Probabilistic Proof Systems

CS 6230: Topics in Information Security

Lecture 1: Introduction

Prashant Nalini Vasudevan

Lecture Plan

- 1. Course Overview
- 2. Proof Systems for Languages
 - NP
- 3. Randomness in proofs
 - MA
 - Benefits of randomness
- 4. Interactive proofs
 - Definition
 - Relation to NP and MA
 - Relation to PSPACE

Proofs

- Fundamental part of mathematics
- Establish the truth of statements

Important properties:

- **Completeness:** All true statements can be proven
- Soundness: No false statements can be proven
- **Efficiency:** The validity of a proof can be determined *efficiently*

Classical Proofs

Sequence of claims leading to theorems from axioms

Theorem:
$$(a + b)^2 = a^2 + 2ab + b^2$$

Proof:
$$(a + b)^2 = (a + b) \cdot (a + b)$$

= $a \cdot a + a \cdot b + b \cdot a + b \cdot b$
= $a^2 + 2ab + b^2$

Verification: Verify each claim

Non-Classical Proof Systems

- Studied by computer scientists since the 80's
- New notions of what it means to "prove" something
- Vastly more "powerful" than classical proofs
- We will study some of these along with:
 - their applications,
 - connections to complexity theory and cryptography, and,
 - relevant tools from cryptography and TCS

- If they can taste the difference, they will answer correctly *completeness*
- If they cannot they will make a mistake (with high probability) soundness
- You know whether the glass has Coke or Pepsi, so you can check efficiently

- **Completeness:** If theorem is true, Verifier should Accept with high probability
- **Soundness:** If theorem is false, Verifier should Reject with high probability, even if Prover cheats
- Efficiency: Verifier should be computationally efficient

- Fundamentally new notion of what it means to prove something
- Connected to various other concepts in complexity theory
- Potential real-world applications, e.g. delegation of computation

Zero-Knowledge Proofs

If you cannot distinguish between Coke and Pepsi before the proof, you still cannot after the proof

Zero Knowledge: The Verifier learns nothing during the proof except the truth of the statement being proven

Zero-Knowledge Proofs

- Connected to various concepts in cryptography
- Useful when data needs to be protected while allowing certain functionalities, e.g. authentication

Interactive Arguments

- Like Interactive Proofs, but:
 - The honest Prover should also be computationally efficient
 - Computational Soundness: False statements should not be provable by *efficient* cheating Provers
- Usually built on the security of cryptographic primitives
 - If Prover is able to prove a false statement, it can be used to break the cryptographic primitive
- Can be made very efficient, so most useful in practical applications

Probabilistically Checkable Proofs

Proofs that can be checked without reading them entirely

- Deep connections to complexity theory and approximation algorithms
- Useful in constructing arguments and other cryptographic protocols

What We Will Cover

- Definitions and properties of each of the above proof systems
- What kinds of theorems they can prove
- Their connections to complexity theory and cryptography
- Tools useful in their construction
 - Low-degree extensions
- Related cryptographic concepts
 - One-way functions
 - Collision resistance
- Possibly other models like MIPs, IOPs, etc.

What You Need to Know Already

- Basic complexity theory
 - Reductions between problems
 - NP-hardness and its significance
 - Classes like PSPACE, AC⁰
- Basic probability theory
 - Random variables
- Basic algebra
 - Linear algebra
 - Finite fields
 - Groups
- Basic graph theory

Course Information

- Instructor: Me
- Email: prashant@comp.nus.edu.sg
- Website: https://www.comp.nus.edu.sg/~prashant/teaching/CS6230/
- Time: Tue 10am noon SGT
- Location: Online for now
- Office Hours: Wed 10am noon SGT (book slot on LumiNUS)
- References: See lecture notes and website

Grading

Problem Sets (60%, distributed over 3-4 sets)

- Will be posted on course website and LumiNUS
- Collaboration encouraged, but your submission must be written on your own
- Submit on LumiNUS, in the relevant folder in the Files section
- No late submissions accepted without my explicit permission
- First problem set will be uploaded tomorrow, is *due next Monday* (Aug 16)

Final Project (40%)

- Read and write a survey/report on a few related papers
- Work in groups of 1 or 2
- Details will be announced in a few weeks

Proof Systems for Languages

Definition: A *language* is a set of strings from $\{0,1\}^*$ aka inputs often implicit or instances

Example: SAT is the set of all Boolean formulas that are satisfiable

- $(x_1 \land x_2) \in SAT$
- $(x_1 \land \overline{x}_1) \notin SAT$

We care about proofs of statements of the form $x \in L$ for some language L and string x

Classical proofs correspond to languages in the class NP

Definition: The class NP consists of languages L for which there exists a *deterministic* polynomial-time verification algorithm V and a polynomial p such that:

- **Completeness:** For any instance $x \in L$, there exists a "witness" $y \in \{0,1\}^{p(|x|)}$ such that V(x, y) accepts theorem proof
- Soundness: For any $x \notin L$, for all $y \in \{0,1\}^{p(|x|)}$, V(x, y) rejects

