Probabilistic Proof Systems

CS 6230: Topics in Information Security

Lecture 1: Introduction

Prashant Nalini Vasudevan

Lecture Plan

1. Course Overview
2. Proof Systems for Languages

- NP

3. Randomness in proofs

- MA
- Benefits of randomness

4. Interactive proofs

- Definition
- Relation to NP and MA
- Relation to PSPACE

Proofs

- Fundamental part of mathematics
- Establish the truth of statements

Important properties:

- Completeness: All true statements can be proven
- Soundness: No false statements can be proven
- Efficiency: The validity of a proof can be determined efficiently

Classical Proofs

Sequence of claims leading to theorems from axioms

Theorem: $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
\text { Proof: } \begin{aligned}
(a+b)^{2} & =(a+b) \cdot(a+b) \\
& =a \cdot a+a \cdot b+b \cdot a+b \cdot b \\
& =a^{2}+2 a b+b^{\wedge} 2
\end{aligned}
$$

Verification: Verify each claim

Non-Classical Proof Systems

- Studied by computer scientists since the 80 's
- New notions of what it means to "prove" something
- Vastly more "powerful" than classical proofs
- We will study some of these along with:
- their applications,
- connections to complexity theory and cryptography, and,
- relevant tools from cryptography and TCS

Interactive Proofs

- If they can taste the difference, they will answer correctly - completeness
- If they cannot they will make a mistake (with high probability) - soundness
- You know whether the glass has Coke or Pepsi, so you can check efficiently

Interactive Proofs

- Completeness: If theorem is true, Verifier should Accept with high probability
- Soundness: If theorem is false, Verifier should Reject with high probability, even if Prover cheats
- Efficiency: Verifier should be computationally efficient

Interactive Proofs

- Fundamentally new notion of what it means to prove something
- Connected to various other concepts in complexity theory
- Potential real-world applications, e.g. delegation of computation

Zero-Knowledge Proofs

If you cannot distinguish between Coke and Pepsi before the proof, you still cannot after the proof

Zero Knowledge: The Verifier learns nothing during the proof except the truth of the statement being proven

Zero-Knowledge Proofs

- Connected to various concepts in cryptography

- Useful when data needs to be protected while allowing certain functionalities, e.g. authentication

Interactive Arguments

- Like Interactive Proofs, but:
- The honest Prover should also be computationally efficient
- Computational Soundness: False statements should not be provable by efficient cheating Provers
- Usually built on the security of cryptographic primitives
- If Prover is able to prove a false statement, it can be used to break the cryptographic primitive
- Can be made very efficient, so most useful in practical applications

Probabilistically Checkable Proofs

Proofs that can be checked without reading them entirely

- Deep connections to complexity theory and approximation algorithms
- Useful in constructing arguments and other cryptographic protocols

What We Will Cover

- Definitions and properties of each of the above proof systems
- What kinds of theorems they can prove
- Their connections to complexity theory and cryptography
- Tools useful in their construction
- Low-degree extensions
- Related cryptographic concepts
- One-way functions
- Collision resistance
- Possibly other models like MIPs, IOPs, etc.

What You Need to Know Already

- Basic complexity theory
- Reductions between problems
- NP-hardness and its significance
- Classes like PSPACE, AC ${ }^{0}$
- Basic probability theory
- Random variables
- Basic algebra
- Linear algebra
- Finite fields
- Groups
- Basic graph theory

Course Information

- Instructor: Me
- Email: prashant@comp.nus.edu.sg
- Website: https://www.comp.nus.edu.sg/~prashant/teaching/CS6230/
- Time: Tue 10am - noon SGT
- Location: Online for now
- Office Hours: Wed 10am - noon SGT (book slot on LumiNUS)
- References: See lecture notes and website

Grading

Problem Sets (60\%, distributed over 3-4 sets)

- Will be posted on course website and LumiNUS
- Collaboration encouraged, but your submission must be written on your own
- Submit on LumiNUS, in the relevant folder in the Files section
- No late submissions accepted without my explicit permission
- First problem set will be uploaded tomorrow, is due next Monday (Aug 16)

Final Project (40\%)

- Read and write a survey/report on a few related papers
- Work in groups of 1 or 2
- Details will be announced in a few weeks

Proof Systems for Languages

Definition: A language is a set of strings from $\{0,1\}^{*}$
aka inputs
or instances
Example: SAT is the set of all Boolean formulas that are satisfiable

- $\left(x_{1} \wedge x_{2}\right) \in$ SAT
- $\left(x_{1} \wedge \bar{x}_{1}\right) \notin$ SAT

We care about proofs of statements of the form $x \in L$ for some language L and string x

Proof Systems for Languages

Classical proofs correspond to languages in the class NP

Definition: The class NP consists of languages L for which there exists a deterministic polynomial-time verification algorithm V and a polynomial p such that:

- Completeness: For any instance $x \in L$, there exists a "witness" $y \in\{0,1\}^{p(|x|)}$ such that $V(x, y)$ accepts
theorem
proof
- Soundness: For any $x \notin L$, for all $y \in\{0,1\}^{p(|x|)}, V(x, y)$ rejects

Randomness in Proofs

Most verification procedures will be randomised

Definition: The class MA consists of languages L for which there exists a probabilistic polynomial-time verification algorithm V and a polynomial p such that:

- Completeness: For any instance $x \in L$, there exists a "witness" $y \in\{0,1\}^{p(|x|)}$ such that:

$$
\operatorname{Pr}[V(x, y) \text { accepts }] \geq 2 / 3
$$

- Soundness: For any $x \notin L$, for all $y \in\{0,1\}^{p(|x|)}$,

$$
\operatorname{Pr}[V(x, y) \text { accepts }] \leq 1 / 3
$$

How randomness can help: verifying matrix multiplication

Task: Given matrices $A, B, C \in \mathbb{F}^{n \times n}$, where \mathbb{F} is a finite field, verify that $C=A \cdot B$

Naïve method: Compute $A \cdot B$, and check it is equal to C

Perfectly complete and sound, but takes $\Omega\left(n^{\omega}\right)$ field operations (best known: $\omega \leq 2.378$)

Can we do faster?

