
SynGuar: Guaranteeing Generalization in Programming by
Example

Bo Wang
National University of Singapore

Singapore
bo_wang@u.nus.edu

Teodora Baluta
National University of Singapore

Singapore
teodora.baluta@u.nus.edu

Aashish Kolluri
National University of Singapore

Singapore
e0321280@u.nus.edu

Prateek Saxena
National University of Singapore

Singapore
prateeks@comp.nus.edu.sg

ABSTRACT
Programming by Example (PBE) is a program synthesis paradigm in
which the synthesizer creates a program that matches a set of given
examples. In many applications of such synthesis (e.g., program
repair or reverse engineering), we are to reconstruct a program that
is close to a specific target program, not merely to produce some
program that satisfies the seen examples. In such settings, we wish
that the synthesized program generalizes well, i.e., has as few errors
as possible on the unobserved examples capturing the target func-
tion behavior. In this paper, we propose the first framework (called
SynGuar) for PBE synthesizers that guarantees to achieve low gen-
eralization error with high probability. Our main contribution is a
procedure to dynamically calculate how many additional examples
suffice to theoretically guarantee generalization. We show how
our techniques can be used in 2 well-known synthesis approaches:
PROSE and STUN (synthesis through unification), for common
string-manipulation program benchmarks. We find that often a few
hundred examples suffice to provably bound generalization error
below 5% with high (≥ 98%) probability on these benchmarks. Fur-
ther, we confirm this empirically: SynGuar significantly improves
the accuracy of existing synthesizers in generating the right target
programs. But with fewer examples chosen arbitrarily, the same
baseline synthesizers (without SynGuar) overfit and lose accuracy.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; General programming languages.

KEYWORDS
Program Synthesis, Generalization, Sample Complexity
ACM Reference Format:
Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena. 2021. Syn-
Guar: Guaranteeing Generalization in Programming by Example. In Pro-
ceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 29th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece,
https://doi.org/10.1145/3468264.3468621.

August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3468264.3468621

1 INTRODUCTION
Program synthesis is the goal of automatically generating computer
programs for a given task. This vision has existed for over at least
four decades [52, 56, 57]. One of the mainstream approaches to-
wards this goal is programming by example (or PBE) [27]. In its
simplest form, a PBE synthesizer is given access to an oracle that
can generate correct input-output (I/O) examples for the unknown
target program. The synthesizer has to create a candidate program
as close as possible to the target program from a pre-specified hy-
pothesis space, i.e., the space of all possible candidate programs that
the synthesizer can reason about. The number of given I/O exam-
ples can vary depending on the end application, but the fewer the
better. Therein lies the challenge of generalization: If examples are
too few, then many possible candidate functions satisfy them, and
picking one arbitrarily might yield a solution that works well only
on the seen examples. In other words, the solution overfits to the
seen examples and may not generalize well. How does a synthesizer
create programs that are provably close to the target program? This
has been a fundamental question for PBE-based program synthesis.

There are several domain-specific solutions to generalization.
In program repair as well as in inductive synthesis, for example,
inferring additional specifications from observed examples that
must be satisfied by the program is shown to help with generaliza-
tion [6, 24, 30, 33]. Allowing the synthesizer to use more powerful
oracles that adaptively craft examples or logical invariants help
to synthesize correct programs [22, 31]. In neural-guided program
synthesis [13, 18, 45, 54], machine learning techniques to avoid
over-fitting such as regularization or structural risk minimization,
are employed implicitly [59]. In domains where we have prior
knowledge about the likely distribution to which the target pro-
gram belongs, synthesizers can rank solutions [55], guide program
search [33], and use generative models for program representa-
tion or distributional priors [21]. Some synthesizers favor short
programs as per Occam’s razor [25].

All of the above approaches, while useful, require additional
knowledge or implicit assumptions about the target program be-
yond that captured by the original PBE problem setup.Without such
assumptions, these approaches do not provide any formal guarantee

https://doi.org/10.1145/3468264.3468621
https://doi.org/10.1145/3468264.3468621

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena

that the produced program will be correct or generalize well on un-
seen examples. It is natural to ask: Can we guarantee generalization
without making any additional domain-specific assumptions?

In this paper, we study generalization in PBE from the perspec-
tive of sample complexity: How many I/O examples should the
synthesizer have to see to be confident that its selected solution
is close to the target program? To answer this question, the PAC
learning theory provides a starting point [10, 58]. A synthesizer
generalizes well when the synthesized program is close to the tar-
get program with high confidence. The notion of confidence and
closeness to the target program can be made formal using PAC
learning theory. Specifically, the synthesized program generalizes
if it will make no more than a small fraction 𝜖 of errors on unseen
examples taken independently, with high probability (at least 1−𝛿).

Our approach works on any distribution that the I/O examples
are sampled from. To formally guarantee that generalization is
achieved on the distribution, we need a principled design for PBE
synthesizers. Existing PBE synthesizers are not designed to provide
generalization guarantees; therefore, they pick the number of I/O
examples to work with in an ad-hoc fashion. For instance, they may
synthesize a program after seeing only 2− 4 examples [26, 55]. This
paper seeks to answer the following questions:
RQ1. How many I/O examples would a synthesizer need to see in
order to provably generalize?
RQ2. Do existing synthesizers overfit with, say, 2 − 4 examples?

As a conceptual contribution, we present the first principled
framework, SynGuar1, to provide generalization guarantees about
the synthesized programs. We propose a procedure that computes
the size of the hypothesis space dynamically during synthesis,
which is then used to calculate the sample size required to provably
generalize. The challenge is therefore two-fold. First, while effi-
ciently computing the size of the hypothesis space is easy in some
existing PBE synthesizers (such as the PROSE framework [46]), for
others it requires careful design. An example of the latter is the
synthesis through unification (STUN) [5] approach. As our main
technical contribution, we present an example of integrating Syn-
Guar into synthesizers based on PROSE and STUN frameworks.
Specifically, we provide two PBE synthesizers for string manipu-
lation programs that provably generalize, one implemented in the
PROSE framework (SynGuar-PROSE) and one based on the STUN
approach (SynGuar-STUN). To the best of our knowledge, no prior
PBE synthesizer claims such strong generalization guarantees about
the synthesized programs.

From an empirical perspective, our work provides the first exper-
imental evidence for the number of examples sufficient to guarantee
generalization in practice for simple string-manipulation tasks. We
run SynGuar-PROSE and SynGuar-STUN on two benchmarks in
this domain: 1) manually designed data-wrangling tasks similar to
those used in FlashFill [46]; and 2) the standard SyGuS 2019 bench-
mark [1], respectively. We find that on their respective benchmarks,
the tools produce programs which are provably within at most 5%
generalization error with a modest number of examples—around
197 samples and 357 examples on average, respectively—with a
high probability (≥ 98%). This observation also suggests that it is

1The tool is available with DOI number 10.5281/zenodo.4883273. The latest version
can be found at https://github.com/HALOCORE/SynGuar

language StrPROSE;
@input string x;
@start string program := recTerm;
string recTerm := catTerm | Concat(catTerm, recTerm);
string catTerm := ConstStr(cs) | convTerm;
string convTerm := term | UpperCase(term) | LowerCase(

term);
string term := SubStr(x, pos1, pos2);
int? pos := AbsPos(x, ka) | RegPos(x, kr);
string cs; //constant string
int ka; //absolute position
Tuple<Regex,Regex,int,int> kr; // kr=(r1,r2,k,offset)

Figure 1: A DSL for string transformation programs. Concat
returns the string produced by concatenating two strings
catTerm and recTerm, SubStr returns the substring between
pos1 and pos2. The UpperCase and LowerCase return the
string in upper case and lower case, respectively. AbsPos re-
turns the absolute position of string x. The RegPos operator
outputs the k𝑡ℎ position plus an offset where the bound-
aries of the strings returned by applying regular expressions
r1 and r2, respectively, on string x match.

unlikely for PBE synthesizers to generalize from just 2 − 4 exam-
ples without using some implicit or explicit additional knowledge.
We confirm this observation by running the vanilla versions, i.e.,
versions with SynGuar disabled, on the same benchmarks with
4 randomly chosen examples or the given seed examples in the
benchmark (2−10 in size). We find that SynGuar-PROSE generates
the correct target program for 14/16 cases from the data-wrangling
task benchmark and SynGuar-STUN for 53/59 cases from the Sy-
GuS benchmark. In contrast, the vanilla versions generate correct
programs for 0/16 and 36/59 cases, respectively. This shows that
without enough examples, synthesized programs often overfit.

