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Abstract
Model counting is the problem of determining the number of so-
lutions that satisfy a given set of constraints. Model counting has
numerous applications in the quantitative analyses of program exe-
cution time, information flow, combinatorial circuit designs as well
as probabilistic reasoning. We present a new approach to model
counting for structured data types, specifically strings in this work.
The key ingredient is a new technique that leverages generating
functions as a basic primitive for combinatorial counting. Our tool
SMC which embodies this approach can model count for con-
straints specified in an expressive string language efficiently and
precisely, thereby outperforming previous finite-size analysis tools.
SMC is expressive enough to model constraints arising in real-
world JavaScript applications and UNIX C utilities. We demon-
strate the practical feasibility of performing quantitative analyses
arising in security applications, such as determining the compar-
ative strengths of password strength meters and determining the
information leakage via side channels.

1. Introduction
Model counting is the classical problem of computing the num-
ber of solutions which satisfy a set of constraints. This problem
arises in many fields of computer science including artificial intel-
ligence, program optimizations and information flow analysis [30,
39]. For example, probabilistic inference problems in Bayesian net-
works can be solved by first representing the network as a set
of propositional clauses, and then model counting the clause set
to compute all the marginal probabilities [14, 17, 39]. Similarly,
model counting has applications to various program transforma-
tion and optimization problems such as memory size minimiza-
tion [47], worst case execution time estimation [33], increasing
parallelism [47], and improving cache effectiveness [19]. More re-
cently, model counting is used in a variety of security applications.
For example, quantitative information flow (or QIF) is the prob-
lem of determining “how much” information flows from the inputs
to the observable outputs of a program [44]. QIF analyses can be
cast as model counting queries, where the constraints represent the
relation between the inputs and outputs implied by the program.
Efficient model counting, therefore, directly benefits QIF analysis.
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To understand how model counting is useful in quantitative
analyses and probabilistic reasoning, consider the following con-
trived example of a password checker program.

if (password == guess) accept=1; else accept=0;

The variable password is a secret input while users can control
the value of input variable guess. By observing the output value
(accept), an attacker can learn some information about the secret
input. Let’s say that the analyst is interested in computing the prob-
ability of the attacker’s success at guessing the secret password in
a single try, assuming that the secret password is randomly chosen.
It is easy to see that the probability of success depends on the size
of the password, and in fact, drops as the length increases. For ex-
ample, suppose both password and guess are two booleans, the
value of password is completely disclosed based on the observed
value of accept. When both password and guess are 2-bit in size,
the attacker’s guess has probability 1/4 of succeeding. To compute
this probability, the analysis can solve a model counting query sat-
isfying the relation (or constraints) imposed by the program be-
tween the inputs and outputs. Specifically, the attacker succeeds if
and only if the constraint password == guess holds true — this
is a simple constraint which is satisfied by only one out of the 4
possible values for the attacker-controlled input guess. In analysis
of real programs, these constraints could be much more complex.
For instance, the targeted password could have additional strength
requirements imposed [24] or the guess could be computed us-
ing automated rules by a tool [49]. Encoding such constraints may
yield a complex set of constraints in the analysis. In this work, we
initiate the study of the problem of model counting on structured
data types, specifically strings, using a new approach.

Model Counting for Strings. Previous work shows that model-
counting is feasible for constraints represented over integers and
booleans [8, 16]. But these techniques cannot be directly applied
to complex data representations such as strings. Reasoning about
string-manipulating programs and code is of growing importance
for various analyses, as evidenced by the large body of recent work
on solvers for satisfiability-checking of string constraints [28, 29,
40]. However, model counting for strings, which is a step beyond
satisfiability checking, has not been addressed so far.

Consider the constraint strstr(s1, "xxxxy") = 1000. This
constraint is satisfied when the first occurrence of the pattern
"xxxxy" in the string s1 begins at offset 1000. A naı̈ve solution
is to directly enumerate all possible strings and check their valid-
ity against the constraints. However, this approach is intractable
for large solution sets. Alternatively, techniques that attempt to
trace the program execution and exhaustively explore all paths
through the strstr function at the instruction level will result in
path exploration space that is exponential in the size of s1. An-
other approach is to apply the existing model counting techniques
directly to strings. We can represent a string as a bitvector and the
string constraints as operations over bitvectors. Then we employ
the current model counting for bitvectors constraints to calculate



the number of solutions. However, this approach may not scale to
complex string constraints. For example, the constraints represent-
ing the regular expression S.match("(a|b)*") as bitvectors can
grow exponentially in the size of input [29, 40]. In fact, we evalu-
ate the inefficacy of these approaches (Section 4) for simple string
programs, and none of our evaluated tools scale for strings of size
beyond 20 bytes.

Our solution. To address the above challenges, this paper initiates
the study of the string model-counting problem and presents a new
tool called SMC. Given a set of string constraints, SMC can com-
pute the bounds on the cardinality of the valid string set with high
precision and efficiency. Our observation is that generating func-
tions (GFs), an important mathematical tool for reasoning about
infinite series, provide a mechanism for reasoning about the cardi-
nality of string sets [41]. The basic idea behind GFs is to encode the
number of strings of length k as the k-th coefficient of a polyno-
mial. These polynomials can be represented as finite expressions.
These finite expressions (GFs) are powerful because they represent
potentially infinite sets of strings. As we show in this work, op-
erations or constraints over string variables directly translate into
operations over the corresponding GFs of the operands. Therefore,
model counting for string constraints that appear in the real-world
code can be achieved via operations over GFs.

We present an implementation of our solution in SMC tool. Our
SMC infrastructure is open source and is available online [13]. We
evaluate SMC on 18,901 benchmarks generated from real-world
JavaScript web applications [40]. We find that SMC can compute
the total number of solutions for 18,901 benchmarks in 3 hours
7 minutes with an average of 0.595 seconds per benchmark. We
demonstrate the use of SMC to quantify the sensitive information
leaked in several UNIX utilities when they operate on encrypted
data as proposed in a recent work [46]. As a final case study, we
use SMC to quantitatively compare the strength of three password
meters in real-world websites — Ebay, Drupal and Microsoft, and
measure their efficacy in preventing passwords that are known
dictionary words [24].

Contributions. This paper makes the following contributions:

• String Analysis Approach and the SMC Tool: We present
a new approach for model counting problem on string data
type by using generating functions. Our string model counting
tool (SMC) can analyze string operators in real world C and
JavaScript programs for unbounded strings.

• Evaluation: SMC outperforms publicly available string model
counting tools in precision and efficiency. Further, our evalua-
tion illustrates the applications of SMC to QIF in general and
specifically to compare password strength meters.

2. Problem & Approach
Model counting provides a tool that is useful in a variety of anal-
yses. In this work, we focus on the problem of model counting
specifically for strings and present a solution that is scalable for
practical applications.

2.1 Motivating Example
Consider the following problem which is useful in security analysis
of an attacker’s effort in a password guessing attack. Suppose a re-
mote attacker learns the UNIX login password for a system admin-
istrator, but the administrator learns of the breach and proactively
changes the password before the attacker can use it. On UNIX sys-
tems, typically users use the passwd utility to change their pass-
word which performs “strength checks” on the new password be-
fore updating it. Specifically, Figure 1 shows the code for the C
utility obscure from BUSYBOX [1] which is used by the passwd

1 static int string_checker_helper
2 (const char *p1, const char *p2) {
3 /* as sub -string */
4 if strcasestr(p2, p1) != NULL
5 /* invert */
6 || strcasestr(p1, p2) != NULL)
7 return 1;
8 return 0;
9 }

10
11 static int string_checker
12 (const char *p1, const char *p2) { ...
13 int ret = string_checker_helper(p1 , p2); ...
14 char *p = reverse_of(p1); ...
15 ret |= string_checker_helper(p, p2); ...
16 return ret;
17 }
18
19 static const char *obscure_msg(const char *old_p ,
20 const char *new_p , const struct passwd *pw) {
21 ...
22 if (old_p && old_p [0] != ’\0’) {
23 /* check vs. old password */
24 if (string_checker(new_p , old_p)) {
25 return "similar to old password";
26 }
27 } ...
28 return NULL;
29 }

Figure 1: Code snippet from a simplified version of obscure.c in BUSY-
BOX to reject weak passwords. The function obscure msg returns a mes-
sage to indicate why the new password new p is bad.

utility to check the password strength. The analysis question is —
how many possible new password values are there for the attacker
to try? Note that the attacker knows the old password and the con-
straints imposed on new p by obscure function.

