
Problem Set 2
CS6230: Topics in Information Security

Due on: Sep 18, 2021
Total Points: 100

• Collaboration on the problem set is encouraged. Write up your submission on your own, though,
and list the names of all of your collaborators.

• Solutions to some of the problems in this problem set are easy to find on the internet or in textbooks.
Please do not look them up.

• Formal mathematical proofs (e.g., of completeness and soundness) are required in support of your
answer to each of the problems.

1 Errors in Interactive Proofs
We will prove here some results about interactive proofs that were mentioned in class. Below, unless
otherwise specified, IPs have completeness and soundness errors 1/3. Also, assume that at the end of
any public-coin protocol, after all messages have been sent and received, the verifier makes its decision
to accept or reject deterministically – this may be arranged simply by adding an extra dummy round of
interaction if necessary, and is often how constant-round public-coin protocols are defined.

1.1 Parallel Repetition
In class, we saw that repeating an IP sequentially and check whether a majority of the repetitions are
accepted exponentially decreases the completeness and soundness errors. This effect can also be achieved
by repeating the IP in parallel, which has the added benefit of not increasing the number of rounds of
communication. For clarity, suppose an IP with 2k messages looks as follows.

1. Given input x, the verifier uses random string r to generate its first message α1 ← V (x; r) and
sends it to the prover.

2. The (honest) prover responds with its first message β1 ← P (x, α1).

3. Then the messages alternate as α2 ← V (x, α1, β1; r), β2 ← P (x, α1, β1, α2), and so on.

4. At the end, the verifier outputs accept or reject computed as V (x, α1, β1, . . . , αk, βk; r).

In an m-fold sequential repetition, m instances of the above protocol are run one after the other,
with the verifier picking an independent random string r each time. An m-fold parallel repetition, on
the other hand, looks like this:

1. Given input x the verifier samples m random strings r1, . . . , rm. For each j ∈ [m], it computes the
message αj

1 ← V (x; rj), and sends all the αj
1’s to the prover.

2. The (honest) prover similarly computes, for each j ∈ [m], a response βj
1 ← P (x, αj

1), and sends all
of the βj

1’s.

3. Then they alternate sending
{
αj
2

}
,
{
βj
2

}
, and so on.

4. At the end, the verifier accepts iff, for a majority of j ∈ [m], the V (x, αj
1, . . . , β

j
k)’s accept.

The fact that such parallel repetition improves errors is harder to prove than the same for sequential
repetition, but is true. Think about why the proof for sequential repetition we saw in class does not
carry over here. We will concern ourselves now with the special case of perfectly complete IPs, for which
amplification is easier to show than in general. In this case, instead of the verifier seeing if a majority of
the repetitions accept, it checks whether all of them accept.

Problem 1.1 (20 points). Show that when a public-coin IP with perfect completeness and soundness
error 1/3 is repeated m times in parallel, with the verifier accepting iff all the repetitions accept, the
resulting IP is still perfectly complete and its soundness error is at most 2−Ω(m).

1



Hint 1.1. It turns out that here too it is true that the best prover strategy is to operate independently on
each of the repetitions, though this is harder to prove directly here than it was in the case of sequential
repetition. (What goes wrong if you try to apply the argument we saw in class?) You may try to prove
this directly, but the solution I have in mind only does so implicitly, and instead goes through the following
slightly opaque function. For any verifier messages α1, . . . , αi and prover messages β1, . . . , βi,

p(α1, β1, . . . , αi, βi) = max
P∗

Pr [(P ∗, V ) accepts | the first 2i messages were (α1, β1, . . . , αi, βi)]

Do you see how to extend this proof to IPs with imperfect completeness?

1.2 Perfect protocols
Problem 1.2 (10 points). Show that if a language L has a 2-message public-coin IP where the verifier
speaks first (that is, an AM proof), then it also has a 3-message public-coin IP with perfect completeness.

Hint 1.2. Look at the ideas in the proof of the Sipser-Lautemann Theorem on Wikipedia. This theorem
that states that BPP is contained in PH. How can you use the ideas from that proof here?

Think about how you would extend this transformation to work for protocols with more rounds. Due
to the existence of the above transformation, sometimes interactive proofs are defined as already having
perfect completeness. Perfect soundness, on the other hand, turns out to be much more restrictive.

Problem 1.3 (5 points). Show that if a language L has an IP with perfect soundness, then L ∈ NP.

2 Derandomising Balls and Bins
Recall the process of tossing N balls into N bins from the previous problem set. There, for each ball, a
bin was chosen at random, and the ball was tossed into it. We were interested, then, in bounding the
maximum number of balls in any bin at the end of this process. This may be framed in the following
equivalent manner. Consider the function h that maps each ball to the bin it is tossed into. That is, h
is a mapping from [N ] to [N ], and for each i ∈ [N ], the bin that the ith ball is tossed into is h(i). What
we proved last time, then, was that if h is chosen to be a uniformly random function, then, with high
probability, the ball-tossing strategy represented by h results in at most O(logN) in any bin.

