v ∈ Fn

2 . If it could look at the entire
string π, it could have done this perfectly, but since it has only a small number of queries it can make,
the verifier can only ensure that π is close to such an encoding. In general, the task of testing whether
a given string is a valid codeword of some code by making a small number of queries to it is called local
testing. The study of local testability of codes started with early constructions of PCPs, but has since
gathered interest in its own right, and a breakthrough in the construction of locally testable codes with
good rate and distance was just announced two weeks ago [DEL+21].

In the particular case of the Hadamard code, the task of local testing comes down to testing whether
a given function is linear. This is because, as noted earlier, any valid codeword Hv of the code can be
thought of a the truth table of a linear function hv(a) = ⟨v, a⟩. Then, given an oracle for a function
h : Fn

2 → F2, the task is to determine whether the function is linear by making a small number of
queries to it. This is known as linearity testing. Again, it is not possible to check whether the function
is perfectly linear, so the verifier is only required to reject if the function is somewhat far from being
linear.

Lemma 1.1. There is a linearity tester L that, given oracle access to a function h : Fn
2 → F2, makes a

constant number of queries to it, runs in O(n) time, and has the following properties:

1. If h is linear, Lh accepts with probability 1

2. Suppose that, for any linear function ℓ : Fn
2 → F2, the outputs of h and ℓ differ in more than a 0.01

fraction of inputs. Then Lh rejects with probability at least 0.9.

The test itself turns out to be quite simple – pick random inputs r, s ∈ Fn
2 , and check whether

h(r) ⊕ h(s) = h(r ⊕ s). The analysis is a bit involved, and we will see it in the next problem set. For
now, we will see how to complete the PCP verifier if this test were used to realise the first part of the
verification strategy – to check that π is close to a valid codeword Hu.

1.3 Putting things together
With the linearity tester L from Lemma 1.1, we can now describe the entire PCP verifier as follows given
input (A, b) and access to a proof π:

1. Run Lπ and reject if it rejects

2. Sample random r ← Fm
2 , and verify that π[rTA] = ⟨r, b⟩

The arguments from the previous lecture show that this verifier would work if L tested for perfect
linearity. It is not much harder to show that it continues to work even if L only tests approximate
linearity in the sense of Lemma 1.1. This is because the query rTA that the verifier makes to π is
uniformly distributed over all indices of π (under the assumption that A is full rank). So even if π were
actually 0.01-far from any linear function and L is not able to catch it, this 0.01 fraction of bad queries
can be absorbed into the soundness error that the PCP verifier is allowed. Overall, the verifier uses O(1)
queries, and O(m) bits of randomness.

2 PCPs and Arguments
The other major application of PCPs is in constructing efficient interactive proofs with computational
soundness properties. These proofs, called interactive arguments, are interactive proofs where the prover
is required to be computationally efficient (perhaps given some witness), and the soundness guarantee is
required only against cheating provers that are also computationally efficient.
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Definition 2.1. An interactive protocol (P, V ), where both P and V run in probabilistic polynomial
time (in the length of the input), is said to be an interactive argument for a language L if:

• Completeness: For every x ∈ L, there exists a w ∈ {0, 1}∗ such that when (P, V ) is run with
x as input to V and (x,w) as input to P , and security parameter λ, V accepts at the end with
probability at least 1− negl(λ).

• Soundness: For every x /∈ L, and any prover strategy P ∗, when (P ∗, V ) is run with x as input to
V and security parameter λ, V accepts at the end with probability at most negl(λ).

Exercise 1. Show that interactive arguments can only exist for languages in NP.

Of course, any NP proof system itself is an argument, as the prover could simply send the proof over,
but we are typically interested in arguments that have much smaller communication and verifier running
time than this.