Model counting techniques can be used to answer this ques-
tion. Concretely, let’s say the administrator’s old password (old p)
is ab@123, and the attacker is trying to estimate the size of set of
possible new passwords (new p). The obscure function updates
the new password only if the old and new password are not too
similar, that is, one does not contain the other or its reverse case-
insensitively. Therefore, the relation between the old and new pass-
word can be expressed as a set of constraints, and the attacker can
use it to compute the size of solutions for new p. For example, con-
sider the code snippet in Figure 1. Under the input old p= ab@123
and a new valid password, Lines 22, 24, 13, 4, 6, 8, 14, 15, 4, 6, 8,
and 28 are executed. This path imposes the following constraints
on new p:

strcasestr(new p, "ab@123") == NULL ∧
strcasestr("ab@123", new p) == NULL ∧
strcasestr(new p, "321@ba") == NULL ∧
strcasestr("321@ba", new p) == NULL

Extracting such constraints is an independent challenge and
can be done by a variety of techniques. For example, symbolic
analysis tools [5, 22, 26, 27, 40] could compute these constraints
by analyzing the body of the obscure function, given the old p
value as ab@123. In this paper, we assume that these pre-computed
constraints are given as input. Once these constraints are extracted,
our focus is on solving the model counting query efficiently.

2.2 Problem Definition
In the string model counting problem, we are given a set of con-
straints C over the set of free variables V . Let Sq be the set of
feasible solutions for a query of an n-bit variable q ∈ V that sat-
isfies C. The model counting problem is then to estimate |Sq| as a
function of n, denoted by the quantity Sq(n). Our solution is repre-
sented as upper and lower bounds (u(n), l(n) respectively) on the
cardinality of the set of solutions to a set of constraints.



There are two important properties of model counters, their
precision and soundness. We say that the model counter is:

• Sound iff it produces bounds [l(n), u(n)], such that ∀i ∈ [0, n],
l(i) ≤ |Sq(i)| ≤ u(i).

• ϵ-precise iff ϵ is the distance of l(n) and u(n) in log-scale,
specifically ϵ = log2(u(n)+1)−log2(l(n)+1)

log2(2n+1)
. Note that 0 ≤ ϵ ≤

1 and the smaller the ϵ, the better the bounds. If ϵ = 0, the
model counter computes the precise number of solutions (i.e.
l(n) = u(n)). On the other hand, if ϵ = 1, it returns the most
imprecise (naı̈ve) bounds as [0, 2n].

We seek to determine the set cardinality as a function of the
bit-width of the query variable q. Most prior systems only rea-
son about counting queries for user-specified, finite bit-width in-
puts and are limited to unstructured data types (such as integers or
bit-vectors) [5, 34]. In contrast, we develop a model counter for
the theory of strings which is expressive enough to model string
constraints from real-world applications, such as JavaScript pro-
grams [40]. Our tool SMC takes as input a set of string constraints
C, and reports the size of the feasible set Sq(n) satisfying C, for
a query variable q of length n. SMC computes sound upper and
lower bound estimates of Sq(n).

2.3 Challenges & Approach Overview
To see why model counting string constraints is challenging, let’s
consider the limitations of applying the existing approaches to
string model counting in our running experiment (Figure 1). First,
note that the size of the solutions is exponential 1 in the size of
new p. Therefore, solutions that enumerate to count the elements
in solution space will take exponential time to produce the set size.

Another approach is to use dynamic symbolic execution tech-
niques that trace the execution of the strcasestr implementation.
Given a symbolic n-byte new p, we can trace the execution of the
strcasestr implementation to extract the branch conditions in-
volving checks on each byte in the symbolic input. Each executed
path yields a set of path constraints over bit-vectors (or arrays of
bytes). The number of solutions to these constraints can be effi-
ciently calculated using off the shelf tools [5]. Then, we can sum
up the set of solutions over all paths executed in the strcasestr
function. This idea works but its running time is proportional to the
number of executed paths. Again, readers can verify that the num-
ber of paths explored in a naı̈ve implementation of strcasestr
can be exponential in the input size 2. These techniques have been
used in previous counting tools, however, they do not scale up for
constraints over unbounded strings.

In our approach, we avoid counting by enumerating or sum-
ming over paths in the constraints altogether. Our high-level insight
is that programs use specific, well-defined operations to construct
and compute on structured data types like strings. If we utilize this
structure in our counting mechanism, we can compute the solu-
tion set cardinalities precisely and more efficiently. More precisely,
the key idea that enables reasoning about unbounded, structured
data types like strings is the novel use of generating functions —

1 In total there are 256n possible strings of length n, and the constraints
reduce this set by a small amount as only some strings have the expected
patterns in them.
2 Consider a naı̈ve implementation in which there is nested loop. The outer
loop picks a position i in the input at which the match might occur. The in-
ner loop performs a character-by-character comparison against the searched
pattern. If the inner loop fails, the outer loop increments the position and
retries. Here there are exponentially many paths possible. For i = 0, there
could be 6 places where the inner loop fails to complete the match with
ab@123. For i = 1, there are again 6 places where the inner loop could fail
to match. Each failed position leads to a new path. For a 1,000 byte input,
there could be roughly 61000 paths when ab@123 is not a substring.
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Figure 2: Architecture of SMC Constraint Solver

a succinct closed form expression that represents the set size. This
expression captures the size of the solution set not only for a sin-
gle input size, but also for the set cardinality of all (possibly in-
finite) solutions. Each given constraint structurally restricts or ex-
pands the solution space based on the size of the solution sets of
its input operands. Therefore, constraints can be modeled as opera-
tions over the corresponding closed form expressions of their input
operands, yielding the resulting set cardinality also as a closed form
expression. Furthermore, this approach enables us to reuse existing
symbolic manipulation tools such as Mathematica for computing
on GFs [50].

SMC first translates the given constraint into its constraint lan-
guage, and then applies inference rules to produce a generating
function which represents the cardinality of the set of old p values
satisfying these constraints (See Figure 2). For example, the con-
straint is first translated into a disjunction of simpler SMC clauses
that capture the semantics of the strcasestr operator, as shown
in Table 1. Subsequently, it computes bounds for each constraint
independently and combines the closed form expressions for the
lower and upper bounds using the composition rules defined in Sec-
tion 3.2. The closed form expressions capture the cardinality of the
solution set for all possible lengths, as we explain later, and can be
evaluated at specific lengths. For obscure example, SMC reports
that there are 8 unsatisfiable values of new p of length 6 which do
not satisfy the constraints within 1 second. Thus, the attacker can-
not reduce his guessing space much although he knows old p and
obscure’s source code. For new p of length 7, SMC reports 512 to
4,084 unsatisfiable values. In fact, the exact number of unsatisfiable
new p of length 7 is 4,084, hence our computed bounds are not only
sound but precise (ϵ = 10−15). Subsequent queries for a different
input length with SMC return immediately, as the closed form ex-
pression is already computed. In contrast, the previous QIF tool we
had access to, reasons about these constraints at the level of bits,
and it could not produce an answer in 2 hours [5] (See Section 4.3).

3. SMC Design
The key idea we utilize in this work is an encoding of the solution
set using generating functions. We provide a quick introduction to
generating functions in Section 3.1. The SMC language and design
is presented in Section 3.2 and Section 3.3. Figure 2 shows the high
level architecture of our SMC tool.

3.1 String Sets Cardinality and Generating Functions
Generating functions (GFs) have been utilized in analysis of com-
binatoric structures and algorithmic complexity of programs exten-
sively [31, 41]. However, GFs have sparingly been used in auto-
mated program analyses of practical data structures; here we pro-
vide a quick background on generating functions for encoding car-
dinality of string sets.

We define the set ΩP to be the set of strings that satisfy the set
of properties P . Next, we define the set of strings SP

i as the set of
strings of length i that satisfy the set of properties P . It then directly
follows that we can represent ΩP as a union of all sets SP

i :

ΩP =
∪
i≥0

SP
i

Because the collection of sets {SP
i | i ≥ 0} is pairwise disjoint,

i.e., one string cannot have two different length i and j that j ̸= i,



Constraint SMC’s constraint GF for lower bound GF for upper bound

strcasestr(new p,
"ab@123") == NULL

C1 = ¬ new p.contains("ab@123")∧
¬ new p.contains("aB@123") ∧
¬ new p.contains("Ab@123") ∧
¬ new p.contains("AB@123")

1
4X6+(1−MX)

1
X6+(1−MX)

strcasestr("ab@123",
new p) == NULL

C2 = ¬ new p = "ab@123" ∧
¬ new p = "aB@123" ∧ ... ∧

¬ new p = "2" ∧ ¬ new p = "1"

1
1−MX

− (8X + 9X2 + 8X3+

7X4 + 6X5 + 4X6)

1
1−MX

− (8X + 9X2 + 8X3+

7X4 + 6X5 + 4X6)

strcasestr(new p,
"321@ba") == NULL

C3 = ¬ new p.contains("321@ba")∧
¬ new p.contains("321@bA") ∧
¬ new p.contains("321@Ba") ∧
¬ new p.contains("321@BA")

1
4X6+(1−MX)

1
X6+(1−MX)

strcasestr("321@ba",
new p) == NULL

C4 = ¬new p = "321@ba" ∧
¬new p = "321@Ba" ∧ ... ∧
¬new p = "a" ∧ ¬new p = "A"

1
1−MX

- (8X + 9X2 + 8X3+

7X4 + 6X5 + 4X6)

1
1−MX

− (8X + 9X2 + 8X3+

7X4 + 6X5 + 4X6)

Full Path Constraints C1 ∧ C2 ∧ C3 ∧ C4

1
8X6+(1−MX)

− (8X + 18X2

16X3 + 14X4 + 12X5 + 8X6)

1
X6+(1−MX)

− (8X + 18X2

16X3 + 14X4 + 12X5 + 8X6)
Table 1: Translation of string constraints into SMC language then into GF for the running example. M is the alphabet size.

the cardinality of ΩP can be represented as the sum of a series
a0, a1, ..., ai, ... in which each ai is the cardinality of the corre-
sponding set SP

i , i.e., ai =
∣∣SP

i

∣∣.
Ordinary Generating Functions. Given the representation of
the cardinality of the string set ΩP as the sum of the series
a0, a1, a2, ..., an, we can encode the cardinalities as an ordinary
generating function, i.e., as the coefficients of a polynomial.

