
Problem Set 3
CS6230: Topics in Information Security

Due on: Nov 14, 2021
Total Points: 60

• Collaboration on the problem set is encouraged. Write up your submission on your own, though,
and list the names of all of your collaborators.

• Solutions to some of the problems in this problem set are easy to find on the internet or in textbooks.
Please do not look them up.

• Formal mathematical proofs (e.g., of completeness and soundness) are required in support of your
answer to each of the problems.

1 ZK protocol for Graph Non-Isomorphism
In class, we saw an honest-verifier PZK protocol for Graph Non-Isomorphism. Given input graphs
(G0, G1), both over n vertices, this protocol (P, V ) was as follows:

1. V samples a uniformly random relabelling permutation R : [n]→ [n], and a uniformly random bit
b← {0, 1}. It computes H ← R(Gb) and sends it to the prover.

2. If G0 and G1 are isomorphic, P sets b′ = ⊥. Else, P sets the bit b′ = 0 if H is isomorphic to G0,
and b′ = 1 otherwise. It sends b′ to V .

3. V accepts if b = b′, and rejects otherwise.

We have seen the arguments for this protocol being complete and sound, and the perfect simulator
for the honest verifier is also quite simple: sample R and b as V does, and output (R, b,R(Gb), b).

This protocol is not zero-knowledge against malicious verifiers, as such a verifier V ∗ may not obtain
H as a relabelling of one of G0 or G1. The honest prover’s algorithm could then be exploited by V ∗

to learn whether some arbitrary graph H is isomorphic to G0 or G1. This protocol can, however, be
transformed into one that is zero-knowledge against malicious verifiers as well. The idea behind the
transformation is to have the verifier prove to the prover that it sampled H correctly, failing which the
prover will refuse to participate further in the protocol. In other terms, the protocol will force any verifier
to behave honestly. The transformed protocol is as follows (below, λ is a security parameter):

1. V samples a uniformly random bit b← {0, 1}. It computes H as a random relabelling of Gb.

2. V further samples λ random bits b1, . . . , bλ. For each i ∈ [λ],

• if bi = 0, it computes Hi0 and Hi1 as random relabellings of G0 and G1, respectively
• if bi = 1, it instead swaps these and computes Hi0 and Hi1 as random relabellings of G1 and
G0, respectively

3. V sends H and all the pairs (Hi0, Hi1) to P

4. P samples random bits b′1, . . . , b
′
λ, and sends them to V

5. For each i ∈ [λ],

• if b′i = 0, V sends bi and the relabellings from G0 and G1 to Hi0 and Hi1 (that is, from G0 to
Hibi , and form G1 to Hi(1−bi))

• if b′i = 1, V sends the relabelling to H from whichever of Hi0 or Hi1 is isomorphic to H (note
that it can find this because it knows the relabelling from the appropriate Hi to Gb, and also
the relabelling from Gb to H)

6. P checks that all the relabellings were reported correctly by V . If not, it sends b′ = ⊥
7. If the checks pass, then P sets the bit b′ = 0 if H is isomorphic to G0, and b′ = 1 if H is isomorphic

to G1, and b′ = ⊥ otherwise. It sends b′ to V .

8. V accepts iff b = b′

1



Above, the prover wants to make sure that the verifier generated H correctly – as a relabelling of one
of the graphs G0 or G1. Of course, it cannot ask V ∗ to prove this by revealing the relabelling that it
used, as that would reveal the bit b and compromise soundness. So it does this indirectly. If V ∗ used an
H such that it did not know a relabelling from one of G0 and G1 to H, then for each i, it would either
not be able to produce a relabelling from G0 and G1 to Hi0 and Hi1, or from one of the Hi’s to H. By
randomly asking for one of these relabellings (and repeating this λ times), the prover hopes to catch V ∗

if this is the case.
If again, for some i ∈ [λ], the prover knew both the relabellings from G0 and G1 to Hi0 and Hi1, and

the relabelling from one of these to H, then soundness would be compromised. But for each i, it learns
exactly one of these, so it still doesn’t learn which of G0 or G1 was relabelled to get H.

Problem 1.1 (2 points). Prove that the above protocol is perfectly complete and has soundness error
1/2.

While the protocol was described in natural language above to be more readable, in constructing a
simulator for it and analysing it, it will be useful to set up the symbols for various parts of the transcript
beforehand. In addition to R, b, and the bi’s and b′i’s, denote the relabelling from G0 to Hibi by Ri0,
and the relabelling from G1 to Hi(1−bi) by Ri1. Note that the relabelling from Hibi to H if b = 0 is the
composition (RR−1i0 ), and that from Hi(1−bi) if b = 1 is (RR−1i1 ).

