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Lecture Plan

1. Course Overview

2. Proof Systems for Languages
• NP

3. Randomness in proofs
• MA

• Benefits of randomness

4. Interactive proofs
• Definition

• Relation to NP and MA

• Relation to PSPACE



Proofs

• Fundamental part of mathematics

• Establish the truth of statements

Important properties:
• Completeness: All true statements can be proven
• Soundness: No false statements can be proven
• Efficiency: The validity of a proof can be determined efficiently



Classical Proofs

Sequence of claims leading to theorems from axioms

Theorem:    𝑎 + 𝑏 2 = 𝑎2 + 2𝑎𝑏 + 𝑏2

Proof:    𝑎 + 𝑏 2 = 𝑎 + 𝑏 ⋅ 𝑎 + 𝑏
= 𝑎 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 + 𝑏 ⋅ 𝑎 + 𝑏 ⋅ 𝑏
= 𝑎2 + 2𝑎𝑏 + 𝑏^2

Verification: Verify each claim



Non-Classical Proof Systems

• Studied by computer scientists since the 80’s

• New notions of what it means to “prove” something

• Vastly more “powerful” than classical proofs

• We will study some of these along with:

• their applications, 

• connections to complexity theory and cryptography, and, 

• relevant tools from cryptography and TCS



Interactive Proofs

I can taste the difference 
between Coke and Pepsi!

Fill glass with either Coke 
or Pepsi at random

Is this Coke or Pepsi?

Pepsi

Repeat several 
times

• If they can taste the difference, they will answer correctly - completeness

• If they cannot they will make a mistake (with high probability) - soundness

• You know whether the glass has Coke or Pepsi, so you can check efficiently



Interactive Proofs

Theorem

Question?

Answer

• Completeness: If theorem is true, Verifier should Accept with high probability

• Soundness: If theorem is false, Verifier should Reject with high probability, even 
if Prover cheats

• Efficiency: Verifier should be computationally efficient

Question?

Answer

Accept or Reject

Prover Verifier



Interactive Proofs

• Fundamentally new notion of what it means to prove something

• Connected to various other concepts in complexity theory

• Potential real-world applications, e.g. delegation of computation

Perform this 
computation for me

The result is 43

Prove it!

<interactive proof>



Zero-Knowledge Proofs

I can taste the difference 
between Coke and Pepsi!

Fill glass with either Coke 
or Pepsi at random

Is this Coke or Pepsi?

Pepsi

If you cannot distinguish between Coke and Pepsi before the proof, 
you still cannot after the proof

Zero Knowledge: The Verifier learns nothing during the proof except 
the truth of the statement being proven



Zero-Knowledge Proofs

• Connected to various concepts in cryptography

• Useful when data needs to be protected while allowing certain 
functionalities, e.g. authentication

Alice’s 
Password: x

Hash of Alice’s 
password: h

I am Alice

Prove that you know a 
password that hashes to h

<zero-knowledge proof>



Interactive Arguments

• Like Interactive Proofs, but:
• The honest Prover should also be computationally efficient

• Computational Soundness: False statements should not be provable by 
efficient cheating Provers

• Usually built on the security of cryptographic primitives
• If Prover is able to prove a false statement, it can be used to break the 

cryptographic primitive

• Can be made very efficient, so most useful in practical applications



Probabilistically Checkable Proofs

Proofs that can be checked without reading them entirely

• Deep connections to complexity theory and approximation algorithms

• Useful in constructing arguments and other cryptographic protocols



What We Will Cover

• Definitions and properties of each of the above proof systems

• What kinds of theorems they can prove

• Their connections to complexity theory and cryptography

• Tools useful in their construction
• Low-degree extensions

• Related cryptographic concepts
• One-way functions

• Collision resistance

• Possibly other models like MIPs, IOPs, etc.



What You Need to Know Already

• Basic complexity theory
• Reductions between problems

• NP-hardness and its significance

• Classes like PSPACE, AC0

• Basic probability theory
• Random variables

• Basic algebra
• Linear algebra

• Finite fields

• Groups

• Basic graph theory



Course Information

• Instructor: Me 

• Email: prashant@comp.nus.edu.sg

• Website: https://www.comp.nus.edu.sg/~prashant/teaching/CS6230/

• Time: Tue 10am – noon SGT

• Location: Online for now

• Office Hours: Wed 10am – noon SGT (book slot on LumiNUS)

• References: See lecture notes and website

mailto:prashant@comp.nus.edu.sg
https://www.comp.nus.edu.sg/~prashant/teaching/CS6230/