Definition 3.1. (Ordinary Generating Function) The ordinary gen-
erating function (GF) of the sequence a0, a1, a2, ..., ai, ..., is the
summation

A(z) =
∑
i≥0

aiz
i. (1)

We use the notation [zi]A(z) to refer to the coefficient ai.

In many practical cases, we can represent these potentially in-
finitely long polynomials as finite expressions. Then, the Taylor se-
ries expansion of the finite expression around zero is equal to the
polynomial. What makes this so powerful is that we can then reason
about common string manipulations on potentially infinite sets of
strings by computing on the (finite) generating function encoding
of these coefficients. This is analogous to the common use of finite
automaton to represent infinite languages and the manipulation of
finite automata in order to manipulate the language represented by
the automaton.

To compute a coefficient ak from A(z), we can use the follow-
ing formula whose correctness follows directly from a Taylor series
expansion [45]:

ak =
A(k)[0]

k!
(2)

in which A(k)(z) is the k-th derivative of A(z).
For example, consider the set of strings consisting of numer-

ical digits. We have one (empty) string of length 0, 10 strings
of length 1, 102 strings of length 2, and so on. Thus, the cardi-
nality of all such subsets could be represented as the sequence
1, 10, 102, 103, ..., 10i, ... in which 10i is the number of strings
of size i. If we encode the members of this sequence using the
coefficients of a polynomial, we obtain the polynomial G(z) =∑

k≥0 10
kzk. We can then represent this infinitely long polynomial

using the finite expression H(z) = 1
1−10z

as H’s Taylor series ex-
pansion around zero is equal to G(z) 3. If we apply Equation 2 to

3 The reader may notice that series G(z) converges only for |z| < 1
10

, and
thus the closed-form expression H(z) gives meaningful results for only
those values of z. As our use of the expression H(z) in the GF domain
never requires its evaluation for non-zero z, convergence is not a problem
of practical importance.

H(z), we find that the cardinality of the set of strings of length i is
exactly 10i as expected.

To make the utility of GFs clear, consider the problem of
prepending either the character ‘-’ or the character ‘+’ to a nu-
merical string. We can represent the set of initial characters { ‘-’,
‘+’ } with the new GF F (z) = 2z. To obtain the number of strings
that can be constructed in this fashion, we note that we take an
arbitrary numerical string of length i (of which there are 10i) and
prepend either ‘-’ or ‘+’ to give us a 2× 10i strings of length i+1.
This corresponds to the polynomial:∑

k≥0

2 · 10kzk+1

In the GF domain, operations on the closed form GF and on the
normal GF are equivalent, thus we obtain:

∑
k≥0

2 · 10kzk+1 = 2z
∑
k≥0

10kzk = F (z)G(z)

= F (z)H(z) =
2z

1− 10z

This is an example of a more general rule — to count the num-
ber of strings that can be created by concatenating strings from
two disjoint sets, we simply multiply the GFs for those sets. Sec-
tion 3.2 extends this idea beyond concatenations to an expressive
set of string operations.

Set Definitions. We next establish a few definitions that we will use
throughout the remainder of this paper. For a set X , we use lX and
uX to refer to a lower bound and an upper bound on its cardinality
respectively, such that lX ≤ |X| ≤ uX . We use LX(z), UX(z)
to refer to GFs corresponding to lX and uX . We denote Ω as the
set of all values, M as the alphabet size and G(z) as the GF that
generates Ω.

Given an operation that combines two string sets A and B to
create a new set, the following expressions provide a method for
computing the cardinality of the new set. These expressions follow
directly from set theory.

1. For set intersection, the lower bound is zero (disjoint sets)
and the upper bound is cardinality of the smaller set (proper
subsets). Formally, lA∩B = 0, uA∩B = MIN(uA, uB).

2. For set union, the lower bound is the cardinality of the larger set
(proper subsets) and the upper bound is the sum of cardinalities
of both the sets (disjoint sets). Formally, lA∪B =MAX(lA, lB),
uA∪B = (uA + uB).

3. lA◦B = MAX(lA×|Bi| , lB×|Ai|), uA◦B = (uA×uB), in which
Xi is the set of all strings of length i in set X . The formula for



lA◦B is quite simple but still gives the sound lower bound. We
introduce a better formula later in section 3.2.

4. l¬A = |Ω| − uA, u¬A = |Ω| − lA
These formulas provide the basis of a procedure for computing the
cardinality of sets defined by the constraints in the SMC constraint
language.

Operating on Generating Functions. In the remainder of the pa-
per, we will use several functions which operate on the GFs do-
main. These functions are MINF, MAXF, DEDUP, and TRUNC with
their definitions as follows.

• An upper bound on the intersection of two string sets is the size
of the smaller set. Thus we define

F (z) = MINF(F1(z), F2(z)) such as

[zi]F (z) = MIN([zi]F1(z), [z
i]F2(z)) ∀i ≥ 0

This function returns the GF whose coefficient ai for any par-
ticular zi is the smaller coefficient of zi in F1, F2. For example,

MINF(1 + z + z2, 1 + 2z2) = 1 + z2

• A lower bound on the union of two string sets is the size of the
larger set. Thus we define

F (z) = MAXF(F1(z), F2(z)) such as

[zi]F (z) = MAX([zi]F1(z), [z
i]F2(z)) ∀i ≥ 0

This function returns the GF whose coefficient ai for any par-
ticular zi is the greater coefficient of zi in F1, F2. For example:

MAXF(1 + z + z2, 1 + 2z2) = 1 + z + 2z2

• In some cases, operations may have the potential of double
counting strings. Given a GF that may double count strings
of given length, we can obtain a conservative lower bound by
setting the non-zero coefficients to 1. Thus,

DEDUP(F (z)) =
∑

[zi]F (z)>0

zi

The DEDUP function simply returns a new GF whose coefficient
for zi is set to 1 if [zi]F (z) > 0. For example:

DEDUP(G(z)) = 1 + z + z2 + z3 + .. = 1/(1− z)

• Many string operations establish a maximum length for a string.
Thus we define the truncation operation TRUNC(U(z),Number)
as a polynomial comprising of only the Number + 1 first co-
efficients in the Taylor expansion of U(z). For example, given
the Taylor expansion of G(z) is

∑
i≥0 256

izi, we have

TRUNC(G(z), 3) = 1 + 256z + 2562z2 + 2563z3

The MINF, MAXF functions can be extended to work with more
than 2 arguments.

3.2 SMC Constraint Language
Figure 3 presents the SMC string constraint language. It is ex-
pressive enough to handle the real-world string manipulations per-
formed by many applications written in C, C++, and JavaScript [40].
We present an approach that computes sound bounds on the num-
ber of strings that satisfy a set of SMC constraints C. Our proce-
dure provides the following soundness guarantee — the number of
strings satisfying C is always between the lower and upper bounds.

In our discussion of how we apply GFs to solve the SMC
constraint language, we will use the following running example
throughout the remainder of this section:

Formula := ¬Formula
| Formula∧Formula
| Formula∨Formula
| CoreConstraint
| FullConstraint

CoreConstraint := Var ∈ RegExp
| Var = Var
| Var = Var ◦Var

RegExp := Character
| ϵ
| RegExp RegExp
| RegExp | RegExp
| RegExp∗

FullConstraint := contains(Var, ConstString)
| Number =strstr(Var, ConstString)
| length(Var)⊙ Number
| length(Var)⊙ length(Var)
| Var = ConstString

⊙ := <|≤|≥|>|=
Figure 3: Grammar for the SMC language interface. ◦ is the concat opera-
tion between two strings.

