# **Probabilistic Proof Systems**

CS 6230: Topics in Information Security

## Lecture 13: Retrospective

Prashant Nalini Vasudevan

#### Lecture Plan

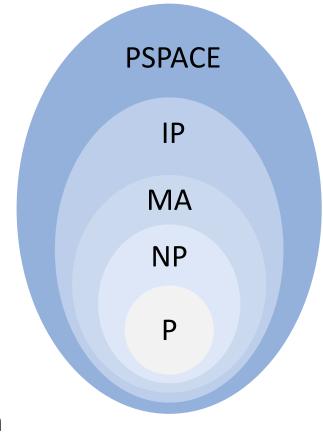
- 1. What we saw
- 2. What we did not see

#### **Non-Classical Proof Systems**

- Studied by computer scientists since the 80's
- New notions of what it means to "prove" something
- Vastly more "powerful" than classical proofs
- We will study some of these along with:
  - their applications,
  - connections to complexity theory and cryptography, and,
  - relevant tools from cryptography and TCS

#### **Interactive Proofs**

IP = PSPACE


Sumcheck Protocol

Utility of Low-Degree Polynomials

Goldwasser-Sipser Set Lower Bound Protocol

Error Reduction, Round Reduction, etc.

Doubly Efficient IPs, the GKR Protocol, Delegation of Computation



#### Zero-Knowledge Proofs

Simulation-based definition

CZK for NP using commitments

SZK and distances between distributions

Completeness of the Statistical Closeness problem

Closure properties of SZK

#### Probabilistically Checkable Proofs

Definition with Proof oracle

**Relation to IPs** 

The PCP Theorem

Hardness of Approximation

Hadamard PCP for systems of linear (and quadratic) equations

Linearity Testing

#### Arguments

#### Definition of Computational Soundness

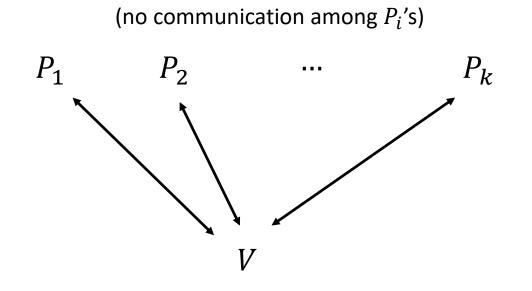
#### Kilian's Construction of Succinct Arguments from PCPs

Collision-resistance and Merkle Hashing

Fiat-Shamir transformation to non-interactive arguments

Schnorr Identification (and Signature) Scheme using Discrete Log

Proof of Knowledge


### Arguments

(See Justin Thaler's survey)

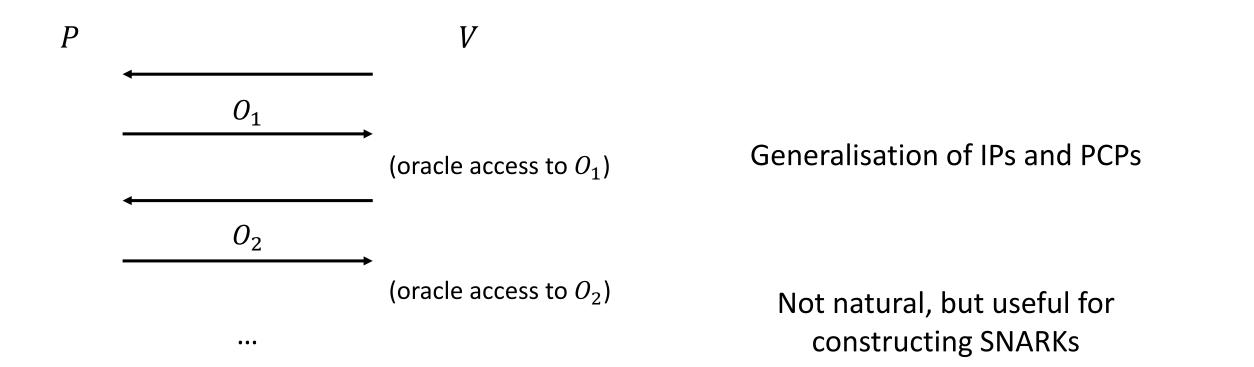
| Information-Theoretic<br>Proof System | + | Cryptography                                               | Fiat-Shamir | Succinct<br>Non-Interactive Argument<br>of Knowledge (SNARK) |
|---------------------------------------|---|------------------------------------------------------------|-------------|--------------------------------------------------------------|
| РСР                                   | + | Cryptographic<br>Hash Functions                            |             |                                                              |
| IP                                    |   |                                                            |             |                                                              |
| Multi-Prover IP                       | + | Polynomial<br>Commitment Scheme                            |             |                                                              |
| Interactive Oracle<br>Proof           |   |                                                            |             |                                                              |
| Linear PCP                            | + | Homomorphic<br>Encryption / Pairing-<br>Based Cryptography |             |                                                              |