Problem 1.2 (18 points). Fill in the missing part of the simulator described below, and use it to prove
that the protocol is statistical zero-knowledge, with zero-knowledge error O(1/secp).

The simulator is an extension of that for the honest-verifier protocol, and works as follows given input
(G0, G1) for any verifier V ∗:

1. Sample uniform random string rV ∗ for V ∗, and compute (H, {(Hi0, Hi1)}i∈[λ])← V ∗(G0, G1; rV ∗)

2. Sample uniform random bits b′1, . . . , b′λ, and run V ∗(G0, G1, {b′i} ; rV ∗) to get relabellings (R1, . . . , Rλ)

3. If even one of these relabellings does not satisfy the condition it is required to in the protocol, set
b′ = ⊥

4. Else, repeat λ2 times:

• Sample random bits b′′1 , . . . , b′′λ, and run V ∗(G0, G1, {b′′i } ; rV ∗) to get relabellings (R′1, . . . , R′λ)
• (fill in this part, which attempts to recover the value of b′)

5. If b′ is not set so far, set it to ⊥
6. Output (rV ∗ , (H, {(Hi0, Hi1)}), (b′1, . . . , b′λ), (R1, . . . , Rλ), b

′)

Hint 1.1. How can you put together the Ri’s and R′i’s to recover some information that can help with
the simulation?

Hint 1.2. Notice that once rV ∗ is fixed, V ∗’s behaviour only depends on (b′1, . . . , b
′
λ). For some values

of this tuple, the relabellings (R1, . . . , Rλ) will pass the prover’s checks, for others they won’t. Think
about these two cases separately, and how well you can simulate in each case. With an rV ∗ fixed, what
happens to the simulation error if the relabellings never pass the checks? What happens if they always
do? Consider the set of tuples (b′1, . . . , b

′
λ) for which the relabellings produced pass the checks. How can

the simulation work if this set is large? How can it work if this set is small?

In fact, this protocol has a perfect zero-knowledge simulator that runs in expected polynomial time.
Do you see how to construct that?

2 A Simple PCP for NP

In this section, we will extend the PCP we saw in class for ML – the problem of solving a system of
multivariate linear equations – to MQ – that of solving a system of multivariable quadratic equations.
The PCP will still have a constant number of queries, logarithmic randomness complexity, and an
exponentially long proof. An instance of this problem consists of m quadratic equations over n variables

2



in F2. Each such equation is specified by a vector of coefficients ai ∈ Fn2

2 , and a value bi ∈ F2, requiring
that

∑
j,k∈[n] ai[j, k] · xj · xk = bi.1 Here, the indexing ai[j, k] is just a convenient way of referring to

ai[(j − 1) · n+ k].
Given a set of m such equations Q = {(ai, bi)}i∈[m], the question is whether there exists a u ∈ Fn

2

satisfying all of them. We will construct a PCP that proves that such a u indeed exists. The construction
starts by “linearising” the given quadratic equations.

Definition 2.1. For any vectors u, v ∈ Fn
2 , their tensor product, denoted u⊗ v, is a vector in Fn2

2 whose
entries, for any j, k ∈ [n], are as follows:

(u⊗ v)[j, k] = u[j] · v[k]

For any quadratic equation (ai, bi) from the given system, consider the corresponding linear equation
over n2 variables given by

∑
j,k∈[n] ai[j, k] ·yj,k = bi. (Here again, yj,k is short for y(j−1)n+k.) Linearising

all the equations in this manner leads to a system of linear equations given by a matrix AQ ∈ Fm×n2

2

whose rows correspond to the ai’s, and a vector bQ ∈ Fm
2 composed of the bi’s, with the system being

AQy = bQ.

Problem 2.1 (2 points). Prove that if a vector u ∈ Fn
2 satisfies the system of quadratic equations Q,

then we have AQ(u⊗ u) = bQ.

The idea behind the PCP for MQ is to prove two things given the system Q:

1. There exists a solution v ∈ Fn2

2 to the system of linear equations AQv = bQ

2. This solution v is of the form (u⊗ u) for some u ∈ Fn
2

It is easy to see that if the PCP can soundly prove these two statements, then it has proven that there
exists a u that satisfies all the equations in Q. We saw in class how the first statement can be proven
using just the Hadamard encoding of v – which we denoted by Hv. It turns out that the second can also
be proven given, in addition, the Hadamard encoding of u as well, as we will see. Thus, for a system Q
with solution u ∈ Fn

2 , our PCP proof is simply (Hu, Hu⊗u), which is of length (2n + 2n
2

).
We will denote a candidate proof of this form by (π1, π2), where π1 ∈ F2n

2 , and π1 ∈ F2n
2

2 . Given
oracle access to such a proof (π1, π2) for a system Q, the PCP verifier’s task can be broken down into
three parts:

1. Check that π1 = Hu and π2 = Hv for some u ∈ Fn
2 and v ∈ Fn2

2

2. Check that v = (u⊗ u)

3. Check that AQv = bQ

We will see, in turn, how each of these may be performed.