R1=(a|ab|ac|abc) ∧ R2=(c|b|ab|bc|abc)∧
Var1 ∈ R1 ∧Var2 ∈ R2∧

Var = Var1 ◦Var2 ∧Var ∈ (ab|c)∗

Generating Bounds for Regex Matching Constraints. Regular ex-
pression (regex) matching is commonly performed by string ma-
nipulation code. There is a simple mechanism for transforming
regular expressions (a formal description of a set of strings) into
a closed form representation of the cardinality of these sets (gen-
erating functions). Given an unambiguous 4 regex R, the following
lemma constructs a generating function for the number of strings
matching R. A proof of this lemma can be found in [42].

Lemma 3.1. Let A and B be two unambiguous regular expressions.
If AB, and A|B are unambiguous regexs, A(z) is the GF that enu-
merates A and B(z) is the GF that enumerates B, then

1. A(z) + B(z) = (a0 + b0) + (a1 + b1)z + (a1 + b1)z
2 + ...

is the GF that enumerates A|B,

2. A(z)B(z) is the GF that enumerates AB, and

3. 1
1−A(z)

expands to 1 +A(z) +Az2 +Az3 + ... is the GF that
enumerates A∗.

The above lemma gives a GF that precisely enumerates an
arbitrary unambiguous regex. For example, the GF of the regex
a is z (a1 = 1, ai = 0 for i ̸= 1), since there is exactly one
string and its length is 1. Applying the lemma, we obtain the GF
corresponding to a|b and ab are 2z (two strings of length 1) and
z2 (one string of length 2) respectively. The GF for all strings
created by an alphabet of size M is the GF for the regex .∗ or
(c1|c2| ... |cM)∗. Applying the first and third rules, we obtain
G(z) = 1

1−Mz
as the GF for all strings from an alphabet of size

M .
For an arbitrary regex A, Lemma 3.1 does not give a GF that

exactly enumerates A. For example, consider an ambiguous regex
(a|b)∗|ab. The corresponding GF derived from Lemma 3.1 is
1/(1 − 2z) + z2. For string length, say, 2, the above GF gives
5 strings. However, actually only 4 strings (namely aa, ab, ba,
bb) are possible. This imprecision arises because the string ab
is counted twice for given ambiguous regex (a|b)∗|ab. Thus,
Lemma 3.1 gives a sound upper bound for A regardless of its
ambiguity property. The GF corresponding to the sound lower
bound of any regex A is DEDUP(U(z)).

4 A regular expression is considered ambiguous if there is a string which
can be derived from it in more than one way.



length Var1 ◦Var2 L(z) U(z)
2 2 2 2
3 5 4 6
4 7 4 7
5 4 2 4
6 1 1 1

Figure 4: Example for the concat (◦) operator. The second column shows the
exact number of strings of specific length while the third and forth column
show the corresponding bounds computed by the GFs L(z) and U(z).

Bounds for a Single Constraint. We describe how to solve the
three types of CoreConstraint constraints that appear in SMC (see
Figure 3).

• For the constraint Var ∈ RegExp, we use Lemma 3.1 to
compute the GFs for the lower bound and upper bound for
Var . For example, the GF for the upper bound of Var ∈ R1

is U(z) = z + 2z2 + z3 and the GF for the lower bound is
DEDUP(U(z)) = z + z2 + z3.

• For the constraint Var = Var1 ◦ Var2, we rewrite it in the
same style as a regular expression to Var ∈ (Var1Var2).
Applying rule 2 of Lemma 3.1, we compute the U(z) of Var
by multiplying the two GFs for the upper bound of Var1 and
Var2.
To compute the L(z) of Var , the simple but imprecise approach
is to assign L(z) = DEDUP(L1(z) × L2(z)). To obtain a more
precise bound, we observe that number of possible strings of
length k of Var is at least equal to

MAX{[zi]L1(z) · [zj ]L2(z)},∀i ≥ 0, j ≥ 0 : k = i+ j.

From that observation, we calculate L(z) iteratively using

L(z) = MAXF(([zi]L1/2(z))z
i × L2/1(z), L(z))

for a set of specific i. The number and the selection of the i
terms can be tuned to trade off the precision of the lower bound
with the analysis time. In other words, the more i terms used
in the calculation, more precise the bound is, but the longer the
execution time. One important note, if there are constraints on
the contents of both Var and Var1 or Var2, we can no longer
reason about the lower bound using generating functions. In this
case, SMC assigns a lower bound of 0 to the respective sets to
maintain soundness.
In our aforementioned example, we compute the GFs for the
lower bound and upper bound of Var1, Var2 to be

L1(z) = U1(z) = z + 2z2 + z3

and L2(z) = U2(z) = 2z + 2z2 + z3

respectively (since both R1 and R2 are unambiguous regexs).
The GF for the upper bound of Var is then

U(z) = U1(z) · U2(z) = z6 + 4z5 + 7z4 + 6z3 + 2z2

To compute the lower bound, if we choose three values of i as
1, 2 and 3, we get

L(z) = MAXF(zL2(z), 2zL1(z), 2z
2L2(z), ..., z

3L2(z))

or L(z) = 2z2 + 4z3 + 4z4 + 2z5 + z6

Figure 4 presents a comparison between the computed bounds
and the actual results for string lengths between 2 and 6 of Var .

• The canonical translation step described below eliminates con-
straints of the form Var = Var ′ by replacing all uses of Var
with Var ′.

Bounds for Formulas. We next describe how SMC combines the
bounds for individual constraints to infer bounds for formulas over
multiple constraints. We analyze formulas over constraints using
the following three rules:

• Formula := Formula1 ∧ Formula2. It follows from set
theory that a conservative GF for the lower bound of Formula
is 0 and for the upper bound is U(z) = MINF (U1(z), U2(z)).
For example, consider the constraint S ∈ {a, ab} ∧ S ∈
{ab, abc}. We combine the GFs for the individual constraints,
which are z + z2 and z2 + z3, using this rule to obtain z2.

• Formula := Formula1 ∨ Formula2. For a disjunction, the
GF for the lower bound is L(z) = MINF(L1(z), L2(z)) and the
GF for the upper bound is U(z) = U1(z) + U2(z).

• Formula := ¬Formula1. We apply the set theory to derive
the GF corresponding to the upper bound of Formula to be
U(z) = G(z)−L1(z). Thus, the GF associated with the lower
bound of Formula is L(z) = G(z)− U1(z).

Canonicalizing Constraint Formulas. SMC next translates the in-
put formulas into a canonical representation by the following steps:

1. CNF translation: SMC first translates the formula into con-
junctive normal form (CNF), i.e., an AND of ORs.

2. Constraint Rewriting: SMC next finds all clauses that consist
of a single variable equality constraint and eliminates the those
constraints by replacing all appearances of the variable on the
left side with the variable on the right hand side. If there is a
clause that contains more than one equality constraints, SMC
removes the clause and will set the lower bounds of all variables
in the clause to 0.

3. Clause Grouping: SMC next groups clauses together based on
the variables that appear in the constraints that comprise the
clause. If a clause contains multiple constraints on different
variables, SMC rewrites the clause into several clauses. For
example, consider the clause A ∨ B in which A and B are
constraints on separate variables X and Y respectively. The
lower bound of X (Y ) is the lower bound computed from A
(B) (by assuming A (B) is true), while its upper bound is G(z),
the whole space, by assuming nothing (if we do not care about
the value of X (Y ), then A (B) can have any value).

4. Concat Graph Construction and Topological Sort: Con-
straints in one group can depend on the results of constraints
from another group. SMC constructs a constraint group depen-
dence graph and topologically sorts the groups of constraints.

5. Solving Constraints: Finally, SMC analyzes the constraints in
topological order. Bounds for constraints inside a clause are
computed directly from the constraint formula. If there is more
than one constraints in a clause, the clauses are combined with
the rule for ∨. Finally, the rule for ∧ is used to combine the
results for all constraints inside a constraint group.

3.3 Avoiding Imprecision
The CoreConstraint constraint subset is expressive enough to com-
pute sound cardinality bounds for string manipulations in real pro-
grams. However, the calculated bounds unnecessarily lose preci-
sion if the constraint solving rules are composed in a naı̈ve order.
For example, suppose we wish to count the number of strings in the
set S that do not contain the string patterns P1 or P2. If we count
in a way such that the ∧ inference rule is applied, we lose consid-
erable precision. Specifically, if we translate ¬S ∈ (.∗P1.

∗), we
obtain U1(z) = G(z) and L1(z) = G(z)− P1(z) in which P1(z)
is the upper bound GF corresponding to (.∗P1.

∗). Similarly, we ob-
tain U2(z) = G(z) and L2(z) = G(z)−P2(z) for ¬S ∈ (.∗P2.