This abstraction of tossing balls into bins is quite common in the design of interactive protocols, and
also more generally in cryptography. In many of these circumstances, however, we want this to be done
effectively. That is, we would like the function h above to be efficiently computable given its input i as
a logN -bit string. For this purpose, random functions h are not good. So it is common to try to replace
them with more efficient families of functions that still preserve properties of interest. The property
of minimising the maximum number of balls in any bin is referred to as “load-balancing”. We will be
interested here in designing families {H : h[N ]→ [N ]} of functions such that for random ball-tossing
functions h sampled from these families, the maximum number of balls in any bin is as close as possible
to that with completely random functions h.

Below, consider N to be quite large, say at least 100. By “high probability”, we mean some large
constant probability, say at least 0.9. Perhaps the most common kind of functions used to derandomise
such task are pairwise independent functions.

Problem 2.1 (5 points). Prove that if H is a family of pairwise independent functions, then with high
probability the maximum number of balls in any bin is at most O(

√
N).

Here, however, they are not quite good enough. But it turns out this form of limited independence
is not a bad direction to take.

Problem 2.2 (2 points). Along the lines of pairwise independence, for larger t ∈ N, write down a
definition of a notion of t-wise independence. It should capture the independence of the outputs on any
fixed t input values, in the same way that pairwise independence captures the independence of the outputs
on any two input values.

2



Notice that in this case, we want our function h to have the same domain and range [N ]. This makes
constructions of such families quite simple. Let N be a prime number for our convenience. Consider
the field FN , and the family of all linear functions H2 = {ha,b : FN → FN}, where a, b ∈ FN , and
ha,b(x) = ax+ b.

Problem 2.3 (3 points). Prove that the above family H2 is pairwise independent.

Note, further, that a random ha,b ∈ H2 is efficient to both sample and compute – both can be done
in time polylog(N).

Problem 2.4 (10 points). For any t < N , construct a family of t-wise independent hash functions
Ht = {h : FN → FN} such that a random h from the function can be sampled in poly(t, logN) time, and
for any x ∈ FN , the output h(x) can be computed in poly(t, logN) time.

With t-wise independent families for large enough t, we can indeed replicate the load-balancing
properties of random functions with efficient tossing functions.

Problem 2.5 (10 points). Prove that if the family of ball-tossing functions H is a family of t-wise
independent functions for t = logN , then with high probability the maximum number of balls in any bin
is at most logN .

3 Doubly Efficient IPs
There are many interesting structured problems that have doubly efficient interactive proofs. Here we
will see an example. Below, you can use any of the protocols we have seen in class as subprotocols, and
make use of their known error and efficiency bounds. Assume the existence of an oracle that, given any
n, outputs the smallest prime number larger than n – this will help set aside issues of the prover and
verifier agreeing on which finite field to use, etc., which is something to care about otherwise with doubly
efficient IPs.

3.1 Orthogonal Vectors
In the Orthogonal Vectors (OV) problem of dimension d, an instance consists of two sets U and V of
n vectors each from {0, 1}d. That is, U = {ui}i∈[n] and V = {vi}i∈[n], where each ui and vi are from
{0, 1}d. The problem is to decide whether there exist i, j ∈ [n] such that ui and vj are disjoint – that is,
the inner product ⟨ui, vj⟩ = 0 (over N). This problem can be solved trivially in time O(n2d), and with
some effort by marginally more efficient algorithms, but it is believed that, for d = ω(log n), it takes at
least n2−o(1) time to solve.

Problem 3.1 (20 points). Construct a IP for the OV problem of dimension log2(n) where the prover
runs in time Õ(n2), and the verifier in time Õ(n).

Hint 3.1. Notice that the number of orthogonal vectors is given by the sum
∑

i,j∈[n](1 − ui1vi1)(1 −
ui2vi2) · · · (1 − uidvid). If only you could write the terms in the sum as evaluations of a polynomial
in i and j somehow, you could use sumcheck. How would you do this? Note that evaluations of this
polynomial should still be computable in Õ(n) time for the verifier to be efficient. Can you write the
different uik’s and vik’s as evaluations of some polynomials?

4 Set Upper Bounds
We saw that, given access to a membership oracle MS for a set S ⊆ {0, 1}m, and a number t ≤ m, there
is an IP that accepts with high probability if |S| ≥ 2t, and rejects with high probability if |S| ≤ 2t/10.
This protocol, in a sense, proves a lower bound of 2t on the size of the set S. A protocol to prove an
upper bound on the size of S, however, is not known in this setting. However, such a protocol is possible
with one additional assumption – at the beginning of the protocol execution, the verifier is privately
given a uniformly random element x ← S that is not known to the prover. Assume you have access to
any necessary efficient k-wise independent family of functions for any constant k.

3



Problem 4.1 (15 points). In the above setting, construct an interactive protocol where the verifier accepts
with high probability if |S| ≤ 2t, and rejects with high probability if |S| ≥ 8 · 2t.

Hint 4.1. Try constructing a protocol using random functions, then see how you can derandomise it.

4


	Errors in Interactive Proofs
	Parallel Repetition
	Perfect protocols

	Derandomising Balls and Bins
	Doubly Efficient IPs
	Orthogonal Vectors

	Set Upper Bounds

