
The Fiat-Shamir Transformation
CS6230: Topics in Information Security

Lecture 11 (Oct 26, 2021)
Lecture and notes: Prashant Nalini Vasudevan

In the previous lecture, we saw a way to construct interactive arguments using PCPs1. Today, we
will see how such arguments, in certain cases, can be made non-interactive. A non-interactive proof or
argument has several advantages over an interactive one – for one, it can be written down at one point in
time and then verified at a much later date without needing the prover to be present. Also, interaction
can often be an expensive resource – multiple rounds of interaction over the internet, for instance, can
add non-trivial latency – and fewer rounds of interaction in a proof is always welcome.

Of course, if such non-interactive proofs are required to be perfectly complete and sound, then they
default to classical mathematical proofs, and we lose a lot of the power we had when working with
interactive proofs. The non-interactive arguments we will be considering will have weaker soundness
requirements, and also make use of randomness or some cryptography in its place.

1 The Fiat-Shamir Transformation
Much earlier in the class, we saw a simple procedure for reducing the number of rounds of interaction in
a public-coin interactive proof. This transformation, however, lost any efficiency guarantees the prover
may have had, and is not meaningful in practice. A relatively simple transformation, first proposed by
Amos Fiat and Adi Shamir [FS86], performs a similar reduction in the number of rounds while keeping
the prover’s efficiency more-or-less the same. It compromises on the soundness guarantee – even if you
start with a proof, you would only end up with an argument – but it also works if you start with an
argument.

Given its simplicity and the fact that that arguments are usually the appropriate kind of interactive
proof in practice, the Fiat-Shamir transformation is widely used, often implicitly, in many systems. We
will see one such example in the next lecture. Today, we will see the transformation itself, and prove
that it works in an idealised model.

For simplicity, suppose we start with a 3-message public-coin argument system (P, V ) for a language
L with negligible soundness error. That is, given input x ∈ {0, 1}n,

1. P sends the first message α← P (x), contained in {0, 1}a

2. V sends a response β ← {0, 1}b

3. P sends the final message γ ← P (x, α, β), contained in {0, 1}c

4. V decides to accept or reject according to an algorithm V (x, α, β, γ)

The Fiat-Shamir tranformation will tranform this argument into an argument (PFS , VFS) where the
prover sends a single message π, and the verifier decides to accept or reject based only on this. Of course,
if we asked for soundness against computationally unbounded provers in such a proof system, this would
simply be an MA proof. We are interested in arguments that are more efficient than generic MA proofs,
and this will be enabled by our weakening of the soundness requirement to only hold against efficient
provers, and the involvement of cryptography.

The idea behind the transformation is to replace the verifier’s uniformly random message β with
something the prover can compute on its own, without needing the verifier to send it. Of course, the
prover cannot be allowed to pick β arbitrarily, as it may then choose a β that always allows it to make
the verifier accept. Instead, we will have the prover compute it as a function of the transcript of the
protocol so far. Consider a function H : {0, 1}n × {0, 1}a → {0, 1}b, whose properties we will describe
later. The transformed protocol (PFS , VFS) works as follows on input x:

1. PFS computes α← P (x)

2. PFS computes β ← H(x, α)

3. PFS computes γ ← P (x, α, β)

1In reality, half of this lecture was the conclusion of Kilian’s construction of arguments from PCPs, but I have left that
in the previous lecture’s notes for continuity.

1



4. PFS sends (α, γ) to VFS

5. VFS computes β ← H(x, α), and accepts iff V (x, α, β, γ) accepts

If the original protocol is perfectly complete, then it is easy to see that this is as well, irrespective of
the choice of H. For soundness, however, the choice of H matters. One desirable property for H here is
that, if x /∈ L, then it should be computationally hard for a cheating prover P ∗

FS to find an α ∈ {0, 1}a
such that when β is computed as H(x, α), there exists some γ ∈ {0, 1}c such that V (x, α, β, γ) accepts.
Such α’s may exist, but we want them to be hard to find. More generally, this property of a function of
it being hard to find an input-output pair satisfying a given relation is called correlation intractability.
So if we instantiate the transformation above with an H that is correlation intractable in the manner
described above, we would end up with a non-interactive argument (PFS , VFS) that is sound.

In practice, a cryptographic hash function like SHA-256 is used in place of H. It is generally believed
that this instantiation is secure due to the difficulty of finding any non-trivial structure in SHA-256,
but as it is a single fixed function, such an instantiation is not amenable to security proofs under the
kinds of definitions we have set up so far. Instead, we will show that the transformed protocol is sound
if instantiated with an idealised function H that is not practically implementable, but captures some
strong security properties.

1.1 The Random Oracle Model
The Random Oracle Model [BR93] is an abstract setting used to study the security of protocols that
make use of strong cryptographic functions (in various senses of this term). In this model, this function
is replaced by a random oracle – an oracle that computes a randomly selected function with pre-specified
input and output lengths. The idea is that if the function indeed has sufficiently strong cryptographic
properties – usually pseudorandomness or collision-resistance – then it presents no discernible “structure”
to a computationally efficient observer. This being the case, to this computationally efficient observer, the
function looks effectively like a randomly chosen function, which indeed lacks any structure whatsoever.
Thus, if we can argue that a protocol is secure in this model, this should give us some confidence that,
when a good enough function H is used in place of the oracle, it will remain secure.