∗)
constraint. Using the ∧ inference rule in the end, the GF for the up-
per bound and lower bound of S is U(z) = G(z) and L(z) = 0.
While these bounds are sound, they are very imprecise as they are
simply the initial bounds for S.

Intuitively, desugaring into the CoreConstraint constraint subset
loses precision because the transformation to generating functions



a b c a b ci
a b c a b 1

a b c a b 0
a b c a b 0

a b c a b 1
a b c a b 0

Table 3: Auto-correlation of string abcab. As computed in the table, the
corresponding polynomial is c(z) = x3 + 1.

loses information about the content of the strings. Preserving infor-
mation about the content enables a more precise reasoning about
the bounds on the cardinality of string sets. Consider the previous
example problem of counting strings S that do not contain either
P1 or P2. To compute this without losing precision, we can lever-
age correlations between P1 and P2 to obtain more precise bounds
on S, and not lose the content information of P1 and P2 by eagerly
transforming to GFs of these sub-operands.

Using this intuition, we introduce a set of higher-level operators,
which allow picking the right rule applications — these operators
correspond directly to their counterparts in common programming
languages such as C and JavaScript, such as contains and strstr.
We present these higher-level constraints as the FullConstraint
language, which is an extension of our simple CoreConstraint
subset, and explain how to compose them.

Computing Bounds for SMC Constraints. We next present how
SMC analyzes the higher-level FullConstraint string constraints.

• contains Constraints: The contains operation checks if the
string pattern p = p0p1...pn−1 appears in the string s. The
generating function F0 that enumerates precisely the size of the
set of strings s that do not contain p is given by the following
equation:

F0(z) =
c(z)

zn + (1−Mz)c(z)
(3)

where c(z) is the auto-correlation polynomial of p.
The auto-correlation polynomial c(z) of the string p = p0p1...pn−1

is the summation

c(z) =
∑

0≤i<n

ciz
i,

where

ci =

{
1 if 0 ≤ ∀j ≤ n− 1− i, pj = pj+i

0 otherwise

Sedgewick et al. provide a proof for Equation 3 [42]. Subtract-
ing the GF F0 for string set not containing p from the GF G(z)
for Ω yields the GF F1(z) for the set of strings that contain p:

F1(z) = G(z)− F0(z) =
zn

(1−Mz)[zn + (1−Mz)c(z)]
(4)

The example of c(z) for string p = abcab is shown in Table 3.
As in Equation 4, the GF that enumerates all ASCII strings
containing p is

Fs(z) =
z5

(1− 256z)[z5 + (1− 256z)(1 + z3)]

From Fs(z), by applying Lemma 2, we get a1 = a2 = a3 =
a4 = 0, as there is no string of length from 0 to 4 that contains
abcab. We also get a5 = 1, a6 = 512, ... as the number of
strings containing S of length 5, 6 respectively.

• strstr Constraints: The strstr operator returns the position
t of the first occurrence of a constant pattern P = p0p1...pn−1

in the string S. If there is no such position t, strstr returns a
negative number. A constraint on a strstr operation gives both
the constant pattern and the position returned by the operation.

If t is negative, we translate the constraint into an equivalent
negated contains constraint. For t ≥ 0, we use the following
equation to compute an exact GF for the size of the set S:

F [P, t, n](z) = E
zn+t

1−Mz
(5)

in which

E = [zt]F0(z)−
∑

0<i≤t,C[i]=1

[zn+t−i]F [P, t− i, n](z)

The GF F0(z) enumerates the set of strings that do not contain
P and C is the auto-correlation table for P . We represent S as
A ◦ P ◦ B with conditions that length(A) = t and there is
no occurrence of P in A ◦ P other than the postfix P . Note
that the latter condition is not equivalent to ¬A.contains(P )
because there are cases when a postfix of A combined with a
prefix of P produce a string that contains P . In other words, if
there exist some C[i] = 1(0 < i ≤ t) in the auto-correlation
table C for P , we have to eliminate all A ending with P [0..i−
1] that have no occurrence of P . The number of such A is
equal to the number of S′ = A ◦ P [i..n − 1] that satisfy the
strstr(S′, P ) = t− i.

• length Constraints: The length operation returns the length
of a string. Given the set of strings S =

∪
i≥0 Si, whose

cardinality is represented by GF F (z), the length operators of
S decide which Si is eliminated from S or the i-th coefficient
in Taylor expansion of F (z) is constrained to 0. For example,
GF for S with no constraints is G(z) = 1

1−Mz
. The constraint

length(s) > 2 restricts S to
∪

i>2 Si and eliminates S0, S1,
and S2. The new GF for S is G′(z) = 1

1−Mz
−1−Mz−M2z2

which gives a0 = a1 = a2 = 0. This is where the TRUNC
function is used. Table 2 presents inference rules for length
constraints as well as the SMC constraint language.

Analyzing Combinations of Constraints. We next discuss how
the SMC tool combines certain types of constraints together and
analyzes them as a group in order to improve precision. SMC
combines constraints in the following cases:

• Conjunctions of contains Constraints: SMC groups to-
gether contains constraints and analyzes the combination at
once to improve the precision of the lower bound. The gener-
ating function for the lower bound of the number of strings not
containing any of the string patterns P1, P2, ..., PN is given by:

B(z) =

∏
i≤N Ci(z)

D + (1−Mz)
∏

i≤N Ci(z)
, (6)

where

D =

N∑
i=1

Z|Pi| ×
∏

j≤N Cj(z)

Ci(z)

|Pi| is the length of Pi

Ci(z) is the auto-correlation polynomial of Pi

Equation 6 can be proven correct under the assumption that
the patterns have no overlap by a straightforward extension of
the proof given by Sedgewick et al. [42]. If the patterns have
overlap, the GF B(z) undercounts the number of strings and
remains a conservative lower bound. The GF B(z) is a tighter
lower bound than the one computed by separately transforming
each constraint by using the ∧ inference rule. To make this more
concrete, let’s revisit our previous example of the set S that
does not contain P1 or P2. By separately and eagerly translating
the constraints into generating functions, we represent S as
¬S.contains(P1) ∧ ¬S.contains(P2). Then GFs for the



Expression L(z) U(z)
Var ∈ RegExp DEDUP(URegExp(z)) URegExp(z)

contains(Var, ConstString) zn

(1−Mz)[zn+(1−Mz)c(z)]

¬ contains(Var, ConstString) c(z)
zn+(1−Mz)c(z)

Number = strstr(Var, ConstString) As in Equation 5
Var = Var1 ◦Var2 As discussed in Section 3.2 U1(z)× U2(z)

length(Var) > Number L(z)− TRUNC(L(z),Number) U(z)− TRUNC(U(z),Number)
length(Var) ≤ Number TRUNC(L(z),Number) TRUNC(U(z),Number)

length(Var) = Number zNumber ([zNumber ]L(z)) zNumber ([zNumber ]U(z))
Formula = ¬Formula G(z)− U1(z) G(z)− L1(z)

Formula = Formula1 ∧ Formula2 0 MINF (U1(z), U2(z))
Formula = Formula1 ∨ Formula2 L(z) = MAXF(L1(z), L2(z)) U(z) = MINF ((U1(z) + U2(z), G(z))

Table 2: Inference Rules for the SMC Constraint Language.

bounds of S computed by Equation 4 and the inference rule
∧ are L(z) = 0 and U(z) = MINF(U1(z), U2(z)).
With Equation 6, we improve the lower bound of S to L(z) =
B(z), which is more precise than 0.

• Conjunctions of /∈ Constraints: Given a conjunction of /∈
constraints ¬S ∈ R1∧¬S ∈ R2...∧¬S ∈ Rn, SMC translates
the formula into the representation ¬S ∈ (R1 | R2 | ... | Rn).
Since (R1 | R2 | ... | Rn) is a regular expression, SMC can
then apply the inference rule for S ∈ Regex and Formula =
¬Formula to produce a better lower bound.

• Conjunctions of ∈ Constraints: To handle a conjunction of ∈
constraints S ∈ R1∧S ∈ R2...∧S ∈ Rn, SMC first translates
all regular expression Ri to their corresponding finite state au-
tomaton (FSA). After that, it computes the product automaton
(or the intersection automaton) of all n generated FSAs and re-
translates the product automaton into a final regular expression
Rp. The number of S satisfying the given constraints equals the
number of S in S ∈ Rp. SMC finally applies the ∈ inference
rule to S ∈ Rp and returns a more precise upper bound.