2.1 Linearity Testing
As mentioned in class, the first task cannot be performed exactly with just a small number of queries,
and we will only check that π1 and π2 are close to being Hadamard encodings of the appropriate length.
This may be abstracted out as the task of testing whether a function is linear, given just oracle access
to it. This is because the function that takes an index x ∈ Fn

2 as input and outputs the xth bit of a
Hadamard encoding Hu is simply outputting an evaluation of the linear function ⟨x, u⟩.

Problem 2.2 (3 points). Consider a function h : Fn
2 → F2. Prove that there exists a u ∈ Fn

2 such that
for all x ∈ Fn

2 : h(x) = ⟨x, u⟩ if and only if, for all x, y ∈ Fn
2 : h(x)⊕ h(y) = h(x⊕ y).

Our testing algorithm will be L, which is given oracle access to a function h : Fn
2 → F2. It then

operates as follows:
1Note that these quadratic equations do not have any linear terms. This is without loss of generality when working over

F2, as we always have x2 = x.

3



1. Sample uniformly random x, y ∈ Fn
2

2. If h(x)⊕ h(y) = h(x⊕ y), accept. Else, reject.

It is easy to see that L is perfectly complete – if h is indeed a linear function, then Lh will always
accept. There are many proofs of the soundness of L, and we will see a combinatorial proof that is one
of the simpler ones.

Definition 2.2. For some δ ∈ [0, 1], we say that two functions f, g : Fn
2 → F2 are δ-far if they differ on

at least a δ-fraction of all inputs – that is,

Prx∈Fn
2
[f(x) ̸= g(x)] ≥ δ

And they are δ-close if they differ on less than a δ-fraction of inputs.

We will show that, for any constant δ, if every linear function ℓ : Fn
2 → F2 is δ-far from h, then Lh

rejects with some constant probability (which can later be amplified by repetition). Rather, we will show
that if Lh reject with probability less than min(2/9, δ/2), then there is a linear function that is δ-close
to h. This function, which we will call g, is defined as follows:

g(x) =

{
1 if Pry←Fn

2
[h(y)⊕ h(x⊕ y) = 1] ≥ 1/2

0 otherwise

We also set up the following notation for each x ∈ Fn
2 :

Px = Pry←Fn
2
[h(y)⊕ h(x⊕ y) = g(x)]

Note that, by the definition of g, Px ≥ 1/2 for any x ∈ Fn
2 .

Problem 2.3 (5 points). Prove that, if Lh rejects with probability at most δ/2, then h and g are δ-close.

Hint 2.1. Fix some x such that h(x) ̸= g(x). What can you say about the probability that Lh rejects
conditioned on the first point it samples being this x?

Problem 2.4 (5 points). Prove that, if Px > 2/3 for all x, then g is linear.

Hint 2.2. Recall the characterisation of linear functions from Problem 2.2. Can you show that g satisfies
all the checks needed there?

Problem 2.5 (5 points). Prove that, if Lh rejects with probability less than 2/9, then for all x, we have
Px > 2/3.

Hint 2.3. The proof I know for this is a little unintuitive. One approach is to look at the probability
that, for two independently random y1, y2, the values (h(y1)⊕ h(x⊕ y1)) and (h(y2)⊕ h(x⊕ y2)) agree.
What is the relation of this probability to Px? Can you bound this probability in some other way that can
then be used to bound Px?

Thus, if L rejects with probability less than both 2/9 and δ/2 then g is a linear function that is
δ-close to h. In other words, if h is δ-far from all linear functions, then Lh would reject with probability
at least min(2/9, δ/2). By repeating L some constant number of times, we can then get a tester that
makes O(1) queries, and rejects with probability 0.99 if h is at least 0.01-far from all linear functions.
We will use the linearity tester with these parameters in our PCP verifier.

