Probabilistic Proof Systems

CS 6230: Topics in Information Security

Lecture 13: Retrospective

Prashant Nalini Vasudevan

Lecture Plan

1. What we saw
2. What we did not see

Non-Classical Proof Systems

- Studied by computer scientists since the 80 's
- New notions of what it means to "prove" something
- Vastly more "powerful" than classical proofs
- We will study some of these along with:
- their applications,
- connections to complexity theory and cryptography, and,
- relevant tools from cryptography and TCS

Interactive Proofs

$$
\begin{gathered}
\qquad I P=P S P A C E \\
\text { Sumcheck Protocol } \\
\text { Utility of Low-Degree Polynomials }
\end{gathered}
$$

Goldwasser-Sipser Set Lower Bound Protocol

Error Reduction, Round Reduction, etc.

Doubly Efficient IPs, the GKR Protocol, Delegation of Computation

Zero-Knowledge Proofs

Simulation-based definition

CZK for NP using commitments

SZK and distances between distributions

Completeness of the Statistical Closeness problem

Closure properties of SZK

Probabilistically Checkable Proofs

Definition with Proof oracle

> Relation to IPs

The PCP Theorem

Hardness of Approximation

Hadamard PCP for systems of linear (and quadratic) equations

Linearity Testing

Arguments

Definition of Computational Soundness

Kilian's Construction of Succinct Arguments from PCPs

Collision-resistance and Merkle Hashing

Fiat-Shamir transformation to non-interactive arguments

Schnorr Identification (and Signature) Scheme using Discrete Log

Proof of Knowledge

Arguments

$\left.\begin{array}{ccc}\begin{array}{c}\text { Information-Theoretic } \\ \text { Proof System }\end{array} & + & \text { Cryptography }\end{array} \begin{array}{c}\text { Fiat-Shamir }\end{array} \begin{array}{c}\text { Non-Interactive Argument } \\ \text { of Knowledge (SNARK) }\end{array}\right]$

Multi-Prover IP

(no communication among P_{i} 's)

Straightforward connection to PCPs

Usual completeness and soundness requirements

$$
M I P=N E X P
$$

Interactive Oracle Proof

P V

Usual completeness and soundness requirements

Proof of Proximity

V runs in sub-linear time in $|x|$

Completeness: Accept if $x \in L$

Soundness: Reject if x is far from every $x^{\prime} \in L$

Without a prover, called property testing Eg: linearity testing, low-degree testing

Useful in constructing PCPs, IOPs

Batch Verification

Suppose L has IP with c bits of communication

How much communication needed to prove x_{1}, \ldots, x_{k} are all in L ?

$$
\begin{gathered}
\text { Repeat IP } k \text { times: } k \cdot c \\
\text { Use } I P=P S P A C E: c \cdot \operatorname{polylog}(k) \\
\text { (but loses any interesting properties of original IP) }
\end{gathered}
$$

[RRR16,RR20]: Batching for $U P$ while preserving prover efficiency
[KRRSV20,KRV21]: Batching for non-interactive $S Z K$ while preserving zero-knowledge

Entropy Difference

Another complete problem for $S Z K$

For circuit $C:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$,
$H(C)$ - Shannon entropy of distribution of outputs on uniformly random input

Given C_{0}, C_{1} such that $\left|H\left(C_{0}\right)-H\left(C_{1}\right)\right|>1$, decide whether $H\left(C_{0}\right)>H\left(C_{1}\right)$ or other way round

Reduces to Statistical Closeness using the Leftover Hash Lemma

Proof of completeness similar to what we saw for SC

Coin-Tossing Protocols

Agreement: When A and B are both honest, $b_{A}=b_{B}$, distributed uniformly

$A\left(r_{A}\right)$
 $B\left(r_{B}\right)$

Unbiasable: Irrespective of what B does, b_{A} is almost uniform (and vice versa)

Useful, e.g., in transforming public-coin HVZK proofs to malicious verifier ZK proofs

Many different notions of security studied, Various constructions, impossibilities known

So Much More...

Secure Multi-Party Computation

Non-blackbox simulation in ZK proofs

Correlation Intractability and recent developments in the Fiat-Shamir methodology

In Conclusion

- Randomness and interaction are powerful
- Polynomials are amazing
- You never know what could be practical in twenty years