### Multi-Prover IP

#### [BenOr-Goldwasser-Kilian-Wigderson 88]



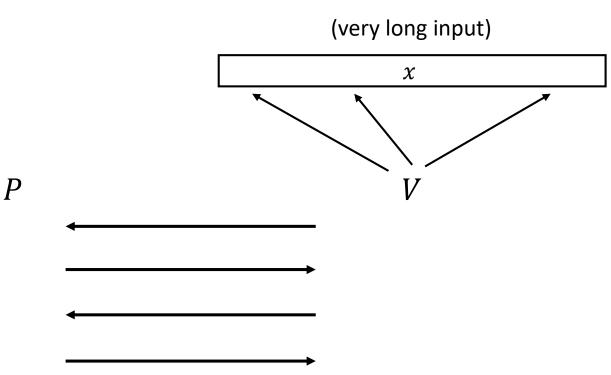
Can always decrease to two provers


Straightforward connection to PCPs

Usual completeness and soundness requirements

MIP = NEXP

#### **Interactive Oracle Proof**


[BenSasson-Chiesa-Spooner 16, Reingold-Rothblum-Rothblum 16]



Usual completeness and soundness requirements

### **Proof of Proximity**

[Ergun-Kumar-Rubinfeld 04, Rothblum-Vadhan-Wigderson 13]



*V* runs in sub-linear time in |x|

Completeness: Accept if  $x \in L$ 

Soundness: Reject if x is far from every  $x' \in L$ 

Without a prover, called *property testing* Eg: linearity testing, low-degree testing

Useful in constructing PCPs, IOPs

### **Batch Verification**

[Ergun-Kumar-Rubinfeld 04, Rothblum-Vadhan-Wigderson 13]

Suppose *L* has IP with *c* bits of communication

How much communication needed to prove  $x_1, ..., x_k$  are all in L?

Repeat IP k times:  $k \cdot c$ 

```
Use IP = PSPACE: c \cdot polylog(k)
(but loses any interesting properties of original IP)
```

[RRR16,RR20]: Batching for *UP* while preserving prover efficiency

[KRRSV20,KRV21]: Batching for non-interactive *SZK* while preserving zero-knowledge

#### **Entropy Difference**

Another complete problem for SZK

For circuit  $C: \{0,1\}^m \rightarrow \{0,1\}^n$ , H(C) - Shannon entropy of distribution of outputs on uniformly random input

> Given  $C_0, C_1$  such that  $|H(C_0) - H(C_1)| > 1$ , decide whether  $H(C_0) > H(C_1)$  or other way round

Reduces to Statistical Closeness using the Leftover Hash Lemma

Proof of completeness similar to what we saw for SC

#### **Coin-Tossing Protocols**

 $b_A = b_B$ , distributed uniformly  $A(r_A)$  $B(r_B)$ Unbiasable: Irrespective of what B does,  $b_A$  is almost uniform (and vice versa) Useful, e.g., in transforming public-coin HVZK proofs to malicious verifier ZK proofs  $b_A$  $b_B$ 

> Many different notions of security studied, Various constructions, impossibilities known

> Agreement: When A and B are both honest,

#### So Much More...

Secure Multi-Party Computation

Non-blackbox simulation in ZK proofs

Correlation Intractability and recent developments in the Fiat-Shamir methodology

#### In Conclusion

- Randomness and interaction are powerful
- Polynomials are amazing
- You never know what could be practical in twenty years