Though we focus on string-manipulating programs, our ap-
proach makes minimal additional assumptions and thus can be
extended to other application domains, such as program repair [24],
invariant discovery [9] and so on. The generalization guarantee fits
well in applications such as data cleaning and transformation [16],
where a provable accuracy matters, or automatic stub writing in
symbolic execution [38, 53], where the goal is to learn a symbolic
constraint that is approximately close enough to the target. Our
experiments suggest that the sample size to achieve generaliza-
tion is task and benchmark dependent, which leaves the question
of how well our presented approach works in other domains or
benchmarks open. These are grounds for promising future work.

2 OVERVIEW
In practice, it is hard to know how many I/O examples suffice

to solve a synthesis task. The number of I/O examples across vari-
ous target programs, even for the same synthesizer, vary in prior
works and are chosen somewhat arbitrarily. For instance, the Sy-
GuS benchmark [1] has a dedicated track for the domain of string-
manipulating programs. The benchmark consists of several PBE
tasks and each of them is provided with a different number of I/O
examples. Some have as low as 2 examples whereas others have 50.

https://github.com/HALOCORE/SynGuar

SynGuar: Guaranteeing Generalization in Programming by Example ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

// word \w+=(A-Za-z0-9)+, digit \d+=(0-9)+
// *.?= any character
Concat(// return substr until the end of 1st word match
SubStr(x, AbsPos(x, 0), RegPos(x, (\w+, .*?, 0, 0))),
Concat(ConstStr(","), // append ","
Concat(// return substr of 2nd word match until the end

of the word
SubStr(x, RegPos(x, (.*?, \w+, 1, 0)),

RegPos(x, (\w+, .*?, 1, 0))),
Concat(ConstStr(","),
Concat(// return the substr of 3rd word match until

the end of the word
SubStr(x, RegPos(x, (.*?, \w+, 2, 0)),

RegPos(x, (\w+, .*?, 2, 0))),
Concat(ConstStr(","),
// return the substr from the 4th word until the end

of the string
SubStr(x, RegPos(x, (.*?, \w+, 3, 0)),

AbsPos(x, -1))))))))

Concat(// return substr of first two characters

SubStr(x, AbsPos(x, 0), AbsPos(x, 2)), overfits

Concat(ConstStr(","),
Concat(// return the string from the start of the first

number offset by 1 till the second last separator

SubStr(x, RegPos(x, (.*?, (-?\d+)(\.\d+)?, 0, 1)),

RegPos(x, (.*?, [\,\.\;\-\|], -2, 0))), overfits

Concat(ConstStr(","),
Concat(// return the substr from second capital letter

offset +2 to offset +3

SubStr(x, RegPos(x, (.*?, [A-Z]+, 1, 2)),

RegPos(x, (.*?, [A-Z]+, 1, 3))), overfits

Concat(ConstStr(","),
// return the substr from start of second word with

offset +3 till the end

SubStr(x, RegPos(x, (\w+, .*?, 1, 3)),

AbsPos(x, -1)))))))) overfits

Figure 2: On the left, we show the correct target program 𝑡 that tokenizes the string x on the boundaries of the first 4 words.
On the right, we show the program synthesized on 2 examples which overfits at all the four SubStr operations.

#Ex. Input Output #𝑓
1 "0E-E 2|u7kuZ85" "0E,E,2,u7kuZ85" ≈ 1042
2 " J-3bJ.9;PPm" " J,3bJ,9,PPm" ≈ 1020
3 "tpJ|AV n0d7 6z" "tpJ,AV,n0d7,6z" ≈ 1012
4 "R 3|6VCs Q" "R,3,6VCs,Q" 304128
5 "M x cSkrw ru6" "M,x,cSkrw,ru6" 304128
6 "Wk U U nZp X " "Wk,U,U,nZp X " 864
7 "gsa-ub hn lpa" "gsa,ub,hn,lpa" 216
8 "RO8I3 R SuM|e " "RO8I3,R,SuM,e " 144
9 "q E 0 LD0 " "q,E,0,LD0 " 144
10 "dZPz T.Q s " "dZPz,T,Q,s " 144
11 "Ny e87e -lO 0w" "Ny,e87e,lO,0w" 36
12 "FX 1 U P 1fN" "FX,1,U,P 1fN" 18

Figure 3: The I/O examples provided to the synthesis algo-
rithm, along with the number of consistent candidates (#𝑓).
This number drops from ≈ 1042 to 18 in just 12 samples.

To illustrate the problem of overfitting in PBE-based synthesis,
let us consider a data-wrangling task of tokenizing a given pas-
sage of text into individual words. The tokenization task involves
recognizing the boundaries of the first 4 words and replacing the
characters used to separate them with commas. The user wishes
to use a program synthesis tool to learn a program that performs
this task. Here, we use our tool SynGuar-PROSE which is based on
the PROSE framework [46] for synthesizing a program. Program
synthesizers output programs in the syntax of some pre-specified
target language or domain-specific language (DSL). In order to sup-
port our task, we implement a string transformation DSL in PROSE
that is similar to the FlashFill DSL [46], see Figure 1. We give a ref-
erence implementation of our modified DSL in the supplementary
material [2]. The user provides an oracle, which can be queried by
the synthesizer for I/O examples exemplifying the behavior of the

target program. Each I/O example is a pair of strings formed from
lower and upper case letters, digits, spaces and separators.

Given the problem setup as described above, the goal of the
synthesizer reduces to learning the 4 correct substrings from the
provided examples. Let us examine how well the synthesizer per-
forms on a few I/O examples, say 2. After running it on the first
2 examples given in Figure 3, as expected, the output program
overfits. For instance, instead of trying to get the first substring
until the end of the first word, it just picks two characters for the
first word since both the examples have only two characters until
their respective first separators. In fact, the synthesizer continues
to overfit even after being provided 9 examples.

However, it turns out that for our running example, we can
theoretically assert a program close to the target will be picked
with high probability after 149 examples! Our proposed algorithmic
framework SynGuar is able to calculate this quantity on the fly and
stop when enough examples are seen. To understand how it works,
consider Figure 3 that shows the estimated size2 of the hypothesis
space that is consistent (or matches) with all the seen examples up to
a certain point. SynGuar computes this quantity internally, which
serves as our main technical insight. Notice that the space of the
consistent programs shrinks progressively as more examples are
provided. Before seeing any example, the hypothesis space is the
set of all the programs our target language can represent and its
size can be infinite as the DSL grammar is recursive. Now suppose
the synthesizer sees the first I/O example, then the number of can-
didate programs which are consistentwith the first example reduces
considerably. The reduction depends critically on the example pro-
vided. For instance, the first I/O example shown in Figure 3 will
reduce the space of consistent programs to 1042. This is still quite
large—if we arbitrarily pick one program, without using any auxil-
iary assumptions or prior knowledge about the target program, the
odds of picking the correct program are negligibly small. However,
after seeing 12 examples, the consistent program space reduces to
2A sound upper bound of the actual size is calculated.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena

Algorithm 1Meta-synthesis Algorithm
1: procedure MetaSyn(𝜖, 𝛿)
2: while stopping condition do
3: Query user for k examples
4: Update the hypothesis space
5: return 𝑁𝑜𝑛𝑒 if empty hypothesis space
6: Compute the𝑚 examples for (𝜖, 𝛿) guarantee
7: Query user for𝑚 examples
8: Update the hypothesis space
9: if empty hypothesis space then
10: return 𝑁𝑜𝑛𝑒

11: return 𝑓 in hypothesis space

18 for our running example. Note that choosing a program out of
these 18 at random does not have any guarantees on its closeness to
the target program. For a program space of 18, to choose a program
that is close to the target program with provably high confidence
we require 137 more examples. SynGuar can provably assert that
it has seen enough examples to stop and return a program close to
the target program after 12 + 137 = 149 examples.
Problem Setup. Similar to the setup used in existing PBE-based
synthesizers, we are given an oracle to query I/O examples and
a DSL for representing the output program. Additionally, we are
given user-specified (𝜖, 𝛿) parameters that capture the desired gen-
eralization guarantee. The synthesizer queries the oracle for as
many I/O examples as it needs and terminates with either 𝑁𝑜𝑛𝑒

or a synthesized function 𝑓 . The probability that the synthesizer
returns a function 𝑓 that might not generalize should be under
the given small 𝛿 . Let 𝑆 = {(𝑥, 𝑡 (𝑥))} be the set of I/O examples
seen by one invocation of the synthesizer. Here, each 𝑥 is an input
drawn independently and identically distributed (i.i.d) from an un-
known distribution 𝐷 that the oracle captures. We assume that 𝑓
will satisfy all given I/O examples, ∀𝑥 ∈ 𝑆, 𝑓 (𝑥) = 𝑡 (𝑥). Note that
this is different from the “best-effort” [42] or approximate synthesis
approaches [53] where the program 𝑓 is allowed to differ from 𝑡 on
some examples in 𝑆 . In this setup, therefore, 𝑆 is a random variable.
The synthesizer, denoted asA(𝑆), is also a random variable defined
over I/O samples (𝑆) drawn from 𝐷 .

