
Problem Set 1
CS6230: Topics in Information Security

Due on: Aug 16, 2021
Total Points: 30

• While collaboration on other problem sets is generally encouraged, it is strongly recommended
that you solve this one on your own. Familiarity with the concepts covered here will be crucial to
following upcoming lectures.

• If you do collaborate, write up your submission on your own, and list the names of all of your
collaborators on your submission.

• Solutions to some of the problems in this problem set are easy to find on the internet or in textbooks.
Please do not look them up.

• Formal mathematical proofs are required in support of your answer to each of the problems.

1 Concentration Bounds
Concentration bounds are inequalities bounding the probability that a random variable is far from its
expectation. These inequalities will be central to proofs throughout our course. The following exercise
is an illustration of some of these inequalities. Below, all random variables in the problem descriptions
are to be taken to be discrete.

Consider the process of tossing N balls uniformly into N bins, for some natural number N . That is,
for each of the N balls, one of the N bins is selected uniformly at random, and the ball is tossed into it.
We would like to provide a bound on what the maximum number of balls in any bin is likely to be at
the end of this process.

Problem 1.1 (2 points). At the end of this process, what is the expected number of balls in the first bin?

1.1 Markov’s Inequality
The simplest concentration bound we will encounter is Markov’s inequality. Though simple, it is used
to prove many significantly stronger bounds.

Problem 1.2 (4 points). Prove that, for any positive real-valued random variable X and any a > 0,

Pr [X ≥ a] ≤ E [X]

a

Often, applying Markov to an appropriate random variable already yields interesting results.

Problem 1.3 (4 points). Prove that the probability that the first bin has more than 100 balls is at most
1/100.

1.2 Chebyshev’s Inequality
A stronger bound may be obtained by taking into account higher moments of the random variable in
question. Recall that the variance of a random variable X is defined as follows:

Var [X] = E
[
(X − E [X])2

]
Problem 1.4 (2 points). Prove that, for any random variable X and a > 0,

Pr [|X − E [X]| ≥ a] ≤ Var [X]

a2

The above quantifies the fact that random variables with small variance are more likely to be con-
centrated around their expectation.

Problem 1.5 (2 points). Prove that the probability that the first bin has more than 10
√
N balls is at

most 1/100N .

Problem 1.6 (4 points). Prove that the probability that there exists a bin with more than 10
√
N balls

is at most 1/100.
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1.3 The Chernoff Bound
The bound that we will be using most often is stronger than the above, but only applies to a specific
kind of random variable. Let the X1, . . . , Xn be independent and identically distributed (i.i.d.) Bernoulli
random variables with parameter p. That is, each Xi takes value either 0 or 1, and Pr [Xi = 1] = p. Let
X =

∑n
i=1 Xi, and E [X] = µ.

The Chernoff bound says that, with high probability, this sum of random variables is very close to
its expectation. The following is one version of this bound that holds for any k ≥ 0:

Pr [(X − µ) ≥ kµ] ≤ e−
k2µ
2+k

Problem 1.7 (2 points). Prove that the probability that there exists a bin with more than 10 logN balls
is at most 1/100.

2 Polynomials of Low Degree
A number of our constructions of proof systems will rely on the fact that polynomials over finite fields of
relatively low degree cannot have too many zeroes. In the case of univariate polynomials, this becomes
the following simple fact – given any univariate polynomial f of degree d over a finite field F, there are
at most d distinct x ∈ F such that f(x) = 0.

2.1 Derandomising Freivald’s Protocol
In class, we saw Freivald’s Protocol that, given matrices A,B,C ∈ Fn×n, verifies that C = A ·B. It did
this by picking a random vector v ∈ Fn and checking whether Cv = (A · B)v. Consider, instead, the
following slightly more complex procedure:

1. Pick a uniformly random x← F.

2. Construct the vector v = (1 x x2 . . . xn−1)T .

3. Compute u← Bv and w ← Au.

4. Accept if Cv = w, and reject otherwise.

It is easy to see that the above verification procedure is perfectly complete (that is, it always accepts if
C = A ·B). Its computational efficiency is roughly the same as before, but it uses much less randomness
– just one random element from F, as opposed to n random elements to sample v. Suppose the field F
has size at least n2.

Problem 2.1 (5 points). Prove that the soundness error in the above procedure is at most 1/n. That
is, if C ̸= A ·B, then the probability that it accepts is at most 1/n.

2.2 Verifying Polynomial Multiplication
Consider the task of multiplying two degree-n polynomials over a finite field F. This can be done in
many fields with O(n log n) field operations using an analogue of the Fast Fourier Transform. Can this
computation be verified faster than this?

You are given (the co-efficients of) three univariate polynomials f, g, h over a finite field F, where the
degrees of f and g are at most n, and the degree of h is at most 2n. Your objective is to verify that
h = f · g. The field is of size more than 2n2.

Problem 2.2 (5 points). Design a procedure to do the above that uses O(n) field operations. It should
be perfectly complete and have soundness error at most 1/n.

2


	Concentration Bounds
	Markov's Inequality
	Chebyshev's Inequality
	The Chernoff Bound

	Polynomials of Low Degree
	Derandomising Freivald's Protocol
	Verifying Polynomial Multiplication