Randomness in Proofs

Most verification procedures will be randomised

Definition: The class MA consists of languages L for which there exists a *probabilistic* polynomial-time verification algorithm V and a polynomial p such that:

• **Completeness:** For any instance $x \in L$, there exists a "witness" $y \in \{0,1\}^{p(|x|)}$ such that:

 $\Pr[V(x, y) \text{ accepts}] \ge 2/3$

• Soundness: For any $x \notin L$, for all $y \in \{0,1\}^{p(|x|)}$,

 $\Pr[V(x, y) \text{ accepts}] \le 1/3$

Task: Given matrices $A, B, C \in \mathbb{F}^{n \times n}$, where \mathbb{F} is a finite field, verify that $C = A \cdot B$

Naïve method: Compute $A \cdot B$, and check it is equal to C

Perfectly complete and sound, but takes $\Omega(n^{\omega})$ field operations (best known: $\omega \le 2.378$)

Can we do faster?

How randomness can help: verifying matrix multiplication

Freivald's protocol:

- 1. Sample random vector $v \leftarrow \mathbb{F}^n$
- 2. Compute $u \leftarrow Bv$ and $w \leftarrow Au$
- 3. Check whether w = Cv

Completeness: If $C = A \cdot B$, then Cv = (AB)v = A(Bv) = Au = w

Efficiency: Three matrix-vector multiplications, each $O(n^2)$ field operations

How randomness can help: verifying matrix multiplication

Soundness:

- Let $A \cdot B = D$, and suppose $C \neq D$
- Then, $\exists i \in [n]$ such that the i^{th} rows of C and D written as C_i and D_i are different.
- The i^{th} coordinate of (C D)v is $< (C_i D_i), v >$
- As $(C_i D_i)$ is non-zero, this inner product is uniformly distributed over \mathbb{F}
- Cv = Dv only if $(Cv)_i = (Dv)_i$, that is, $\langle (C_i D_i), v \rangle = 0$
- Thus, Cv = Dv with probability at most $1/|\mathbb{F}|$

Thus, if $C \neq A \cdot B$, the verification passes with probability at most $1/|\mathbb{F}|$.

Definition: (*P*, *V*) is an Interactive Proof for language *L* if:

- **Completeness:** For any $x \in L$, $\Pr[V \text{ accepts}] \ge 2/3$
- Soundness: For any x ∉ L, Pr[V accepts] ≤ 1/3, irrespective of what P does

Which languages have IPs?

- All languages in NP do the prover just sends the NP witness
- Similarly, all languages in MA do
- How about others?

IP – set of all languages that have an interactive proof

Definition: Two graphs G_0 and G_1 are isomorphic if there is a relabelling of the vertices of G_0 that makes it the same as G_1

 G_0 and G_1 isomorphic by relabelling: $1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 2, 4 \rightarrow 4$

Definition: Two graphs G_0 and G_1 are isomorphic if there is a relabelling of the vertices of G_0 that makes it the same as G_1

 G_0 and G_1 not isomorphic

Definition: Two graphs G_0 and G_1 are isomorphic if there is a relabelling of the vertices of G_0 that makes it the same as G_1

Definition: The language GNI consists of pairs of graphs (G_0, G_1) such that G_0 and G_1 have the same number of vertices, and are *not* isomorphic.

 $GNI \in coNP$, not known to be in NP or MA

IP for Graph Non-Isomorphism

Completeness: If (G_0, G_1) are non-isomorphic, then $R(G_b)$ is isomorphic to G_0 or G_1 , but not both. Prover can thus learn b given $R(G_b)$. So V always accepts.

Soundness: If (G_0, G_1) are isomorphic, then $R(G_b)$ could have been produced either from G_0 or G_1 , so prover learns nothing about b. So V accepts with probability at most $\frac{1}{2}$.

How big is IP?

IP and PSPACE

Definition: PSPACE is the set of languages L such that there is a polynomial-*space* algorithm that, given an input x, determines whether $x \in L$.

Theorem: $IP \subseteq PSPACE$

Need to show: If a language L has an interactive proof, then there is a polynomial-space algorithm that, given input x, determines whether $x \in L$

$IP \subseteq PSPACE$

Warm-up: If a language L has a 1-message interactive proof (MA), then there is a polynomial-space algorithm that, given input x, determines whether $x \in L$

The poly-space algorithm proceeds in two steps:

- 1. Given input x, find the β that maximises V's acceptance probability
- 2. If this probability is more than 2/3, say $x \in L$, otherwise $x \notin L$

$IP \subseteq PSPACE$

Warm-up: If a language L has a 1-message interactive proof (MA), then there is a polynomial-space algorithm that, given input x, determines whether $x \in L$

The poly-space algorithm proceeds in two steps:

- 1. Given input x, find the β that maximises V's acceptance probability
- 2. If this probability is more than 2/3, say $x \in L$, otherwise $x \notin L$

Step 1:

- 1. For all string β of appropriate length:
 - Iterate over all possible random strings r, and count the number on which $V(x,\beta;r)$ accepts
- 2. Output the β that has the greatest count above

In Conclusion

- Check out the course website
- Watch out for the problem set tomorrow
- See you next week