We seek to design PBE synthesizers that achieve generalization
given by a rigorous PAC-style guarantee [58] while computing the
required sample complexity. For an (𝜖, 𝛿)-synthesizer, the general-
ization error 𝑒𝑟𝑟𝑜𝑟 (𝑓) = 𝑃𝑟𝑥∼𝐷 [𝑓 (𝑥) ≠ 𝑡 (𝑥)] is bounded by 𝜖 . The
probability of generating 𝑓 with 𝑒𝑟𝑟𝑜𝑟 (𝑓) > 𝜖 is bounded by 𝛿 .

Definition 2.1 ((𝜖, 𝛿)-synthesizer). A synthesis algorithm A with
hypothesis space 𝐻 is an (𝜖, 𝛿)-synthesizer with respect to a target
class of functions C iff for any input distributions 𝐷 , for all 𝑡 ∈ C,
𝜖 ∈ (0, 1), 𝛿 ∈ (0, 1), given example set 𝑆 drawn i.i.d from the 𝐷 ,

𝑃𝑟 [A(𝑆) outputs 𝑓 ∈ 𝐻 such that 𝑒𝑟𝑟𝑜𝑟 (𝑓) > 𝜖] < 𝛿

3 THE SYNGUAR FRAMEWORK
We propose a framework with a similar algorithmic meta-structure
as that of existing PBE engines. The overall procedure is shown
in Algorithm 1. Instead of synthesizing a program after seeing

a pre-determined number of I/O examples the procedure queries
an oracle for new examples until it synthesizes a program that
generalizes. There are two key new features in our framework:
a stopping criterion and a dynamically calculated count of the
number of samples to be seen. The following classical result gives
us a starting point to compute the count precisely.
A Starting Point. The number of examples provably sufficient to
achieve the (𝜖, 𝛿)-generalization is given by Blumer et al. [10]. We
restate this result, which computes sample complexity as a function
of (𝜖, 𝛿) and the capacity (or size) of any given hypothesis space 𝐻 .

Theorem 3.1 (Sample Complexity for (𝜖, 𝛿)-synthesis). For
all 𝜖 ∈ (0, 1), 𝛿 ∈ (0, 1), and hypothesis space𝐻 , a synthesis algorithm
A(𝑆) which outputs functions consistent with𝑚 i.i.d samples is an
(𝜖, 𝛿)-synthesizer, if

𝑚 >
1
𝜖
(ln |𝐻 | + ln 1

𝛿
)

The above theorem is intuitively based on the following analysis.
Let us say we have some initial hypothesis space 𝐻 . After seeing
one new I/O example, each hypothesis that is “𝜖-far” from 𝑡 (gen-
eralization error > 𝜖) becomes inconsistent with some non-zero
probability, and is eliminated. Therefore after seeing sufficiently
many new examples, the probability of any “𝜖-far” hypothesis being
output falls below 𝛿 . For details, please see the analysis [10].

3.1 Key Observations & Challenges
We observe that Theorem 3.1 can be used at any point of the syn-
thesis procedure. After seeing say the first 𝑆 examples, let the space
of programs consistent with the examples be 𝐻𝑆 . We can plug |𝐻𝑆 |
into Theorem 3.1 to compute how many more examples are suffi-
cient to achieve the guarantee provided in Definition 2.1. But, there
are several key technical challenges in utilizing the classical result
of Theorem 3.1 in providing end-to-end generalization guarantees.

First, applying this result requires being able to compute |𝐻𝑆 |. We
point out that this has not been an explicit algorithmic goal when
designing existing synthesizers. Consequently, computing |𝐻𝑆 | is
non-trivial in some of the existing synthesizers. To tackle this, we
design our own PBE synthesizer based on the STUN approach and
bottom-up explicit search with the ability to compute |𝐻𝑆 | (see
Section 4.2). Further, we show how to integrate SynGuar in PROSE,
a synthesis framework where the size of the hypothesis space can
be easily computed.

Second, |𝐻𝑆 | can be large and plugging in its values at the be-
ginning leads to vacuously high sample bounds in practice. For
instance, initially the hypothesis size in our running task is infinite,
and even after seeing one example, the size is 1042. Therefore, in-
stead of naively plugging in values of parameters at the beginning,
we use the idea that if |𝐻𝑆 | decreases as the synthesizer sees more
examples then the estimated sample complexity for generalization
reduces as well. Therefore, in SynGuar’s design, |𝐻𝑆 | is computed
on the fly as the synthesizer sees more examples and the stopping
condition ensures that the synthesized program generalizes.

Lastly, the PAC learning theory offers no recourse to predict how
fast |𝐻𝑆 | reduces with more samples in practice. This question, then,
becomes an empirical one: For which programs do we observe that a

SynGuar: Guaranteeing Generalization in Programming by Example ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Algorithm 2 SynGuar Synthesis returns a program with error
smaller than 𝜖 with probability higher than 1 − 𝛿
1: procedure SynGuar(𝜖, 𝛿)
2: 𝑘 = 1 // tunable parameter
3: 𝑔← PickStoppingCond
4: 𝑆 ′ ← ∅, 𝑠 ← 0
5: 𝑠𝑖𝑧𝑒𝐻 ← ComputeSize(𝐻)
6: 𝑛 ← 𝑔(𝑠𝑖𝑧𝑒𝐻)
7: while 𝑠 ≤ 𝑛 do
8: 𝑆 ′ ← 𝑆 ′ ∪ sample(𝑘)
9: 𝐻𝑆′ ← UpdateHypothesis(𝑆 ′)
10: 𝑠𝑖𝑧𝑒𝐻𝑆′ ← ComputeSize(𝐻𝑆′)
11: return 𝑁𝑜𝑛𝑒 if 𝑠𝑖𝑧𝑒𝐻𝑆′ = 0
12: 𝑠 ← 𝑠 + 𝑘
13: 𝑛 ←𝑚𝑖𝑛(𝑛, 𝑠 + 𝑔(𝑠𝑖𝑧𝑒𝐻𝑆′))
14: 𝑚𝐻𝑆′ =

1
𝜖 (ln 𝑠𝑖𝑧𝑒𝐻𝑆′ + ln

1
𝛿
)

15: 𝑇 ← sample(𝑚𝐻𝑆′ (𝜖, 𝛿))
16: 𝑆 ← 𝑆 ′ ∪𝑇
17: return program 𝑓 in 𝐻𝑆 or None if 𝐻𝑆 = ∅

small number of examples are sufficient to generalize? Our empirical
evaluation shows that for several common string manipulation
tasks, the required number of examples turn out to be modest.
Remark. It can be seen that our solution is a modification to the
existing PBE synthesis loop, which can be instantiated for several
program synthesis engines. Our proofs and analysis utilize classical
sample complexity arguments, together with bounds for hypoth-
esis space size. It may therefore appear surprising then that such
calculations are not routine in prior program synthesis works al-
ready, despite accuracy / generalization being a natural objective.
We believe that the challenges stated above offer an explanation as
to why applying previous theoretical results is not straightforward,
and requires a principled approach. We point out that the subtlety
is in our problem formulation itself, namely, the use of dynamic
calculation of the remaining sample size needed for generalization.

3.2 SynGuar Algorithm
We start by addressing the second challenge assuming that |𝐻𝑆 | is
computable. Recall that, our synthesis algorithm takes as input the
error tolerance parameters 𝜖 and the confidence 𝛿 (Algorithm 2).
The algorithm follows the structure of Algorithm 1 and consists of
two phases: the sampling phase (lines 7 − 13) and the validation
phase (lines 14 − 17). The sampling phase addresses the second
challenge by trying to shrink the hypothesis space as much as
possible. In each iteration 𝑘 samples are taken before updating the
hypothesis space that satisfies all 𝑘 samples seen. The crucial part of
the sampling phase is deciding when the number of examples seen
so far (stored in the set 𝑆 ′ and whose cardinality is 𝑠) is “enough”.
SynGuar stops sampling when the number of examples seen so far
exceeds a stopping threshold, represented by variable𝑛. In each iter-
ation, the stopping threshold (which depends on finite |𝐻 | initially)
either remains the same or it gradually shrinks with each update
of the hypothesis space (line 13). Hence, SynGuar dynamically
updates the threshold based on the change in the hypothesis size.
To control how much the threshold variable shrinks with respect

to the size of the updated hypothesis space 𝐻𝑆′ , SynGuar picks a
function 𝑔 (line 3). Our framework allows using any 𝑔 : N ↦→ Z
that is monotonically non-decreasing, and we provide a sample
complexity analysis for such functions. We propose a particular
choice of function 𝑔 as the default: 𝑔(𝑥) = max{0, 1

𝜖 (ln(𝑥)− ln(
1
𝛿
))}.