Grading

Problem Sets (60%, distributed over 3-4 sets)

• Will be posted on course website and LumiNUS

• Collaboration encouraged, but your submission must be written on your own 

• Submit on LumiNUS, in the relevant folder in the Files section

• No late submissions accepted without my explicit permission

• First problem set will be uploaded tomorrow, is due next Monday (Aug 16)

Final Project (40%)

• Read and write a survey/report on a few related papers

• Work in groups of 1 or 2

• Details will be announced in a few weeks



Proof Systems for Languages

We care about proofs of statements of the form 𝑥 ∈ 𝐿
for some language 𝐿 and string 𝑥

Definition: A language is a set of strings from 0,1 ∗

Example: SAT is the set of all Boolean formulas that are satisfiable
• 𝑥1 ∧ 𝑥2 ∈ SAT
• 𝑥1 ∧ 𝑥1 ∉ SAT

aka inputs 
or instances

often implicit



Proof Systems for Languages

Definition: The class NP consists of languages 𝐿 for which there exists a deterministic 
polynomial-time verification algorithm 𝑉 and a polynomial 𝑝 such that:

• Completeness: For any instance 𝑥 ∈ 𝐿, there exists a “witness” 𝑦 ∈ 0,1 𝑝( 𝑥 ) such 
that 𝑉(𝑥, 𝑦) accepts

• Soundness: For any 𝑥 ∉ 𝐿, for all 𝑦 ∈ 0,1 𝑝( 𝑥 ), 𝑉 𝑥, 𝑦 rejects

Classical proofs correspond to languages in the class NP

theorem proof



Randomness in Proofs

Most verification procedures will be randomised

Definition: The class MA consists of languages 𝐿 for which there exists a probabilistic 
polynomial-time verification algorithm 𝑉 and a polynomial 𝑝 such that:

• Completeness: For any instance 𝑥 ∈ 𝐿, there exists a “witness” 𝑦 ∈ 0,1 𝑝( 𝑥 ) such 
that:

Pr[𝑉(𝑥, 𝑦) accepts] ≥ 2/3

• Soundness: For any 𝑥 ∉ 𝐿, for all 𝑦 ∈ 0,1 𝑝( 𝑥 ), 

Pr[𝑉 𝑥, 𝑦 accepts] ≤ 1/3



How randomness can help: verifying matrix multiplication

Task: Given matrices 𝐴, 𝐵, 𝐶 ∈ 𝔽𝑛×𝑛, where 𝔽 is a finite field, 
verify that 𝐶 = 𝐴 ⋅ 𝐵

Naïve method: Compute 𝐴 ⋅ 𝐵, and check it is equal to 𝐶

Perfectly complete and sound, but takes Ω(𝑛𝜔) field operations
(best known: 𝜔 ≤ 2.378)

Can we do faster?



How randomness can help: verifying matrix multiplication

Freivald’s protocol:
1. Sample random vector 𝑣 ← 𝔽𝑛

2. Compute 𝑢 ← 𝐵𝑣 and 𝑤 ← 𝐴𝑢
3. Check whether 𝑤 = 𝐶𝑣

Completeness: If 𝐶 = 𝐴 ⋅ 𝐵, then 𝐶𝑣 = 𝐴𝐵 𝑣 = 𝐴 𝐵𝑣 = 𝐴𝑢 = 𝑤

Efficiency: Three matrix-vector multiplications, each 𝑂(𝑛2) field operations 



How randomness can help: verifying matrix multiplication

Soundness: 

• Let 𝐴 ⋅ 𝐵 = 𝐷, and suppose 𝐶 ≠ 𝐷

• Then, ∃𝑖 ∈ [𝑛] such that the 𝑖𝑡ℎ rows of 𝐶 and 𝐷 – written as 𝐶𝑖 and 𝐷𝑖 –
are different.

• The 𝑖𝑡ℎ coordinate of 𝐶 − 𝐷 𝑣 is < 𝐶𝑖 − 𝐷𝑖 , 𝑣 >

• As 𝐶𝑖 − 𝐷𝑖 is non-zero, this inner product is uniformly distributed over 𝔽

• 𝐶𝑣 = 𝐷𝑣 only if 𝐶𝑣 𝑖 = 𝐷𝑣 𝑖, that is, < 𝐶𝑖 − 𝐷𝑖 , 𝑣 > = 0

• Thus, 𝐶𝑣 = 𝐷𝑣 with probability at most 1/|𝔽|

Thus, if 𝐶 ≠ 𝐴 ⋅ 𝐵, the verification passes with probability at most 1/|𝔽|.