3.4 Sound Approximations
The MINF, MAXF, and DEDUP operators are formalized in terms of
the individual coefficients and SMC cannot directly express these
operators in closed form. SMC instead leverages Mathematica to
compute the first N (configured by users and should be the maxi-
mum length of the input) coefficients and generates a polynomial
approximation of the generating function. We note that the MAXF
and DEDUP operators are only used in the context of lower bounds,
and thus it is conservative to truncate the remaining terms. The
MINF function is used in the context of computing upper bounds.
In this case, we conservatively replace the truncated portion of
the generating function with terms from one of the input generat-
ing functions. Another improvement which requires losing closed
form is the ∧ rule. We notice that A ∧B ≥ MAX(A + B − Ω, 0),
hence we set LA∧B = MAXF(LA + LB − Ω, 0) to obtain a better
lower bound for the ∧ inference rule than zero.

4. Implementation and Evaluation
We implement the SMC model counter design as a tool in C
and Python with 2,680 and 1,160 lines of code respectively. SMC
queries Mathematica 9.0.1 through the Mathlink interface for sym-
bolic manipulation [9, 50]. The tool takes as input a set of string
constraints and translates them into GFs. After this, SMC solves
for the coefficients in response to client’s analysis queries. In our
experience, the framework can efficiently solve for the coefficients
of 1,000 character strings in less than a second. Our SMC imple-
mentation is open source and available online [13].

First, we show how SMC is useful in a number of quantitative
and qualitative analyses through case studies. Second, we directly
compare the precision and performance of our technique to publicly
available quantitative analysis tools in Section 4.3. Finally, we

demonstrate the expressiveness of the SMC constraint language in
handling counting queries of path constraints extracted from real-
world JavaScript applications in Section 4.4. All our experiments
were conducted on 64-bit Ubuntu version 12.04 with a 2.9GHz
i7-3520M processor and 8 GiB memory. All reported times are
averaged over 10 runs.

4.1 Case Study: Password Strength Meters
SMC can be used to analyze the comparative efficacy of the
password strength meters employed in real systems. We study
the obscure utility used on UNIX systems and three password
strength meters employed in the Microsoft password checker
page [10], the Ebay website [4] and the Drupal web application [3].

obscure. The obscure utility checks if a new password passes a
number of security checks. Our running example describes the part
of obscure that leaks information about the current password. An
attacker who can infer the executed path in obscure can reduce
his uncertainty about the new password, given the knowledge of
the old password. Consider the path executed by the inputs new p
="abc@!xy" and old p = "z" (same execution path as the run-
ning example in Figure 1), where the attacker aims to guess the
number of possible solutions for new p. The constraints are sim-
ple and SMC returns the bounds within 1 second. SMC reports
an upper bound of 91,195,154,067,474,198,297,600 and a lower
bound of 46,402,149,423,095,961,815,551 for the number of new
passwords of length 10 that are not similar to the old password
("z"). Through manual calculations, we confirm that the bounds
are sound, and in fact, the true value equals the upper bound re-
ported by SMC.

We extend the study of password strength meters to popular
web services which encourage users to choose better passwords.
In this experiment, we first compute the total number of acceptable
passwords for each strength scale (weak, fair, good / medium and
strong) by the following three websites: Ebay [4], Drupal [3], and
Microsoft [10] (the logic for which was reported in a recent pa-
per [24]). We find that there is considerable variance in the number
of passwords acceptable to each site’s policy. This can be used to
estimate the effort in a password guessing attack against each web-
site, for instance, in computing the attacker’s guessing entropy [44].
Next, we measure the number of passwords that intersect with
the popular password database dictionary of 3,106 words available
from the John-the-Ripper (JtR) password cracking tool [7].
The larger the intersection set size, the greater the number of dictio-
nary words permitted to be passwords despite the strength checks.
This can be used to directly compare the password strength me-
ters used by our subject sites relative to the JtR dictionary set. The
result of this experiment is summarized in Table 4.

Building the Strength Meter Model. Given the design choices
of three meters, we build a regular expression to represent all
the possible passwords acceptable by each policy. Largely, these



Strength L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10 Total

E
bay

Invalid JtR 7 4 80 295 505 932 467 317 58 13 2678
Ω 72 1552 37152 9.34 · 105 2.4 · 107 6.2 · 108 1.61 · 1010 4.18 · 1011 1.09 · 1013 2.82 · 1014 2.94 · 1014

Weak JtR 0 0 0 1 43 185 115 64 4 1 413
Ω 0 3632 2.24 · 105 1.14 · 107 5.53 · 108 2.67 · 1010 1.29 · 1012 6.35 · 1013 3.15 · 1015 1.58 · 1017 1.62 · 1017

Medium JtR 0 0 0 0 0 0 2 1 0 0 3
Ω 0 0 1.12 · 105 1.29 · 107 1.07 · 109 7.73 · 1010 5.28 · 1012 3.48 · 1014 2.26 · 1016 1.45 · 1018 1.47 · 1018

Strong Ω 0 0 0 1.62 · 106 2.92 · 108 3.47 · 1010 3.44 · 1012 3.1 · 1014 2.63 · 1016 2.14 · 1018 2.17 · 1018

M
icrosoft

Weak JtR 7 4 80 296 549 1119 585 0 0 0 2640
Ω 72 5184 3.73 · 105 2.69 · 107 1.93 · 109 1.39 · 1011 1 · 1013 0 0 0 1.02 · 1013

Medium JtR 0 0 0 0 0 0 0 385 62 14 461
Ω 0 0 0 0 0 0 0 7.22 · 1014 5.2 · 1016 3.74 · 1018 3.8 · 1018

D
rupal

Weak JtR 7 4 80 296 549 0 0 0 0 0 936
Ω 72 5184 3.73 · 105 2.69 · 107 1.93 · 109 0 0 0 0 0 1.96 · 109

Fair JtR 0 0 0 0 0 1119 467 317 58 13 1974
Ω 0 0 0 0 0 6.2 · 108 1.61 · 1010 4.18 · 1011 1.09 · 1013 2.82 · 1014 2.94 · 1014

Good JtR 0 0 0 0 0 185 115 64 4 1 369
Ω 0 0 0 0 0 2.67 · 1010 1.29 · 1012 6.35 · 1013 3.15 · 1015 1.58 · 1017 1.62 · 1017

Strong JtR 0 0 0 0 0 0 2 1 0 0 3
Ω 0 0 0 0 0 1.12 · 1011 8.72 · 1012 6.58 · 1014 4.88 · 1016 3.59 · 1018 3.63 · 1018

Table 4: Summary of results for different password meter strength scales in Ebay, Microsoft and Drupal. For string length L, Ω is the total possible passwords
and JtR stands for passwords that are intersected with in John the Ripper database.

meters measure the strength of a password based on its length and
the number of character sets (lowercase, uppercase, symbols and
digits) it includes. Ebay classifies a password as invalid, weak,
medium or strong if it has one, two, three or four different character
sets, respectively. Microsoft classifies a given password as weak,
medium or strong based on its length (0-8, 8-13, 13 and above) and
very strong if it contains all four character sets. Drupal rejects all
passwords of length smaller than 6 and considers them as weak. It
also checks the number of character sets that the password includes
to measure its strength. In addition to these differences, the set
of allowed symbol characters are slightly different in each meter.
Given these designs, we build the regular expression for each scale
for all three websites. For example, the regular expression for
invalid passwords in Ebay meter (as described by the policy [4])
is [a-z]*|[A-Z]*|[0-9]*|[ @#? ˆ &*-+]*. We pass this regular
expression to SMC and compute the size of feasible set. Our tool
gives precise result for all scales in Ebay, Drupal and Microsoft in
0.314, 0.350 and 0.329 seconds respectively.

Comparing the Password Meter’s Strength. We compute how
many passwords in the JtR set comprising of 3,106 dictionary
words satisfy each policy. We first synthesize a regular expression
of JtR set as R1 by getting a union of all passwords. Thus, to
compute the number of passwords satisfying a particular policy
represented by a regular expression R2, we simply give the two
regular expressions to SMC. Our tool measures the intersection of
R1, R2 and returns the GFs for the bounds of feasible set in 228.86,
206.10 and 4.48 seconds for Ebay, Drupal and Microsoft, respec-
tively. Note that a large fraction of this time is spent for computing
the complex regex intersection. Our upper bounds are exactly equal
to the precise numbers of passwords computed by actually check-
ing each of the passwords against the strength meters. We report
that Ebay rejects a majority of the passwords in the set and rates
only 3 of them as medium. There is no JtR dictionary word that
qualifies as a strong or best password in Microsoft meter, since
no password in the database has a length greater than 13. On the
other hand, most of the JtR’s passwords are considered fair or good
passwords as per the Drupal policy. Although Drupal does further
check with the registered user’s account, it is more likely that JtR
dictionary attack will succeed on their site than on the other two.
Table 4 presents more detailed results for each strength meter.