In our case, the random oracle is of the form O : {0, 1}n × {0, 1}a → {0, 1}b. Both parties PFS and
VFS have access to this oracle, and the protocol (PO

FS , V
O
FS) after the Fiat-Shamir transformation works

as follows on input x:

1. PFS computes α← P (x)

2. PFS computes β ← O(x, α)

3. PFS computes γ ← P (x, α, β)

4. PFS sends (α, β, γ) to VFS

5. VFS checks that β = O(x, α), and accepts iff V (x, α, β, γ) accepts

As the oracle is now not just a single function, but rather a randomly selection function from the
family of all functions, this protocol is now amenable to our usual approach of proving security, allowing
us to state the following theorem.

Theorem 1.1. If (P, V ) is a public-coin argument for some language L with negligible soundness error,
then (PO

FS , V
O
FS) is an argument for L with negligible soundness error in the random oracle model.

The intuition behind why this theorem should hold is as follows. Fix some input x /∈ L. For any
potential prover message α ∈ {0, 1}a, we say that a β ∈ {0, 1}b is bad for α if there exists a γ ∈ {0, 1}c
such that V (x, α, β, γ) accepts. As noted earlier, one sufficient condition for the protocol (PO

FS , V
O
FS)

to be sound is that it be hard for any efficient prover to find an α such that O(x, α) is bad for α.
The soundness of the underlying proof system (P, V ) implies that for any α ∈ {0, 1}a the fraction of
β ∈ {0, 1}b that are bad for it is negligible. Then, as O(x, α) is uniformly random, the probability that it
is bad for α is also negligible. As a cheating prover has no other knowledge of the random oracle O apart
from what it can learn by querying it on various inputs, in order to find an α such that O(x, α) is bad
for it, it should have to make a super-polynomial number of queries. In other words, no polynomial-time
prover should be able to find an α such that it can produce a proof that makes V O

FS accept.

2



Proving this formally requires a little more work, as the prover’s queries could be arbitrarily correlated
with other queries and responses. None of that turns out to matter, however, since O is a random oracle.

Proof Sketch of Theorem 1.1. Suppose there is a (w.l.o.g.) deterministic polynomial-time cheating prover
P ∗O
FS that makes V O

FS accept with non-negligible probability (over the randomness in O) on some input
x /∈ L. Then, we will show how to construct a cheating prover P ∗ that makes V accept with non-negligible
probability in (P, V ) on the same input.

To start with, suppose P ∗O
FS acts in the following “semi-honest” manner: it comes up with an

α ∈ {0, 1}a somehow, makes exactly one query to the oracle to get β ← O(x, α), comes up with
γ ∈ {0, 1}c somehow, and outputs (α, β, γ) that makes V O

FS accept with non-negligible probability.
Then, the cheating prover P ∗ is simply works as follows:

1. Get α from P ∗
FS , and send it to V

2. Receive β from V , and give it as response ot P ∗
FS ’s one oracle query

3. Receive γ from P ∗
FS and send it to V

It is easy to see that the probability that V then accepts is the same as the probability that VFS accepts
when interacting with P ∗

FS . In general, however, the behaviour of P ∗
FS need not follow this ideal pattern.

It could make many correlated queries to the oracle, and not even write down an α until the very end of
its execution.

It turns out, however, that a natural modification to this strategy works even in the general case – if
P ∗
FS makes T queries, P ∗ picks an i← [T ] at random, and acts as above assuming the ith query is what

was used to compute the β that is eventually output by P ∗
FS . That is, P ∗ works roughly as follows:

1. Pick i← [T ], and wait till P ∗ makes its ith oracle query, answering all the other queries uniformly
at random

2. Suppose the ith query is (x, α). Send α to V , receive its message β, and give β to P ∗
FS as the

response to this query

3. Complete the execution of P ∗
FS , answering all remaining oracle queries uniformly at random, until

it produces output (α′, β′, γ′)

4. If α′ ̸= α, or β′ ̸= β, send ⊥ to V

5. Else, send γ′ to V

Without loss of generality, P ∗
FS does make the query (x, α′) at some point. If P ∗ manages to guess this

query correctly, then the probability that V accepts is the same as that of V ∗
FS accepting. As P ∗

FS makes
at most T queries, P ∗ guesses correctly with probability at least 1/T , which is only polynomially small.
Thus, if V ∗

FS accepts with non-negligible probability when interacting with P ∗
FS , then V also accepts

with non-negligible probability when interacting with P ∗. So if (P, V ) has negligible soundness error,
then so does (PFS , VFS) in the random oracle model.

1.2 Protocols with more rounds
The Fiat-Shamir transformation extends naturally to public-coin protocols with larger number of rounds.
The verifier’s message in each round is simply derived as the hash of all of the messages sent by the
prover so far. The above proof can be extended to work for any constant number of rounds, though with
slightly more work requiring some clever Markov bounds. Further, it turns out that the Fiat-Shamir
transformation also preserves stronger notions of soundness (namely, knowledge soundness, which we will
see in the next lecture). For details about the techniques in these more general proofs, see the original
proof by Pointcheval and Stern [PS96].

References
[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer

3



and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993, pages 62–73. ACM,
1993.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86,
Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer,
editor, Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory
and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding,
volume 1070 of Lecture Notes in Computer Science, pages 387–398. Springer, 1996.

4


	The Fiat-Shamir Transformation
	The Random Oracle Model
	Protocols with more rounds