This 𝑔 has a useful property—the required number of samples it
entails in the worst case cannot be more than twice the number
of samples that an optimal choice of 𝑔 will take. We will formally
state and prove this optimality claim in Section 3.3.

In the second phase, in addition to the samples 𝑆 ′, SynGuar
samples a fixed number of samples according to Theorem 3.1. Syn-
Guar then can return a program 𝑓 with provable (𝜖, 𝛿) guarantees
(line 14). Algorithm 2 calls sub-procedures UpdateHypothesis
(line 9) to find a program space consistent with 𝑆 ′ andComputeSize
(line 10) to compute the size of the consistent program space. The
sub-procedure UpdateHypothesis can be implemented by any ex-
isting PBE synthesis algorithm which return hypotheses consistent
with 𝑆 ′. Section 4 details how to implement ComputeSize, which
is specific to the underlying UpdateHypothesis sub-procedure.
Running Example. Consider the example given in Section 2.
First the user inputs 𝜖 = 5%, 𝛿 = 2% respectively. In the sampling
phase, the user is queried for one example in each iteration. After
the first iteration, i.e., seeing one example, the sample size for
generalization (𝑚𝐻𝑆′) is 2018. Instead, SynGuar’s sampling phase
stops after seeing𝑛 = 12 examples and the additional sample size for
generalization (Line 14) reduces to𝑚𝐻𝑆′ = 137. The total sample
size of both phases sums up to 149 examples, which is 10× less
than the sample complexity after the first iteration. This is a direct
consequence of SynGuar dynamically estimating the sample size
for generalization.

3.3 Analysis of the Algorithm
SynGuar’s design is motivated by being able to give a formal gen-
eralization guarantee and a bounded sample complexity. For this
purpose, we state and prove the following properties:
(P1: Termination) SynGuar always terminates for a finite |𝐻 |.
(P2: (𝜖, 𝛿) guarantees) The probability of SynGuar returning an
𝑓 that is 𝜖-far is smaller than 𝛿 .
(P3: Sample complexity) SynGuar’s sample complexity is always
within 2× of the optimal for 𝑘 ≤ 1

2𝜖 ln 1
𝛿
.

Theorem 3.2 (P1). SynGuar always terminates for a finite |𝐻 |.

Proof. It suffices to prove that the sampling phase (lines 7− 13)
of SynGuar terminates in order to show that SynGuar terminates.
In each iteration of the sampling phase, let 𝑆𝑖 be the queue stor-
ing the user-provided examples after each iteration, 𝑧𝑡 be the 𝑡 th
example, 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝑧𝑖𝑘+1, ...𝑧𝑖𝑘+𝑘 } and 𝑆0 = ∅. For each 𝑆𝑖 , 𝐻𝑆𝑖

determines the set of consistent hypothesis that satisfy 𝑆𝑖 . Let 𝑁𝑖

be the limit of the number of I/O examples 𝑛 for the sampling phase
after iteration 𝑖 . For iterations 𝑖 and 𝑗 where 𝑖 < 𝑗 and ∀𝑔 : N→ Z
such that 𝑔 is monotonically non-decreasing, the following holds:

𝑆𝑖 ⊂ 𝑆 𝑗 ⇒ |𝐻𝑆 𝑗
| ≤ |𝐻𝑆𝑖 | ⇒ 𝑔(|𝐻𝑆 𝑗

|) ≤ 𝑔(|𝐻𝑆𝑖 |)
𝑁 𝑗 ≤ min{𝑁𝑖 , |𝑆 𝑗 | + 𝑔(|𝐻𝑆 𝑗

|)} ≤ 𝑁𝑖 (see line 13 in Alg. 2)
Therefore, if 𝑁0 ≤ 𝑔(|𝐻 |) then the loop will terminate at some
iteration 𝑝 such that 𝑁𝑝 < |𝑆𝑝 | ≤ 𝑁𝑝 + 𝑘 ≤ 𝑁0 + 𝑘 . □

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena

Theorem 3.3 (P2). The probability of SynGuar returning a syn-
thesized program 𝑓 that is 𝜖-far is smaller than 𝛿 .

Proof. By Theorem 3.2, we know that the sampling phase ter-
minates with 𝑆 ′ samples (see line 14). In lines 14 − 16 SynGuar
samples an additional number of I/O examples required to gener-
alize and then synthesizes a program after seeing the additional
samples. Therefore, Theorem 3.3 follows from Theorem 3.1. □

In order to prove the last property, we define a new quantity
𝜔(𝑄). It is the smallest sample size taken by SynGuar (𝜖, 𝛿) for any
non-decreasing 𝑔 used for a sequence of I/O examples 𝑄 .

Definition 3.4 (Smallest dynamic sample size). For any infinite
sampled sequence of examples 𝑄 , let Prefix(𝑄,𝑔) be the prefix of
𝑄 at which SynGuar (𝜖, 𝛿) terminates. Then,

𝜔(𝑄) = inf{|𝑚𝑔 | : ∀𝑔, 𝑚𝑔 = Prefix(𝑄,𝑔)}

Theorem 3.5 (P3). SynGuar uses no more than 2𝜔(𝑄) examples
on any 𝑄 when the result is not None with 𝑔(𝑥) = max{0, 1

𝜖 (ln(𝑥) −
ln(1

𝛿
))} and 𝑘 ≤ 1

2𝜖 ln 1
𝛿
.

Due to space limit, we provide the proof of this theorem in the
supplementary material [2].

4 RETROFITTING SYNGUAR INTO EXISTING
SYNTHESIZERS

We now show how to compute |𝐻𝑆 |, the size of the consistent
program space. A sound upper bound of |𝐻𝑆 | is safe to use, since in
this case, our analysis shows SynGuar to take more examples than
those needed to guarantee generalization.We show how to compute
|𝐻𝑆 | bounds for two well-known PBE synthesis approaches.

4.1 SynGuar for the PROSE Framework
We first apply SynGuar on top of the PROSE framework [46], a
state-of-the-art PBE meta-synthesis framework that generates an
inductive synthesizer for a given DSL. PROSE allows developers to
write DSLs and specify witness functions that capture (a subset of)
inverse semantics for the DSL operators. These witness functions
are the drivers for the “deductive backpropagation” because they
specify the inputs or properties of the input given an I/O example.

We implement a synthesizer named StrPROSE with the DSL in
Figure 1 on top of PROSE by specifying executable semantics and
witness functions for its operators. Our DSL shares most operators
with the DSL of FlashFill [46]. For the operators that differ, we
detail their executable semantics and witness functions in the sup-
plementary material [2]. Note that SynGuar works with any DSL
expressible in PROSE, as long as each operator has its semantics
and an associated witness function specified.

PROSE uses an internal succinct representation of the program
space using a data structure called version-space algebra (VSA)
which makes it convenient to calculate |𝐻𝑆 | [26, 34, 35, 39]. A
VSA is a directed graph where each node corresponds to a set of
programs. The leaf nodes explicitly represent a set of programs
that can be enumerated. There are two types of internal nodes:
union nodes that represent a set-theoretic union and join nodes that
represent 𝑘-ary operators which are defined by the DSL.

Computing |𝐻𝑆 | Using VSA. PROSE readily computes |𝐻𝑆 | using
a bottom-up graph traversal on its VSA. For each leaf node, it
enumerates and counts the set of programs directly. For every
union node, to compute the corresponding number of programs
it adds up the count of all child nodes. For every join node, the
number of programs is a cross product of all applications of the 𝑘-
ary operator to 𝑘 parameter programs. This soundly upper bounds
|𝐻𝑆 |. In our implementation, we reuse the Size API available in
PROSE, resulting in the sizes shown in Figure 2.
Scaling to Large Sample Size. Building VSA on a large number
of examples can be time-consuming. Therefore, we build the VSA
on a subset of the examples which lead to the same set of programs.
More specifically, we take the examples one by one and drop the
examples that do not decrease the VSA size.