4.2 Case Studies: UNIX utilities
One application where SMC could be useful is quantifying leakage
in systems that compute functions over encrypted data — for exam-
ple, to mitigate the impact of data breaches in public cloud-hosted
applications [38, 46]. Concretely, the recently proposed AutoCrypt
system transforms legacy applications to operate on encrypted in-
puts by using partially homomorphic encryption techniques [46].
After the transformation, operations on encrypted inputs are trans-
formed to homomorphic computation on encrypted text (e.g. string
match using searchable encryption). While each individual homo-
morphic operation is privacy-preserving, a powerful adversary can
learn the order of executed operations, and thus the execution path5.
This can lead to information leakage about the encrypted file con-
tent 6. SMC can be used to quantify this leakage precisely for any
given input.

We quantify leakage in 2 string manipulation utilities from the
BUSYBOX v.1.21.1 package (wc and grep) [1], and one utility
from the COREUTILS v.8.21 package (csplit) [2]. For these file
processing utilities, we use one concrete input file as a sample input
and measure how much information would be leaked if they operate
on homomorphically encrypted inputs as in AutoCrypt [46]. The
first section of Table 5 presents the results. For these calculations,
we assume that all the inputs are equally likely in the universal
set. That is, they are drawn randomly from an uniform probability
distribution. Thus, the minimum number of bits leaked is computed
as log2G− log2U [43], where G is number of all possible files and
U is the upper bound of SMC’s model count.

grep. We run grep with the −o option to find all occurrences of
the pattern “information” in an encrypted input file. The input file
consists of 11 lines (total 629 bytes) containing 3 occurrences of
the pattern — on Lines 4, 8, and 11. We assume that all string op-
erations, such as substring match, are converted to their equivalent
privacy-preserving homomorphic operation on encrypted data. By
observing the execution path of grep, an attacker learns how many
and which specific lines in the input file contain the searched pat-
tern. We ran grep with SMC and it reports in 48.9 seconds that an
adversary can infer at least 268.1 bits of information by learning

5 This could be possible if the cloud hypervisor is malicious and can monitor
the control flow, or via measurements of side channels such as execution
timing by malware running in the VM.
6 For a more detailed explanation, we refer readers to the reduced indistin-
guishability property [46]
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Test with 4 utilities
obscure 10 0.113 5 0.057 0.113 0.3 0.001 0.113 0.3 0.001 N/A N/A
grep 629 231.9 32 268.1 ≈ 5032 48.9 0.95 355.3 227.8 0.017 N/A N/A
wc 629 299.3 534 747.0 ≈ 5032 185.0 0.85 750.1 214.7 0.001 N/A N/A
csplit 629 96.0 44 110.6 ≈ 5032 39.1 0.98 179.4 147.3 0.014 N/A N/A
Comparison with FuzzBALL

obscure∗ 6 ≈ 0 93 ≈ 0 ≈ 0 0.5 0.06 ≈ 0 0.5 0.06 # 2 hr
strstr(input, "abc")!=NULL 5 22.4 1 22.4 22.4 0.4 0 22.4 0.4 0 # 2 hr
strstr(input, "abc")!=NULL 4 23.0 1 23.0 23.0 0.4 0 23.0 0.5 0 13.5 150
match regex(input, "(a|b)∗") 4 28.0 1 28.0 ≈ 32 0.4 0.13 ≈ 32 0.4 0.13 # 2 hr
Comparison with Castro et al. [23]
Ghttpd 620 N/A 8 63.4 4960 9.2 0.99 80.2 45.6 0.003 ≈ 248 ≈ 1
Null HTTPd 500 N/A 6 239.1 4000 4.6 0.95 248.0 17.4 0.002 ≈ 500 ≈ 8
Comparison with QUAIL

strstr(input, "ab")=2 5 16.00 1 16.00 16.00 0.2 0 16.00 0.2 0 16.00 6.1
strstr(input, "ab")=2 7 16.00 1 16.00 16.00 0.2 0 16.00 0.2 0 16.00 648
input.contains("ab") 5 14.00 1 14.00 14.00 0.3 0 14.00 0.3 0 14.00 5.1
input.contains("ab") 7 13.42 1 13.42 13.42 0.3 0 13.42 0.3 0 13.42 606

N/A : Not available # : The tool did not terminate in 2 hours. *: Executed with inputs discussed in Section 2.3
Table 5: Summary of evaluation results of SMC for UNIX utilities and comparison to previous works. Normal, precise - SMC are running without and with
concatenation optimization respectively (see Section 3.2).

the executed path; i.e. over all possible (28)629 possible files, the
knowledge of the executed path reduced the uncertainty by 2268.1.
If the attacker learns just the number of occurrences, not the spe-
cific lines, the leakage is 231.9 bits.

wc. The wc utility counts the number of words, new line characters
as well as total number of characters in the input file. Under the
same encrypted file used in the grep case study, we ran the wc
utility. The input file has 11 newline characters and 77 spaces. By
observing the executed path, the attacker can learn the positions of
the newlines and spaces, thereby learning some information about
the encrypted input. The executed path consists of 534 constraints,
and SMC computes the cardinality of the solution set in roughly
215 seconds (about 3.5 minutes). The leakage (or reduction in
uncertainty) is reported to be between 747.0 to 750.1 bits. If the
attacker only knows the number of line-breaks and spaces, not their
precise positions as gleaned from the program execution path, the
leakage is roughly 3 times lower. Thus, the execution path reveals
significantly more information than one might naı̈vely expect.

csplit. The csplit utility splits the input file into two parts: one
has no occurrence of the input pattern and other starts with the
pattern. csplit returns two numbers a, b as the size of each
file. If an attacker obtains a and b, he can infer the file content
as a string S of length a + b and the first appearance of the
pattern in S is at position a. We choose the split pattern as the
word “information” and csplit returns a and b as 206 and 423
respectively. In terms of SMC’s constraints, it is equivalent to
strstr(S, "information") = 206 and strlen(S) = 629.
SMC reports a precise value of 96.0 bits of leakage for input file
content. If the attacker knows the exact execution path, he learns
the specific line number and the location of pattern used to split
the file. In such a case, the leakage is higher — SMC reports it
to be 110.6 to 179.4 bits. The total number of constraints in this
calculation is 44, which takes 147.3 seconds to compute.

4.3 Comparison to Existing Techniques

Comparison with FuzzBALL. In their previous work, Newsome et
al. presented a technique to measure the quantitative influence of
an input on the program output based on the size of the feasible
output value set [36]. This technique is employed in FuzzBALL and

enables us to compute the number of possible outputs in a program.
By considering the input as if it were an output, i.e. assigning
the output as input at the end of execution, we use FuzzBALL to
quantify the number of inputs that drive the execution to a specific
path. We use FuzzBALL and SMC to calculate the cardinality of
several string sets. One limitation of FuzzBALL when measuring
influence is that it currently does not work with output values that
are larger than a single Vine “register” (64 bits) [5]. SMC can work
with arbitrary size inputs and report results for strings that contain
thousands of characters. To compare the precision and performance
of the two tools, we selected benchmarks with input lengths not
larger than 8. Section 2 in Table 5 presents results for all test cases.
These results show that SMC is faster and returns more precise
results than FuzzBALL. Out of 4 small test cases, FuzzBALL did not
return results for 3 of them after 2 hours of running, while SMC
ran within 0.5 seconds for every test. SMC computed the sound
bounds of leakage in all test cases and returned precise leakage for
2 of them (precise of ϵ = 0). FuzzBALL, on the other hand, did not
return a precise result for any test case.

Comparison to Privacy-preserving Bug Reporting. Castro et al.
examined the Ghttpd and Null HTTPd servers for better bug re-
porting [6, 11, 23]. They provided a solution to enhance users’ pri-
vacy in the bug-reporting process by obfuscating the bug report.
One part of their work informs the users of how much information
is leaked in the obfuscated content. They also compute an upper
bound of privacy loss as SMC does, but their technique differs.
First, they calculate a bound for each input byte and then com-
bine the results to obtain an overall bound. We ran both Ghttpd
and NULL HTTPd with the path condition corresponding to the in-
put used by Castro et al. [23]. The bounds computed by SMC are
consistent with their upper bounds. When computed by the precise
version, our upper bounds are smaller and give a better range.

Comparison to QUAIL. QUAIL, a recently introduced tool with a
customized input language, allows analysts to supply probability
distributions for the inputs and computes the output probability dis-
tribution [20]. QUAIL’s input language supports binary operators,
integer arithmetic as expressions, and array datatypes, thereby sup-
porting imperative code constructs. Internally, it builds a Markov
chain model for input programs. SMC, in contrast, axiomatizes
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Figure 5: Bounds on no. of solutions for Kaluza’s small test cases
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Figure 6: Bounds on no. of solutions for Kaluza’s big test cases

the complex string functions and employs GFs as its mechanism.
To evaluate the QUAIL tool (available online), we hand-coded
a simple implementation of strstr and contains. Under the
input strstr (input, "ab")=2 or input.contains("ab"),
QUAIL produces a result after 10 mins for an input size of 7 char-
acters. But for input size 20, it did not finish even after 2 hours.
SMC, however, finished and returned the computed leakage within
one second. Both tools are equally precise in this case study.