2.2 Local Correction
Once a given PCP proof (π1, π2) passes the linearity test described above, we can proceed assuming that
π1 and π2 are each 0.01-cloase to Hu and Hv for some vectors u ∈ Fn

2 and v ∈ Fn2

2 . If all the queries
made by the PCP verifier were uniformly distributed (even if they were not independent of each other),
this would be sufficient. We would argue that the probability that each query looks at a bad part of the
proof is at most 0.01, and by the union bound, as long as the number of queries is ≪ 100, the verifier

4



never looks at a bad part of the proof with some good probability. Conditioned on this, we can then
analyse the verifier’s soundness assuming that π1 and π2 were actually equal to Hu and Hv.

However, as we will see, some of the queries that our verifier will be making will not be distributed
uniformly over all possible indices of π2. The above guarantee of 0.01-closeness is meaningless to such a
query – perhaps π2 is never equal to Hv on the indices that this non-uniform query looks at. In order
to deal with this, we will “distribute” the error in π2 evenly across all indices. That is, given access
to a π that is 0.01-close to some Hadamard codeword Hv, we will design a procedure that, for any x,
computes Hv[x] = ⟨x, v⟩ correctly with some large constant probability. This procedure will also make
only a constant number of queries to π, and is said to be a local correction algorithm for the Hadamard
code.

This local corrector, which we will denote by C, is actually quite simple. It works as follows given
oracle access to a string π ∈ F2n

2 , and an input x ∈ Fn
2 :

1. Sample y ← Fn
2

2. Output π[y]⊕ π[x⊕ y]

Problem 2.6 (3 points). Suppose there is some v ∈ Fn
2 such that π is 0.01-close to Hv. Prove that, for

any x ∈ Fn
2 , Cπ(x) outputs ⟨x, v⟩ with probability at least 0.98.

If π were actually equal to Hv, it is easy to see that Cπ(x) will always output πxv. Once we have
such local correction, we can pass each query that the verifier makes through this correction procedure.
Then, irrespective of the distribution of the query, as long as π is sufficiently close to Hv, the verifier
receives the corresponding index of Hv, except with some small probability.

2.3 Testing Tensor Structure
Suppose the proof (π1, π2) that the verifier is given access to is indeed such that π1 and π2 are 0.01-close
to Hu and Hv, respectively, for some u ∈ Fn

2 and v ∈ Fn2

2 . The second task of the verifier as listed above
is to check that v = u ⊗ u while making only a constant number of queries. For this, we will make use
of a convenient identity involving tensoring and inner products.

Problem 2.7 (2 points). Prove that, for any vectors a, b, c, d ∈ Fn
2 ,

⟨a⊗ b, c⊗ d⟩ = ⟨a, c⟩ · ⟨b, d⟩

The procedure for testing the tensor structure, which we will denote by T , is given oracle access to
π1 ∈ F2n

2 and π2 ∈ F2n
2

2 , and operates as follows:

1. Sample random x, y ← Fn
2

2. Compute z ← Cπ2(x⊗ y)

3. Check whether z = π1[x] · π1[y]

Problem 2.8 (1 point). Suppose π1 and π2 are equal to Hu and Hv, respectively, where v = u ⊗ u.
Prove that Tπ1,π2 always accepts.

Problem 2.9 (4 points). Suppose π1 and π2 are 0.01-close to Hu and Hv, respectively, where v ̸= u⊗u.
Prover that Tπ1,π2 accepts with probability at most (0.04 + 3/4).

This soundness can again be amplified by repeating T a constant number of times. Then, if π1 and
π2 are 0.01-close to Hu and Hv where v ̸= u⊗ u, the tester can be made to reject with probability 0.99.

2.4 Testing Satisfaction

The final task of the verifier is to check that the vector v ∈ Fn2

2 encoded by π2 satisfies the linearised
version AQv = bQ of the system of quadratic equations we started with.

5



Problem 2.10 (5 points). Construct an algorithm S that, given access to an oracle for π ∈ F2n

2 that
is 0.01-close to Hv for some v ∈ Fn

2 , and a system of linear equations (A, b) ∈ Fm×n
2 × Fm

2 , checks that
Av = b. Sπ should make O(1) queries, have perfect completeness (if π = Hv) and constant soundness
error.

Hint 2.4. In the PCP for ML that we saw in class, we made use of the property that two distinct linear
functions over Fn

2 agree on exactly half the inputs. For this to be sufficient, we made the assumption that
the matrix A is full rank. You do not have this assumption here. How will you get around this?

2.5 Putting everything together
Problem 2.11 (5 points). Write down the description of the PCP verifier for MQ, and prove its com-
pleteness and soundness.

6


	ZK protocol for Graph Non-Isomorphism
	A Simple PCP for NP
	Linearity Testing
	Local Correction
	Testing Tensor Structure
	Testing Satisfaction
	Putting everything together