4.2 SynGuar in StrSTUN
STUN is a well-known synthesis approach [5]. It was originally
proposed as an extension of the counter-example guided induc-
tive synthesis (CEGIS) approach to synthesize program from the
specification. The high-level idea is to synthesize partial solutions
satisfying parts of the inputs and unify them. As an instantiation of
STUN for synthesizing conditional programs under PBE settings,
we work with top-level3 if-then-else unification operator where
the condition can be any boolean expression in the hypothesis space.
The subsequent synthesis algorithms following this approach do
not compute |𝐻𝑆 | directly, or make it straightforward to compute
it. We design a synthesis algorithm based on this approach, and a
procedure to soundly compute an upper bound on |𝐻𝑆 |. We choose
our target language as the SyGuS string-manipulating program
DSL [1]. Our synthesis algorithm is referred to as StrSTUN.
Vanilla StrSTUN: Overview. StrSTUN instantiates the previ-
ously proposed approach of bottom-up explicit search with obser-
vational equivalence reduction [3]. Its algorithm consists of two
phases at a high level: an enumeration phase and a unification phase.
In the first phase, the synthesizer enumerates candidate programs
only by repeatedly using function application. It clusters all candi-
date programswhich have the same I/O behavior on the given exam-
ples and saves only one program representative of each cluster. Such
enumerated programs may only be consistent with subsets of the
given I/O examples. In the unification phase, StrSTUN composes
enumerated programs with an if-then-else unification operator.
The final synthesized program 𝑃 , therefore, can be a straight-line
program (obtained by repeated function application) or a program
with nested compositions of the form if 𝑃1 then 𝑃2 else 𝑃3, where
𝑃2 and 𝑃3 can be nested programs themselves. The nesting depth is
bounded internally to limit the search space. We explain the con-
structional details of these phases next, and explain how to compute
|𝐻𝑆 | from the internal data-structures later. In what follows, we
denote inputs and outputs of the given I/O examples as vectors w
and o respectively.
Vanilla StrSTUN: Enumeration. StrSTUN enumerates all can-
didate programs in a bottom-up fashion by generating programs
through function application. We start with the smallest syntactic
programs, which are just single components (or syntactic terminals)

3Such if-else constructs is restricted to being at the top of the function’s AST.

SynGuar: Guaranteeing Generalization in Programming by Example ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

in the target language, working up to programs with more than one
component. For instance, concat(input0, input1) is a candidate
program with three components. The total hypothesis space with-
out conditionals is fixed based on a user-provided constraint on the
maximum component size, specified as the maximum number of
components the straight-line program contains. For each program
created in the enumeration phase, we compute the outputs of the
program on the given I/O examples. Note that this step does not
require explicitly individually creating and running all candidate
programs—it is possible to evaluate outputs during the bottom-up
construction of the programs [3].

We compute 2 useful data structures internally during enumer-
ation. The first is a consistency vector c which captures whether
an enumerated program 𝑃 is consistent with the given I/O exam-
ples represented by vector w and vector o. Specifically, the consis-
tency vector c for program 𝑃 has the 𝑖𝑡ℎ element set to ✓ if the
𝑃 (w[𝑖]) = o[𝑖], namely, the output of 𝑃 on the 𝑖𝑡ℎ given input exam-
ple matches the corresponding given output example. Otherwise,
c[𝑖] is set to ’×’. This data structure speeds up the search in two
ways, conceptually. First, it is calculated on top of observational
equivalence [3]. If many candidate programs generate the same out-
puts on the given input examples, then they are all observationally
equivalent, and we only need to keep one such program that has the
outputs for completeness [3], thus the consistency vector is only
calculated once for those programs. Secondly, even if two programs
are observationally not equivalent, and both give different incor-
rect outputs for an input example, they will have the same value
(×) in their consistency vectors. Thus, we can effectively cluster
many programs that are observationally non-equivalent but have
the same consistency vector to speed up the next phase.

The second useful data structure is cluster map 𝜙 . It maps consis-
tency vectors to sets of programs. Each distinct consistency vector
c computed during the enumeration phase is mapped to a set of
programs 𝜙(c) that have I/O behavior captured by c.
Vanilla StrSTUN: Unification. In this phase, StrSTUN synthe-
sizes programs with nested if-then-else structures. The goal is
to create programs that are consistent with larger subsets of I/O
examples than enumerated programs, and ideally, correct on the
full set of I/O examples. The cluster map 𝜙 allows us to quickly
find programs which match certain subsets of all the given I/O
examples, specified by a consistency vector value. When a program
𝑃 := if 𝑃1 then 𝑃2 else 𝑃3 is synthesized during unification, we
must carefully construct a semantically correct consistency vector
for 𝑃 , using those for sub-programs 𝑃2 and 𝑃3. Here, note that 𝑃1
needs to be a program that evaluates to a boolean value on a given
input example, say w[𝑖]. If it evaluates to true, then the program
𝑃2 must be correct on w[𝑖] for 𝑃 to be correct on w[𝑖]. Therefore,
in this case, we mark 𝑃 as consistent with w[𝑖] if and only if c[𝑖]
for 𝑃2 has a ✓. Analogously, if 𝑃1 evaluates to false on w[𝑖], then
c[𝑖] for 𝑃3 should be set to ✓ for 𝑃 to be marked consistent with
w[𝑖]; otherwise 𝑃 is marked inconsistent with w[𝑖].

The above-described unification procedure synthesizes all pro-
grams with a nesting depth of up to a pre-configured maximum
(default of 2). The nesting depth controls the hypothesis space de-
sired by the user. The cluster map 𝜙 is updated continuously with

new consistency vectors discovered in the unification phase. A suc-
cessful solution is a program that matches all given examples, i.e.,
has a consistency vector with a ✓ for all values.
Computing the |𝐻𝑆 |. The vanilla StrSTUN algorithm can be
slightly modified and augmented with rules shown in Table 1 to
compute the |𝐻𝑆 | soundly. Notice that in vanilla StrSTUN, when
employing the observational equivalence, a program with larger
components size might be discarded if there is a smaller program
that has the same value vector 4 [3]. But we need to count all pro-
grams at different components sizes. To do so, we store multiple
counting values (and representative programs) for different compo-
nent sizes along with each value vector.

During the enumeration phase, programs are synthesized bottom-
up from smallest components size to larger ones. Let 𝑡 be the com-
ponents size of a program. We keep track of a Count(v, 𝑡) for each
value vector v computed for programs with size 𝑡 . The Count(v, 𝑡)
for 𝑡 = 1 (smallest base components) can be directly enumerated
(rule 1 in Table 1), since these are program input arguments or
constant components in our target language. For 𝑡 > 1, Count(v, 𝑡)
can return 0 if there is no enumerated program with components
size 𝑡 that outputs value vector v. Same value vectors v may have
different counts for different components sizes 𝑡 , thus we enumer-
ate on tuple (v, 𝑡) rather than just v. When StrSTUN uses function
application to generate a new program 𝑃 ′ from programs 𝑃𝑖 (rule
2.1 in Table 1), the count for the value vector of the resulting 𝑃 ′ is
updated by adding the product of all the counts of its arguments
𝑃𝑖 at their respective components sizes (rule 2.2 in Table 1). This
completes all the ways programs are compositionally created in
the enumeration phase from component size 1 to the maximum
component size.

After the enumeration on value vectors is finished, we have
also clustered observationally non-equivalent programs based on
a consistency vector c in 𝜙 . Define𝜓 [c] as the set of all the value
vectors that corresponds to a consistency vector c, we sum up the
Count(v, 𝑡) for every v in 𝜓 [c] (rule 3 in Table 1). This way, we
compute counts for consistency vectors.

During unification, programs of the form 𝑃 := if 𝑃1 then 𝑃2
else 𝑃3 are composed. Here, counts of the consistency vectors
of 𝑃2 and 𝑃3 have been computed after enumeration if 𝑃2 and 𝑃3
are programs with nesting depth zero. In this case, the Count(c, 1)
of the program 𝑃 is the the product of 𝑃1, all possible 𝑃2 (0 con-
dition) with 𝑃1 as the condition, and all possible 𝑃3 (0 condition)
with 𝑃1 as the condition, summed over all possible 𝑃1. Thus, we
have computed Count for the consistency vectors of programs with
nesting depth of 1. Using this, we can recursively compute counts
for consistency vectors of programs with nesting depth 2 or more
(rule 5 in Table 1). To optimize, we memorize counts of individual
consistency vectors as well as for sets of consistency vectors. For
example, the set comprising two consistency vectors ⟨✓,×,×⟩ and
⟨✓,×,✓⟩ is succinctly represented as ⟨✓,×,⊤⟩, and their sum of
counts is memorized (rule 4 in Table 1). We prove that the rules in
Table 1 provide a sound upper bound of the size of the hypothesis
space |𝐻𝑆 | in supplementary material [2].

4The value vector v for a program 𝑃 is simply the outputs of 𝑃 on the given input
examples, i.e., v[𝑖] := 𝑃 (w[𝑖]) for all 𝑖 .

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena

Table 1: Count rules for StrSTUN. We define the set of all
boolean value vectors as B, and we use C to represent a suc-
cinct representation of consistency vectors, which can be a
singleton or a set of consistency vectors. The Count value is
calculated differently for value vector v, consistency vector
c, or their succinct representation C.