4.4 Expressiveness: JavaScript Benchmarks
To evaluate the expressiveness of SMC’s constraint language, we
tested it with a large set of publicly available benchmarks which are
path conditions from real-world JavaScript application traces. The
path conditions were originally collected by Kudzu and translated
into the constraint language of the Kaluza string solver [40]. To
work with these benchmarks, we wrote a wrapper to translate the
Kaluza constraint language to the SMC language. Of the 18,901
satisfiable cases in the benchmark, SMC handles and reports the
number of satisfiable strings for 17,559 test cases marked “small”
and 1,342 “big” cases in the original benchmarks.

4.4.1 Results
We run the model counting analysis for the both small and big
benchmarks with the maximum string length limited to 50.

Small test cases. The results for the small test cases are relatively
precise since the constraints are quite simple and less in number. On
an average, there are 2.05 constraints per benchmark. The model
count for all 17,559 small test cases are plotted in Figure 5. The
total execution time is 1 hour 9 minutes with an average of 0.235
seconds per benchmark (median 0.327 seconds).

Big test cases. We find that the model count in the big test cases (av-
erage 187 constraints per benchmark), varies from 0 (unsat cases)
to all possible strings (unconstrained cases). Figure 6 presents a plot
of minimum and maximum model count for each big test case com-
puted by SMC. Because of the ∧ inference rule, SMC often returns
the lower bound of 0 to maintain soundness. The total execution
time for 1,342 benchmarks is 1 hour 58 minutes 20 seconds with
average of 5.291 seconds per benchmark (median 6.190 seconds).

Precision. SMC computes the exact number of solutions (i.e. ϵ = 0
for precision) for 21.1% and 94% of big and small test cases re-
spectively. As discussed before, a big test case may have hundreds
of constraints. Thus they are likely to contain a constraint that SMC
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Figure 7: Constraints used in Kaluza’s benchmarks & 7 case-studies

handles imprecisely, hence giving a lower bound as 0. The gap be-
tween minimum and maximum model count is significant in 70%
of big test cases with the average precision of ϵ = 0.428. On the
other hand, the precision of small test cases is better (the average
precision is ϵ = 0.01) as they are less likely to involve constraints
that SMC handles imprecisely.

4.5 Usage of Constraints
We report the composition of constraint types in Figure 7 for
Kaluza’s benchmarks, six string programs (4 UNIX utilities
and Null HTTPd, Ghttpd) and the password case study. Since
Kaluza’s language does not include strstr or contains, only
regex, concat, comparison with const string and length operators
are used. The strstr operator is not present in the constraints of
obscure example because we translate strcasestr to contains
constraint directly. The 6 small utilities use all the string opera-
tions except regex. For studying password strength meter, we use
24 regular expression constraints in total for three websites. In our
experiments, all the supported constraints for strings are thus used
multiple times. The most commonly used constraint is concatena-
tion (89,771 times) whereas regexes are used only 24 times.

5. Related Work
Abraham de Moivre introduced the concept of generating functions
in 1730 to solve the general linear recurrence problem [25]. Since
then, it has been widely used in several fields. In computer sci-
ence, GFs are use in combinatorial problems [41], analysis of algo-
rithms [42], probabilistic graphical models [32], etc. SMC uses it
for addressing the model counting problem.

Today, although several model counting tools are available,
none of them supports string operations directly. We briefly dis-
cuss the early work on model counting in both boolean and non-
boolean (integer) domains [35]. In the boolean domain, Birnbaum
et al. present an algorithm for counting models of propositional
formulas. They extend the Davis-Putnam procedure which checks
the validity of a first-order logic formula [21]. In non-Boolean
domains, Barvinok’s algorithm uses Integer Linear Programming
(ILP) to count integer models [16]. LattE [8] implements the en-
hanced version of Barvinok’s algorithm [48]. RelSat solves in-
stances of propositional SAT using constraint satisfaction problem
(CSP) look-back techniques [18]. The extended tool determines the
exact number of solutions [12]. But it uses approximate model
counting (potentially unsound) for propositional formulas. JPF-
QIF uses it to compute upper bound on QIF for Java programs [37].

Apart from tools discussed in Section 1, Backes et al. use LattE
based integer model counting in DisQuant tool to quantify infor-
mation leakage [15]. Klebanov count the size of the equivalence
classes for QIF using LattE [30], and show that model counting
is the main bottleneck. Both do not reason about strings and also
suffer from the path-explosion problem.

FuzzBALL dynamically collects the symbolic path constraints
over bitvectors (which represent strings) and uses strategies such as
sampling, enumeration and probabilistic model counting to calcu-
late the output influence [5]. Newsome et al. [36] use these tech-
niques for false positive elimination in taint-tracking. However the
tool is not always sound, especially when it uses the sampling to es-



timate the model count. QUAIL uses Markovian models to measure
information leakage and is designed to support imperative code
constructs [20]. As compared to QUAIL, SMC has much better
scalability and efficiency for handling string data types.

6. Conclusion
We present SMC, an automatic tool for model counting over an ex-
pressive string constraint language. SMC is practical, precise and
is able to handle constraints from real-world programs. Key to its
success is a combinatorial analysis technique based on generating
functions that can be used in several quantitative analysis applica-
tions on structured datatypes in the future.

7. Acknowledgements
We thank the anonymous reviewers of this paper for their help-
ful feedback, and our shepherd Madhusudan Parthasarathy for his
insightful comments and suggestions for preparing the final ver-
sion of the paper. We thank Stephen McCamant, Chin Wei Ngan,
Asankhaya Sharma, Ratul Saha and Adi Yoga Sidi Prabawa for
their comments on an early presentation of this work. This work
is supported by the Ministry of Education, Singapore under Grant
No. R-252-000-495-133 and the National Science Foundation un-
der grant CNS-1228995.

References
[1] BusyBox. http://www.busybox.net/.

[2] CoreUtils. http://www.gnu.org/software/coreutils.

[3] Drupal Password Strength Meter. https://drupal.org.

[4] eBay Password Strength Meter. https://ebay.com.

[5] Fuzzball. http://bitblaze.cs.berkeley.edu/fuzzball.html.

[6] Ghttpd Vulnerability. http://www.securityfocus.com/bid/5960.

[7] John the Ripper. http://www.openwall.com/john/.

[8] LattE Tool. http://www.math.ucdavis.edu/~latte/.

[9] MathLink API. http://reference.wolfram.com/mathematica/guide/
MathLinkAPI.html.

[10] Microsoft Password Strength Meter. https://www.microsoft.com/
security/pc-security/password-checker.aspx.

[11] Null HTTPd Vulnerability. http://www.securityfocus.com/bid/5774.

[12] RelSat Tool. http://code.google.com/p/relsat/.

[13] SMC Tool Online. https://github.com/loiluu/smc.

[14] F. Bacchus, S. Dalmao, and T. Pitassi. Solving #SAT and Bayesian Inference
with Backtracking Search. Journal of Artificial Intelligence Research, 2009.

[15] M. Backes, B. Kopf, and A. Rybalchenko. Automatic Discovery and Quantifi-
cation of Information Leaks. In Proceedings of the 30th IEEE Symposium on
Security and Privacy, 2009.

[16] A. I. Barvinok. A Polynomial Time Algorithm for Counting Integral Points in
Polyhedra When the Dimension Is Fixed. In Proceedings of the 34th Annual
Symposium on Foundations of Computer Science, 1993.

[17] R. J. Bayardo and J. D. Pehoushek. Counting Models using Connected Compo-
nents. In Proceedings of the AAAI National Conference, 2000.

[18] R. J. Bayardo, Jr. and R. C. Schrag. Using CSP Look-back Techniques to Solve
Real-world SAT Instances. In Proceedings of the 14th National Conference
on Artificial Intelligence and Ninth Conference on Innovative Applications of
Artificial Intelligence, 1997.

[19] K. Beyls and E. H. D’Hollander. Generating Cache Hints for Improved Program
Efficiency. Journal of Systems Architure, 2004.

[20] F. Biondi, A. Legay, L.-M. Traonouez, and A. Wasowski. QUAIL: A quantitative
security analyzer for imperative code. In Proceedings of the 25th International
Conference on Computer Aided Verification, 2013.

[21] E. Birnbaum and E. L. Lozinskii. The good old davis-putnam procedure helps
counting models. Journal of Artificial Intelligence Research, 1999.

[22] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic. Genera-
tion of High-Coverage Tests for Complex Systems Programs. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
2008.

[23] M. Castro, M. Costa, and J.-P. Martin. Better Bug Reporting with Better Privacy.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.
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