Arguments are incomparable to IPs in general because they ask for the honest prover to be compu-
tationally efficient (perhaps given a witness), which is a stronger requirement than in IP, but they only
ask for soundness to hold against efficient cheating provers, which is a weaker requirement. In practical
applications, computational efficiency of the prover is important in any case, and so practical arguments
are often easier to construct than practical IPs. Further, security against computationally efficient ad-
versaries is also often sufficient in applications. For this reason, when it comes to practice, arguments are
right kind of interactive proofs to consider, though constructions of arguments often involve constructions
of information-theoretically sound proof systems as a first step.

Arguments from PCPs. An example of such a construction is Kilian’s argument for languages in
NP using PCPs [Kil92]. In order to construct an argument system for a language L ∈ NP, this approach
starts with a PCP for L, and specifies how the proof oracle can be implemented securely using a prover
who knows the witness. That is, the verifier V in this argument system runs the PCP verifier VPCP , and
whenever VPCP makes a PCP oracle query, V sends the query to the prover P , who should respond with
the corresponding bit of the PCP proof π. Using existing polynomial-length PCPs, the PCP proof π for
any input x ∈ L can be computed in polynomial-time by the prover given a witness w for x, leading to
an argument system with perfect completeness.

Achieving soundness in this approach, however, is more complicated, and makes use of the fact that
we only require security against polynomial-time cheating prover strategies. The salient property of the
PCP model here is that the proof π encoded by the oracle is fixed ahead of time, before the verifier makes
the queries, and so its response to any query cannot change depending on what other queries are made.
If the verifier V simply forwarded VPCP ’s queries to a cheating prover P ∗, however, P ∗ can decide what
response to send to one query based on what some other query was. This breaks the PCP abstraction,
and we cannot use the PCP’s soundness guarantee any more.

Kilian’s solution to this was to have the prover commit to the proof π before the start of the protocol,
and then whenever it answers a query of VPCP that was forwarded by V , it would have to prove, through
the commitment scheme, that it is answering the query in a way that is consistent with the initial
commitment it made. This turns out to be sufficient to realise the PCP model accurately, and make
use of the PCP’s soundness. We will cover his construction at a high level, introducing the necessary
techniques, but not delving much into details of the proofs.

2.1 Merkle Hashing and Commitments
We have encountered cryptographic commitment schemes earlier in the course, in the construction of
CZK proofs for NP. Recall that this is an interactive protocol with two phases – commitment and
decommitment. In the commitment phase, the sender S and receiver R interact, with the transcript of
this interaction implicitly committing S to some message m. In the decommitment phase, S reveals to R
the message m and the random string it used that correctly explains the transcript from the commitment
phase. There, we used a commitment scheme that was statistically binding and computationally hiding
– we wanted the binding property to protect against the computationally unbounded prover, and the
hiding property to protect against the efficient verifier.

Here, as we only have to deal with computationally efficient provers, we will use a commitment scheme
that has the strength of these properties swapped – it will be computationally binding and statistically
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hiding. In addition, it will have the property that commitments to even long messages are very short, and
also that any bit of the committed message can be decommitted much more efficiently than decommitting
the entire message. This last property is called local opening. We will not write down a definition of such
a commitment scheme, but will rather just see a construction of one – Merkle Hashing.

Collision Resistance. This commitment scheme makes use of another fundamental cryptographic
primitive – a family of Collision-Resistant Hash Functions (CRHF). These are families of functions
where it is hard to find two inputs that are mapped to the same output.

Definition 2.2. For some functions n,m : N→ N, consider a family of functions H = {Hλ}λ∈N, where
Hλ =

{
h : {0, 1}m(λ) → {0, 1}n(λ)

}
. H is said to be a family of collision resistant hash functions if:

• Efficiency: For any λ, a random h ∈ Hλ can be sampled in poly(λ) time. Further, any h ∈ Hλ

can be evaluated on any input in poly(λ) time.

• Shrinkage: For all large enough λ, n(λ) ≤ m(λ)/2 – that is, the functions h are shrinking.