Interactive Proofs

Prover 𝑃 Verifier 𝑉Computationally
unbounded

Polynomial
Time

Input 𝑥

Definition: (𝑃, 𝑉) is an Interactive Proof for language 𝐿 if:

• Completeness: For any 𝑥 ∈ 𝐿, Pr[𝑉 accepts] ≥ 2/3

• Soundness: For any 𝑥 ∉ 𝐿, Pr[𝑉 accepts] ≤ 1/3, irrespective of 
what 𝑃 does

Accept or Reject



Which languages have IPs?

• All languages in NP do – the prover just sends the NP witness

• Similarly, all languages in MA do

• How about others?

NP

MA

IP

IP – set of all languages that 
have an interactive proof

P



Graph Non-Isomorphism

Definition: Two graphs 𝐺0 and 𝐺1 are isomorphic if there is a relabelling of 
the vertices of 𝐺0 that makes it the same as 𝐺1

1 2

3 4

1 2

3 4

𝐺0 𝐺1

𝐺0 and 𝐺1 isomorphic by relabelling: 1 → 1, 2 → 3, 3 → 2, 4 → 4



Graph Non-Isomorphism

1 2

3 4

1 2

3 4

𝐺0 𝐺1

𝐺0 and 𝐺1 not isomorphic

Definition: Two graphs 𝐺0 and 𝐺1 are isomorphic if there is a relabelling of 
the vertices of 𝐺0 that makes it the same as 𝐺1



Graph Non-Isomorphism

Definition: The language GNI consists of pairs of graphs 𝐺0, 𝐺1 such that 
𝐺0 and 𝐺1 have the same number of vertices, and are not isomorphic.

𝐺𝑁𝐼 ∈ coNP, not known to be in NP or MA

Definition: Two graphs 𝐺0 and 𝐺1 are isomorphic if there is a relabelling of 
the vertices of 𝐺0 that makes it the same as 𝐺1



IP for Graph Non-Isomorphism

𝐺0, 𝐺1
Pick uniformly random relabelling 𝑅, 
random bit 𝑏𝑅(𝐺𝑏)

𝑏′ Accept iff 𝑏′ = 𝑏

Completeness: If (𝐺0, 𝐺1) are non-isomorphic, then 𝑅(𝐺𝑏) is isomorphic to 𝐺0 or 𝐺1, but 
not both. Prover can thus learn 𝑏 given 𝑅(𝐺𝑏). So 𝑉 always accepts.

Soundness: If (𝐺0, 𝐺1) are isomorphic, then 𝑅(𝐺𝑏) could have been produced either from 
𝐺0 or 𝐺1, so prover learns nothing about 𝑏. So 𝑉 accepts with probability at most ½.

𝑃 𝑉



How big is IP?

NP

MA

IP

P

PSPACE



IP and PSPACE

Definition: PSPACE is the set of languages 𝐿 such that there is a polynomial-space
algorithm that, given an input 𝑥, determines whether 𝑥 ∈ 𝐿.

Theorem: IP ⊆ PSPACE

Need to show: If a language 𝐿 has an interactive proof, then there is a polynomial-
space algorithm that, given input 𝑥, determines whether 𝑥 ∈ 𝐿



IP ⊆ PSPACE

Warm-up: If a language 𝐿 has a 1-message interactive proof (MA), then there is a 
polynomial-space algorithm that, given input 𝑥, determines whether 𝑥 ∈ 𝐿

The poly-space algorithm proceeds in two steps:
1. Given input 𝑥, find the 𝛽 that maximises 𝑉’s acceptance probability
2. If this probability is more than 2/3, say 𝑥 ∈ 𝐿, otherwise 𝑥 ∉ 𝐿

𝛽

𝑃 𝑉

randomness string 𝑟

input 𝑥



IP ⊆ PSPACE

Warm-up: If a language 𝐿 has a 1-message interactive proof (MA), then there is a 
polynomial-space algorithm that, given input 𝑥, determines whether 𝑥 ∈ 𝐿

The poly-space algorithm proceeds in two steps:
1. Given input 𝑥, find the 𝛽 that maximises 𝑉’s acceptance probability
2. If this probability is more than 2/3, say 𝑥 ∈ 𝐿, otherwise 𝑥 ∉ 𝐿

Step 1:
1. For all string 𝛽 of appropriate length:

• Iterate over all possible random strings 𝑟, and count the number on which 
𝑉 𝑥, 𝛽; 𝑟 accepts

2. Output the 𝛽 that has the greatest count above



In Conclusion

• Check out the course website
• Watch out for the problem set tomorrow
• See you next week