Count Rules for Enumeration
Starting point of enumeration:
Count(v, 1) = number of single components that output v
Count(v, 𝑡) = 0, for 𝑡 > 1. (1)

When program 𝑃 ′ with value vector v′ is enumerated at component size 𝑡 ′:
Let, 𝑃 ′ = 𝑓 (𝑃1, 𝑃2, ..., 𝑃𝑛) for some function component 𝑓 and programs 𝑃𝑖 .
If 𝑡𝑖 is the component size for 𝑃𝑖 ,
and v𝑖 is the value vector of (𝑃𝑖 , 𝑡𝑖), 𝑖 ∈ {1, ..., 𝑛},
then 1 +∑ 𝑡𝑖 = 𝑡 ′ holds, and (2.1)

Count(v′, 𝑡 ′)← Count(v′, 𝑡 ′) +
𝑛∏
𝑖=1

Count(v𝑖 , 𝑡𝑖) (2.2)

Count Rules for Clustering
Count(𝑐) =

∑
v∈𝜓 [𝑐]

∑
𝑡 (Count(v, 𝑡)) (3)

Count Rules for Unification
Cgoal = ⟨✓,✓, ...,✓⟩,
the count of hypothesis space up to 𝑘 conditions is

∑𝑘
𝑖=0 Count(C𝑔𝑜𝑎𝑙 , 𝑖)

Count(C, 0) = ∑
𝑐∈C Count(𝑐) (4)

Count(C, 𝑖) =
∑︁
b∈B

𝑖−1∑︁
𝑗=0

(Count(Γthen(C, b), 𝑗)×

Count(Γelse(C, b), 𝑖 − 𝑗 − 1) ×
∑︁
𝑡

Count(b, 𝑡)) (5)

where Γthen(C, 𝑏) and Γelse(C, 𝑏) are also succinct
representation of consistency vectors, and

Γthen(C, 𝑏)𝑖 =
{
✓ if 𝑏𝑖 = 𝑇

⊤ otherwise
, Γelse(C, 𝑏)𝑖 =

{
✓ if 𝑏𝑖 = 𝐹

⊤ otherwise

StrSTUN Augmented with SynGuar. We call StrSTUN aug-
mented with SynGuar as described in Section 4 as SynGuar-STUN.
The maximum number of nested conditions during the unification
phase of StrSTUN is 2, and without much loss of expressiveness,
we only allow the else branch to have nesting. With this setting,
the hypothesis space of StrSTUN is a union of:

• 𝐻0 (The set of straight-line programs),
• 𝐻1 (The programs of form if 𝑃1 then 𝑃2 else 𝑃3),
• 𝐻2 (The programs of form if 𝑃1 then 𝑃2 else if 𝑃3
then 𝑃4 else 𝑃5).

From 𝐻0 to 𝐻2, the hypothesis space is increasingly expressive.
SynGuar-STUN invokes the SynGuar loop with 𝐻0 first, and if it
returns None then with𝐻1, and so on in that order. This has the nice
property that it will return 𝑓 consistent with existing examples from
𝐻𝑖 where 𝑖 is the smallest possible. For correctness, each invocation
with a new hypothesis 𝐻𝑖 uses a failure probability of 𝛿

3 , so the
total failure probability is bounded by 𝛿 (union bound).

5 EVALUATION
We have shown that when an existing PBE synthesizer using Syn-
Guar returns a synthesized program, the program generalizes, i.e.,
it is close to the target with high probability. Our evaluation focuses
on two empirical utility goals in string-manipulation tasks:

(1) Accuracy: Do our theoretical generalization guarantees im-
prove the end accuracy of existing PBE synthesizers?

(2) Sample Size: How many examples does SynGuar require
to achieve provable generalization?

Recall that SynGuar primarily extends existing synthesizers
to control how many examples the synthesizer sees before stop-
ping. We evaluate (a) SynGuar-PROSE, which builds on the PROSE
framework, and (b) SynGuar-STUN, which is implemented on the
StrSTUN synthesizer we designed. The vanilla StrSTUN synthe-
sizer is around 4000 lines of C++ code. These vanilla versions of
PBE synthesizers (without the SynGuar augmentation) serve as
our baselines to measure improvements due to SynGuar.

We point out that PBE synthesizers for string programs often
compete on computational overheads reported for producing any
program that fits a given set of examples. Our accuracy criterion and
our objective are completely different—we want to check when a
synthesizer produces a program close to a fixed target program (the
number of examples is not fixed). This is why we do not compare to
other baseline solvers which may be computationally faster [48, 49],
but are not designed to generalize to a target program.
Benchmarks. For SynGuar-PROSE, we considered 16 common
string-related programming tasks as target functions to synthe-
size. These are of similar style and complexity as those reported
in FlashMeta paper [46] such as changing the date format, extract-
ing numbers or abbreviating words. Henceforth, we refer to these
programs as PROSE-benchmark, details of which are in the sup-
plementary material [2]. For SynGuar-STUN, we take the euphony
benchmark from the PBE-Strings track of the SyGuS 2019 bench-
mark [1]5 which contains 100 PBE tasks with 2 − 16 examples.

The target programs are not available for those 100 tasks, so we
manually wrote them from the given examples from the benchmark.
Out of the 100 tasks, 10 are for tasks that output boolean values
which are not in the scope of our considered DSL. Further, we
experimentally observed that our StrSTUN implementation scales
up to component size 9 (size of the longest straight-line programs
before unification) within a reasonable computation of a day for all
benchmarks to finish on our experimental setup (larger component
size increases the program search space). So for the remaining 90, we
filtered out the ones that could not be manually constructed under
component size 9. This finally results in 59 SyGuS benchmarks
which we call SyGuS-STUN.

The generalization error tolerance for all experiments is set
to 5% (𝜖 = 0.05) and confidence parameter to 98% (𝛿 = 0.02) by
default. When comparing sample size for different 𝜖 , we also run
the benchmark on (𝜖 = 0.02, 𝛿 = 0.02) and (𝜖 = 0.1, 𝛿 = 0.02). The
default step size 𝑘 for the sampling phase is set to 1 for SynGuar-
PROSE and 20 for SynGuar-STUN. With these parameters, it is
guaranteed with probability at least 98% that when SynGuar stops,
its synthesized program is going to have a generalization error of
at most 5%. We ran all experiments on Amazon EC2 Ubuntu 16.04
instance with 512GB RAM, 64-core 3.1GHz Intel Xeon processors
where each benchmark runs 1 core. All our experiments finished
within 24 hours. For SynGuar-PROSE, 79% runs finished in 1minute

5downloaded from https://github.com/SyGuS-Org/benchmarks/tree/master/comp/
2019/PBE_SLIA_Track/euphony

https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2019/PBE_SLIA_Track/euphony
https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2019/PBE_SLIA_Track/euphony

SynGuar: Guaranteeing Generalization in Programming by Example ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

and 100% within 1 hour. For SynGuar-STUN, 75% runs finished in
10 minutes and 97% within 2 hours.

SynGuar works with any input distribution for creating I/O
examples. We choose a distribution that is easy to generate and not
specialized to each target program. Specifically, we simulate a black-
box fuzzer for string inputs. All our SynGuar-PROSE evaluation
reports an average over 32 trials of each target program, and for
each trial, we sample a string input as follows:
• the string length is chosen uniformly at random from 8− 16;
• each character in the string is either chosen uniformly at
random from the character set C = "A-Za-z0-9,.-;|", or
chosen as white-space with probability 15× larger than the
probability of any character in C.

We run each such input created on the target program to create the
output. The input-output pairs are given to the synthesizer.

We evaluate SynGuar-STUN over 3 trials for each target, as
these programs are computationally heavier to synthesize. For each
trial, we simulate a basic mutation-based fuzzer as the sampling
distribution. Specifically, we take the input strings provided in the
SyGuS benchmark as seeds, and mutate them randomly as follows:
• add a string of randomly chosen length up to size 10 at
a randomly chosen location of the seed string, with each
character being a printable value6; or
• remove a randomly chosen character from the seed string.

For programs with more than one input argument, we addition-
ally add rules specifying whether one of the inputs is a substring
of another input argument. We then randomly choose a substring
from that input argument when synthesizing examples. For integer
inputs, we randomly chose either an integer bounded by the length
of one of the string input arguments or a randomly chosen integer
from (0, 1000). This ensures that the target program can be run on
the mutated inputs without resulting in type errors or failure.

5.1 Accuracy Improvement
To evaluate whether our theoretical generalization guarantees trans-
late into improved correctness, we check that the synthesized pro-
gram is correct, i.e., syntactically or semantically equivalent to the
target program. Our syntactic equivalence is confirmed automati-
cally, and for semantic equivalence, we resort to manual inspection.
While SynGuar might produce programs that are close to the tar-
get as per its 𝜖-close guarantee, it is difficult to estimate closeness
objectively. Therefore, we take a conservative approach and only
report whether the synthesized program is correct. Programs that
are "almost" or "close to" correct are reported as incorrect.