• Collision Resistance: For any PPT algorithm A and all large enough λ, when h ← Hλ and
(x, x′)← A(1λ, h), the probability that x ̸= x′ and h(x) = h(x′) is negl(λ).

For the rest of our discussion, we will fix some large security parameter λ. A CRHF, then, is a family
of functions H = {h : {0, 1}m → {0, 1}n} such that, say, m = 2n. That is, its output is much smaller
than its input, meaning there are many pairs of distinct inputs (x, x′) such that h(x) = h(x′) – such
inputs are said to “collide”. And yet, it is hard to find such colliding inputs efficiently. Note that we
need the family to contain super-polynomially many h’s, as otherwise an adversary could just memorise
pairs of collisions for every possible h. CRHFs are a basic cryptographic primitive that are widely used
in practice, though the security of most implementations tends to be heuristic.

Merkle Trees. Seen one way, a Merkle Tree is a way to start with a hash function h that maps 2n
bits to n bits, and get another hk that maps 2k · n bits to m bits for some k > 1. This is done by first
splitting up an input of length 2k · n into 2k blocks of length n each, and repeatedly applying it on pairs
of blocks in a tree structure, until only one block remains. More precisely, given h : {0, 1}2n → {0, 1}n,
the function hk is computed as follows given an input x ∈ {0, 1}2kn:

1. Split x into strings (x0,0, x0,1, . . . , x0,2k−1), each of length n.

2. For i from 1 to k:

• For j from 0 to 2k−i, compute xi,j ← h(xi−1,2j , xi−1,2j+1)

3. Output xk,0

This process may be thought of as populating the nodes of a binary tree of depth k where the leaves
are labelled by the input, and the internal nodes by the hash of their children under h, with the label of
the root being the output of hk. Given a family of hash functions H =

{
h : {0, 1}2n → {0, 1}n

}
, consider

for any k ∈ N the family Hk =
{
hk : {0, 1}2kn → {0, 1}n

}
, which contains hk for each h ∈ H.

Claim 2.1. For any k = O(log n), if H is a CRHF family, then so is Hk (though with some loss in the
security level).

Proof Sketch. First, if H can be efficiently samplable and evaluated, then so can Hk as long as k =
O(log n), as the number of evaluations of h required to evaluate hk is 2k.

Suppose, for an hk ∈ Hk, an adversary is able to find a pair of distinct inputs x, x′ ∈ {0, 1}2kn such
that hk(x) = hk(x′). We will show how to extract from this a collision for the corresponding h ∈ H.
Split up x (and similarly x′) into (x0,0, . . . , x0,2k−1). There has to exist some j such that x0,j ̸= x′

0,j .
And, by the fact that hk(x) = hk(x′), we have that xk,0 = x′

k,0. Going down the path of evaluations from
xk,0 (and x′

k,0) to x0,j (and x′
0.j), there has to be some i and j′ along the path such that xi,j′ = x′

i,j′ , but
(xi−1,2j′ , xi−1,2j′+1) ̸= (x′

i−1,2j′ , x
′
i−1,2j′+1). This is a collision for h, which can be recovered efficiently

given x and x′. Thus, if Hk is not collision-resistant, H isn’t either.
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Merkle Hashing as Commitment. Collision-resistant hashing, in general, can be used directly to
get a commitment scheme with computational binding (ignoring hiding for now). Given a CRHF family
H with appropriate input length, the protocol between sender S and receiver R is as follows:

• To commit to message x:

1. R samples a random hash function h← H and sends it to S

2. S computes y ← h(x) and sends it to R

• To decommit message x:

1. S sends x to R

2. R checks that y = h(x)

Exercise 2. Prove that the above commitment scheme is computationally binding. That is, once the
commit phase is complete, with all but negligible probability, there is a unique message that any efficient
sender can decommit it to.