How randomness can help: verifying matrix multiplication

Freivald's protocol:

1. Sample random vector $v \leftarrow \mathbb{F}^{n}$
2. Compute $u \leftarrow B v$ and $w \leftarrow A u$
3. Check whether $w=C v$

Completeness: If $C=A \cdot B$, then $C v=(A B) v=A(B v)=A u=w$

Efficiency: Three matrix-vector multiplications, each $O\left(n^{2}\right)$ field operations

How randomness can help: verifying matrix multiplication

Soundness:

- Let $A \cdot B=D$, and suppose $C \neq D$
- Then, $\exists i \in[n]$ such that the $i^{t h}$ rows of C and D - written as C_{i} and D_{i} are different.
- The $i^{\text {th }}$ coordinate of $(C-D) v$ is $\left\langle\left(C_{i}-D_{i}\right), v\right\rangle$
- As $\left(C_{i}-D_{i}\right)$ is non-zero, this inner product is uniformly distributed over \mathbb{F}
- $C v=D v$ only if $(C v)_{i}=(D v)_{i}$, that is, $\left\langle\left(C_{i}-D_{i}\right), v\right\rangle=0$
- Thus, $C v=D v$ with probability at most $1 /|\mathbb{F}|$

Thus, if $C \neq A \cdot B$, the verification passes with probability at most $1 /|\mathbb{F}|$.

Interactive Proofs

Definition: (P, V) is an Interactive Proof for language L if:

- Completeness: For any $x \in L, \operatorname{Pr}[V$ accepts $] \geq 2 / 3$
- Soundness: For any $x \notin L, \operatorname{Pr}[V$ accepts $] \leq 1 / 3$, irrespective of what P does

Which languages have IPs?

- All languages in NP do - the prover just sends the NP witness
- Similarly, all languages in MA do
- How about others?

IP - set of all languages that have an interactive proof

Graph Non-Isomorphism

Definition: Two graphs G_{0} and G_{1} are isomorphic if there is a relabelling of the vertices of G_{0} that makes it the same as G_{1}

G_{0} and G_{1} isomorphic by relabelling: $1 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 2,4 \rightarrow 4$

Graph Non-Isomorphism

Definition: Two graphs G_{0} and G_{1} are isomorphic if there is a relabelling of the vertices of G_{0} that makes it the same as G_{1}

G_{0} and G_{1} not isomorphic

Graph Non-Isomorphism

Definition: Two graphs G_{0} and G_{1} are isomorphic if there is a relabelling of the vertices of G_{0} that makes it the same as G_{1}

Definition: The language GNI consists of pairs of graphs $\left(G_{0}, G_{1}\right)$ such that G_{0} and G_{1} have the same number of vertices, and are not isomorphic.

GNI \in coNP, not known to be in NP or MA

IP for Graph Non-Isomorphism

$$
G_{0}, G_{1}
$$

Pick uniformly random relabelling R, random bit b
Accept iff $b^{\prime}=b$

Completeness: If $\left(G_{0}, G_{1}\right)$ are non-isomorphic, then $R\left(G_{b}\right)$ is isomorphic to G_{0} or G_{1}, but not both. Prover can thus learn b given $R\left(G_{b}\right)$. So V always accepts.

Soundness: If $\left(G_{0}, G_{1}\right)$ are isomorphic, then $R\left(G_{b}\right)$ could have been produced either from G_{0} or G_{1}, so prover learns nothing about b. So V accepts with probability at most $1 / 2$.

How big is IP?

IP and PSPACE

Definition: PSPACE is the set of languages L such that there is a polynomial-space algorithm that, given an input x, determines whether $x \in L$.

Theorem: IP \subseteq PSPACE

Need to show: If a language L has an interactive proof, then there is a polynomialspace algorithm that, given input x, determines whether $x \in L$

$I P \subseteq P S P A C E$

Warm-up: If a language L has a 1-message interactive proof (MA), then there is a polynomial-space algorithm that, given input x, determines whether $x \in L$
input x

The poly-space algorithm proceeds in two steps:

1. Given input x, find the β that maximises V 's acceptance probability
2. If this probability is more than $2 / 3$, say $x \in L$, otherwise $x \notin L$

$I P \subseteq P S P A C E$

Warm-up: If a language L has a 1-message interactive proof (MA), then there is a polynomial-space algorithm that, given input x, determines whether $x \in L$

The poly-space algorithm proceeds in two steps:

1. Given input x, find the β that maximises V 's acceptance probability
2. If this probability is more than $2 / 3$, say $x \in L$, otherwise $x \notin L$

Step 1:

1. For all string β of appropriate length:

- Iterate over all possible random strings r, and count the number on which $V(x, \beta ; r)$ accepts

2. Output the β that has the greatest count above

In Conclusion

- Check out the course website
- Watch out for the problem set tomorrow
- See you next week