SynGuar-PROSE synthesizes 14/16 programs semantically equiv-
alent to the target program in all 32 runs for 𝜖 = 0.05, 𝛿 = 0.02which
shows that SynGuar-PROSE is useful to synthesize common string
manipulation programs. For one of the remaining benchmarks, the
synthesized program is correct on 26/32 runs. For 1 benchmark,
the synthesized program is correct on 7/32 runs. In total, SynGuar-
PROSE produces correct programs in 481/512 (93.95%) runs.

We observe that the vanilla StrPROSE synthesizer (without Syn-
Guar) consistently overfits when sample sizes are chosen arbitrarily
smaller than mandated by SynGuar-PROSE. For instance, when we

6In Python, we use string.printable and remove the white space characters

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

100

200

300

400

500

600

700

800

Program in PROSE-benchmark

N
um

be
ro

fS
am

pl
es

𝜖 = 0.1, 𝛿 = 0.02 𝜖 = 0.05, 𝛿 = 0.02 𝜖 = 0.02, 𝛿 = 0.02

Figure 4: For most programs in the PROSE-benchmark,
SynGuar-PROSE synthesizes programs with provable gener-
alization under 400 examples for 𝜖 = 0.02, 𝛿 = 0.02. For
𝜖 = 0.1, 𝛿 = 0.02, the #samples drop to 58−218 (average 107.22).

use exactly 4 randomly chosen examples in each trial, the vanilla
StrPROSE synthesizer produces incorrect programs on most of
the 32 runs for all target programs. Most of the synthesized pro-
grams overfit the examples: it is only correct on 176/512 (34.38%)
runs in total. This confirms the importance of SynGuar’s main
objective: taking enough examples until the synthesized program
is guaranteed to generalize with high probability.

SynGuar-STUN synthesizes 53/59 correct programs from the
SyGuS-STUN for 𝜖 = 0.05, 𝛿 = 0.02 for all 3 runs. In total, this leads
to 159/177 (89.83%) correct runs. As a point of comparison, the
vanilla version StrSTUN synthesizer, evaluated on the examples
provided in the SyGuS benchmark, produces correct programs for
36/59 of the target benchmark. SynGuar-STUN shows a 29% im-
provement over the vanilla StrSTUN on the SyGuS benchmark, syn-
thesizing correctly an additional 17 programs in all trials. Further,
this suggests that a significant number of SyGuS-STUN programs
in the benchmark do not have enough examples in the benchmark
to provably generalize. Synthesizers, therefore, may need additional
hints or assumptions to solve them correctly.

To analyze vanilla StrSTUN under the same input distribution
as SynGuar-STUN, we further evaluate it on a fixed number of
randomly chosen examples in 3 trials. We use sample size of 4 per
trial following prior work [26, 55]. We find that vanilla StrSTUN
synthesizes only 33/59 correct programs in all 3 runs (in total
correct on 121/177 runs), confirming that it often overfits.

5.2 Sample Size Sufficient for Generalization
Our work provides empirical evidence that a modest number of
examples suffice for provable generalization for the evaluated tasks.
Figure 4 shows that we need between 100-400 examples (about
197 on average) to achieve (𝜖 = 0.05, 𝛿 = 0.02) generalization for
the SynGuar-PROSE on the 16 target programs evaluated. For a
smaller error tolerance (𝜖 = 0.02, 𝛿 = 0.02), the observed range of
sample size becomes 200-900. Note that sample size is sensitive to 𝜖
as is theoretically expected—distinguishing between two functions

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300
1,400
1,500

Program in SyGuS-STUN

N
um

be
ro

fS
am

pl
es

𝜖 = 0.05, 𝛿 = 0.02

Figure 5: For most programs in the SyGuS-STUN, SynGuar-
STUN synthesizes programs with provable generalization
under 500 examples for 𝜖 = 0.05, 𝛿 = 0.02. Only 11 of these
programs require 500 − 1400 examples.

that behave almost identically using random sampling will require
many samples.

Figure 5 shows that we need between 140-1400 examples (about
357 on average) to achieve (𝜖 = 0.05, 𝛿 = 0.02) generalization for
the 59 target programs evaluated with SynGuar-STUN. Most of
the programs in the SyGuS benchmark require under 500 samples,
with only 11 programs requiring 500 − 1400 I/O examples.

5.3 Reduction in Program Search Space
Note that Theorem 3.1 does not predict how fast the procedure
will converge to a generalized program, i.e., how fast the space of
consistent programs will shrink after each example. This varies
empirically given the task and examples seen. But, SynGuar in-
ternally estimates (conservatively) how many programs remain
consistent after seeing each example. From this, two empirical
findings which explain our other observations emerge. First, the
program space shrinks drastically with the first few examples for
nearly all benchmarks. Second, the number of examples required
to generalize depends significantly on the expressiveness of the
chosen hypothesis space.

Figure 6 shows the size of the consistent program space, for
6 representative programs in the PROSE-benchmark computed
by SynGuar-PROSE. The Y-axis is a logarithmic scale. The full
evaluation of the rest of the programs is in the supplementary ma-
terial [2]. We choose these programs as they represent the largest,
smallest, and average cases of the program space size after 25 ex-
amples averaged over 32 runs, as well as the largest and smallest
program space size decrease after 5 examples. In particular, P15 has
the largest decrease on average in the program space size after 5
examples from 1050 to 106 while P13 has the smallest decrease after
5 examples from 9.7 · 103 to 27. This observation explains why a
small number of examples turn out to be sufficient for generaliza-
tion in this benchmark. It also shows that reducing the consistent
hypothesis space further, after the initial quick reduction, becomes
increasingly difficult with unbiased sampling.

0 5 10 15 20 25100

1012

1024

1036

1048

Number of Samples

Pr
og

ra
m

Sp
ac
e
Si
ze

P2 P5 P11 P12 P13 P15

Figure 6: In PROSE-benchmark, the program space shrinks
3.7 · 102 − 1044× on average with the first 5 examples, explain-
ing why SynGuar-PROSE can provably generalize in modest
number of samples for most programs in the benchmark.

The SyGuS benchmark has target programs of different com-
plexity (different number of conditionals). For SynGuar-STUN, the
number of samples required to generalize depends on target pro-
gram’s complexity—more complex programs require considering a
larger original hypothesis space to be represented. However, the al-
gorithm does not know the original hypothesis space. To use fewer
samples, the algorithm chooses the smallest hypothesis space that
still contains programs consistent with samples, because outputting
more complex programs (more conditionals) requires choosing a
larger hypothesis space for which more samples are needed.

We use the target programs in 𝐻0 as an example to show this
phenomenon in Figure 7. The figure shows for each target program
the sample size sufficient for (𝜖, 𝛿/3)-generalization calculated by
the 3 parallel SynGuar instances on𝐻0,𝐻1, and𝐻2. We show that if
SynGuar-STUN chooses a program in 𝐻0, the number of examples
is 141−419. If the target program is in𝐻0 but the synthesizer chooses
a program in 𝐻1, the number of samples is larger by 1166.22 on
average. For example, for program 20 in our 3 runs, 213 samples
are sufficient to pick a program in 𝐻0, but to return a program from
𝐻1 or 𝐻2 SynGuar-STUN requires around 1300 and 2400 examples,
respectively. This quantitatively shows that the sample size can
vary by a large margin when considering more complex programs.
Moreover, this result explains why choosing a simpler program
first can require a smaller number of examples.

6 RELATEDWORK
The overfitting problem in learning programs from examples is
known. Many different approaches have been proposed to tackle it
(see Section 1). One line of work proposes conditioning the search
with program traces rather than just I/O examples [13, 21, 54].
Another line of work improves the input specification [19, 33] us-
ing domain-specific knowledge about the hypothesis space. Singh
et al. propose to rank the synthesized functions based on distri-
butional priors with machine learning [55]. Similarly, several in-
ductive synthesis techniques use deep learning to improve their

SynGuar: Guaranteeing Generalization in Programming by Example ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 5 9 13 17 21 25 29 33 37 41 450

1,000

2,000

3,000

Program in SyGuS-STUN

N
um

be
ro

fS
am

pl
es

𝑝 ∈ 𝐻0 𝑝 ∈ 𝐻1 𝑝 ∈ 𝐻2

Figure 7: For target programs with no condition (𝑡 ∈ 𝐻0),
choosing a program 𝑝 ∈ 𝐻0, versus a program with one con-
dition (𝐻1) or two conditions (𝐻2) leads to provable general-
ization in less number of samples.

search [7, 45, 61]. Broadly speaking, these approaches are comple-
mentary to ours as they either require domain-specific priors or
they learn program patterns from a dataset of similar programs [47].
Moreover, none of them claims any generalization guarantees.

Several works suggest that larger test harnesses lead to promis-
ing improvements in synthesized programs [33, 44], which is also
observed in related domains of program repair [23, 24] and invari-
ant learning [9]. Our work, motivated by these, provides the formal
bridge between test harness size and provable generalization. We
also show that it translates into significantly improved accuracy on
string-manipulating tasks, directly due to reduced overfitting.