Merkle Hashes, which is what hash families of the form Hk above are called, can be used in the same
way to get a commitment scheme with the additional property that small parts of the message can be
decommitted much more efficiently than decommitting the entire message. Given any CRHF family H,
this protocol is as follows:

• To commit to message x:

1. R samples a random hash function h← H and sends it to S

2. S computes y ← hk(x) and sends it to R

• To decommit the jth block of x:

1. S finds all the xi,j′ ’s in the evaluation path of hk from x0,j to xk.0, and sends to R all the
labels of all the nodes in the tree of hk that are needed to verify the hash evaluations along
this path.

2. R checks all of the hashes along the path from x0,j to xk,0, and that y = xk,0

The computational binding property continues to hold even with this local decommitment, following
arguments similar to the ones we used to show that Hk is a CRHF.

Claim 2.2. For any value of the commitment string y and any j ∈ [2k], any efficient sender can
successfully decommit the ith block to at most one value (except with negligible probability).

Proof Sketch. Suppose there is a sender S∗ that sends R some y in the commitment phase, and then,
for some j ∈ [2k], can prevaricate in the following sense: there are distinct x0,j and x′

0,j such that S∗,
depending on its input, can claim that the jth block of the committed value is either of these. By feeding
it the right inputs, an efficient algorithm can recover these two values. Following the arguments in the
proof sketch for Claim 2.1, this can then be used to find a collision for h. Thus, if the family H is
collision-resistant, the probability that S∗ can do this (over the randomness of choosing h from H) is
negligible.

2.2 Constructing Arguments
We can now state the theorem capturing Kilian’s construction as follows.

Theorem 2.1. Assume there exists a CRHF family H =
{
g : {0, 1}2λ → {0, 1}λ

}
, where the description

of any function in the family takes λH bits. Then, every language in NP has an argument system with
communication complexity O(λ log |x|) + λH , constant soundness error, and perfect completeness.

Take any language L ∈ NP that has a PCP system with verifier VPCP that makes q queries and has a
small constant soundness error δ. The argument system, as hinted at earlier, is as follows given input x.
Below, k is set to be such that the PCP proof is of length 2kλ, where λ is the chosen security parameter.
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1. V samples a random hash function h← H and sends it to P .

2. P , who is given a witness w for x, uses it to compute the PCP proof π. It computs y ← Hk(π)
and sends it to V .

3. V runs the PCP verifier VPCP (x) to get a set of queries (a1, . . . , aq), and sends them to P .

4. P finds the blocks that contain each queried index ai, and decommits that block to V .

5. V checks that all the decommitments are valid. It then recovers the answers (ba1
, . . . , baq

) to the
queries from the corresponding decommitted blocks, and accepts if and only if VPCP would accept
given these responses to its queries.

Perfect completeness of this system follows from that of the PCP system for L. Efficiency follows
from the state-of-the-art PCP constructions for NP – q is at most O(1), |π| is at most some poly(|x|) and
can be computed in poly(|π|) time, and VPCP runs in Õ(|x|) time. The running time of V is thus Õ(|x|)
plus O(k) = O(log |x|) hash evaluations. The communication complexity is also easily seen to be as in
the theorem statement.

Soundness is slightly more complicated to show, but not too hard either. Suppose there is a prover P ∗

(deterministic, without loss of generality) that manages to make V accept with probability 10δ, where δ
is the soundness error of VPCP . Then, for at least a δ fraction of hash functions h, when V sends h as its
first message, P ∗ can make it accept with probability at least 9δ (Markov’s inequality). But any efficient
algorithm can only find collisions for a negl(λ) fraction of h’s. This means that, for at least a δ−negl(λ)
fraction of h’s, there is a unique answer ba to each query a that P ∗ can decommit to. All these ba’s
can be put together into a single candidate PCP proof π∗. This π∗ will then make VPCP accept with
probability at least 9δ, which is a contradiction of the PCP’s soundness. Thus, the argument system has
soundness error at most 10δ.

Exercise 3. Prove the soundness of the above argument system formally.
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