Establishing generalization guarantees for synthesizers has been
studied for over three decades. The PAC learnability framework
has been introduced by Valiant [58] for analyzing generalization
from a computational perspective. Under this theory, the sample
complexity required for generalization has been established for
learning in propositional logic domain [29, 51, 58]. The results have
been extended to learning logic programs i.e., predicate logic do-
main [14, 15, 17]. Some of the above bounds are limited to certain
types of hypothesis spaces. Instead, Blumer et al. have given two
sample complexity bounds 1) union bound [10] and 2) Vapnik-
Chervonenkis Dimension bound [11] that are more general. The
union bound is used when the hypothesis space is finite and when
the VC dimension of a model is difficult to estimate [8, 34]. Whilst
the above works have established the bounds in theory, their ap-
plicability in real-world synthesizers have been very limited. A
recent work uses the VC dimension argument for synthesizing lin-
ear arithmetic functions for holes given in a sketch [20]. For many
programming domains, such as for string-manipulating programs,
it is difficult to compute VC dimensions.

Besides the PAC framework, another line of work towards gen-
eralization is through active learning. Some interactive synthesis
systems have question selection mechanisms to find distinguishing
input [37, 60]. Ji et al. further approximate optimal questions to
resolve ambiguity in less number of samples [31]. However, these

approaches do not give generalization guarantees without assum-
ing the existence of the target programs in the hypothesis space or
a prior distribution over target programs, so they are orthogonal to
our approach which works under minimal assumptions.

Outside of program synthesis, generalization has been exten-
sively studied in machine learning. Our work bridges the two lines
of inquiry that have evolved in parallel. Apart from PAC-style defini-
tions based on sample complexity, generalization can be achieved us-
ing algorithmic stability [12]. Bounds have been established for both
convex optimizations and non-convex optimization algorithms, i.e.,
low sensitivity to small changes in inputs [28, 36, 40, 43, 50]. These
works leverage the properties of algorithms like stochastic gradient
descent (SGD) and stochastic gradient Langevin dynamic (SGLD)
in order to estimate the generalization bounds for a given num-
ber of samples. Adapting the framework of algorithmic stability
to PBE-based synthesis is promising future work, but it is chal-
lenging. A direct adaptation, for example, would restrict learnt
programs to be stable, for which small changes in outputs for small
changes in inputs. Generalization has been explored from other
perspectives such as by bounding network capacity [41] and over-
parametrization [4, 32, 62] in machine learning literature, which
are also alternative starting points for studying generalization in
program synthesis.

7 CONCLUSION
In this work, we exploit the theoretical connection between gener-
alization and the numbers of examples used in programming-by-
example synthesis. We provide the first principled approach that
guarantees generalization with a modest number of examples in
this regime. Key to this result is our mechanism for computing
sample complexity on the fly. We show experimentally that this
significantly reduces overfitting and improves accuracy for synthe-
sizing string-manipulation programs, compared to approaches that
use arbitrarily fewer examples.

ACKNOWLEDGMENTS
We thank Shiqi Shen, Shruti Hiray, and the anonymous reviewers
for helpful feedback on this work. This work was supported by
Crystal Centre at National University of Singapore, a Singapore
Ministry of Education Academic Research Fund Tier 1 (WBS num-
ber R-252-000-B50-114), and a research grant with WBS number
R-252-000-B14-281. All opinions in this work are solely those of
the authors.

REFERENCES
[1] 2019. SyGuS-Comp 2019. https://sygus.org/comp/2019/
[2] 2021. Supplementary Material. https://github.com/HALOCORE/SynGuar
[3] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive pro-

gram synthesis. In Computer-Aided Verification (CAV). https://doi.org/10.1007/
978-3-642-39799-8_67

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. 2019. Learning and General-
ization in Overparameterized Neural Networks, Going Beyond Two Layers. In
Conference on Neural Information Processing Systems (NeurIPS).

[5] Rajeev Alur, Pavol Černý, and Arjun Radhakrishna. 2015. Synthesis Through
Unification. In Computer-Aided Verification (CAV). https://doi.org/10.1007/978-3-
319-21668-3_10

[6] Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta. 2019. Aug-
mented example-based synthesis using relational perturbation properties. In
Principles of Programming Languages (POPL). https://doi.org/10.1145/3371124

https://sygus.org/comp/2019/
https://github.com/HALOCORE/SynGuar
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1145/3371124

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Bo Wang, Teodora Baluta, Aashish Kolluri, and Prateek Saxena

[7] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2017. Deepcoder: Learning to write programs. In International
Conference on Learning Representations (ICLR).

[8] Guy Blanc, Jane Lange, and Li-Yang Tan. 2020. Top-Down Induction of Decision
Trees: Rigorous Guarantees and Inherent Limitations. In Innovations in Theoretical
Computer Science (ITCS). https://doi.org/10.4230/LIPIcs.ITCS.2020.44

[9] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wörner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis
for Automated Root Cause Explanation. In USENIX Security.

[10] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
1987. Occam’s razor. Information processing letters 24, 6 (1987), 377–380. https:
//doi.org/10.1016/0020-0190(87)90114-1

[11] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
1989. Learnability and the Vapnik-Chervonenkis Dimension. Journal of the ACM
(JACM) 36 (1989). https://doi.org/10.1145/76359.76371

[12] Olivier Bousquet and André Elisseeff. 2002. Stability and Generalization. Journal
of Machine Learning Research (JMLR) 2 (2002).

[13] Xinyun Chen, Chang Liu, and Dawn Song. 2019. Execution-Guided Neural Pro-
gram Synthesis. In International Conference on Learning Representations (ICLR).

[14] William W. Cohen. 1994. Pac-learning recursive logic programs: efficient al-
gorithms. Journal of Artificial Intelligence Research (JAIR) 2, 1 (1994), 501–539.
https://doi.org/10.1613/jair.97

[15] William W. Cohen. 1994. Pac-learning recursive logic programs: negative results.
Journal of Artificial Intelligence Research (JAIR) 2, 1 (1994), 541–573. https:
//doi.org/10.1613/jair.1917

[16] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory Data Mining and
Data Cleaning. Vol. 479. John Wiley & Sons. https://doi.org/10.1002/0471448354

[17] Sašo Džeroski, Stephen Muggleton, and Stuart Russell. 1992. PAC-learnability
of determinate logic programs. In Annual Workshop on Computational Learning
Theory (COLT). 128–135. https://doi.org/10.1145/130385.130399

[18] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. 2017. RobustFill: neural program learning under
noisy I/O. In International Conference on Machine Learning (ICML).

[19] Dana Drachsler-Cohen, Sharon Shoham, and Eran Yahav. 2017. Synthesis with
Abstract Examples. In Computer-Aided Verification (CAV). https://doi.org/10.
1007/978-3-319-63387-9_13

[20] Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2019. Efficient Synthesis
with Probabilistic Constraints. In Computer-Aided Verification (CAV). https:
//doi.org/10.1007/978-3-030-25540-4_15

[21] Kevin Ellis and Sumit Gulwani. 2017. Learning to Learn Programs from Examples:
Going Beyond Program Structure. In International Joint Conferences on Artificial
Intelligence Organization (IJCAI). https://doi.org/10.24963/ijcai.2017/227

[22] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan.
2018. Horn-ICE Learning for Synthesizing Invariants and Contracts. In Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA). https:
//doi.org/10.1145/3276501

[23] Xiang Gao, Shraddha Barke, Arjun Radhakrishna, Gustavo Soares, Sumit Gul-
wani, Alan Leung, Nachiappan Nagappan, and Ashish Tiwari. 2020. Feedback-
Driven Semi-Supervised Synthesis of Program Transformations. In Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA). https:
//doi.org/10.1145/3428287

[24] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM (2019). https://doi.org/10.1145/3318162

[25] Peter Grünwald. 2007. The Minimum Description Length Principle. https://doi.
org/10.7551/mitpress/4643.001.0001

[26] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-Output Examples. In Principles of Programming Languages (POPL). 317–330.
https://doi.org/10.1145/1926385.1926423

[27] Sumit Gulwani. 2016. Programming by Examples - and its applications in Data
Wrangling. Verification and Synthesis of Correct and Secure Systems (2016). https:
//doi.org/10.3233/978-1-61499-627-9-137

[28] Moritz Hardt, Benjamin Recht, and Yoram Singer. 2016. Train Faster, Generalize
Better: Stability of Stochastic Gradient Descent. In International Conference on
Machine Learning (ICML).

[29] David Haussler. 1992. Decision theoretic generalizations of the PAC model for
neural net and other learning applications. Information and Computation 100
(1992). https://doi.org/10.1016/0890-5401(92)90010-D

[30] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In International Conference on Soft-
ware Engineering (ICSE). https://doi.org/10.1145/1806799.1806833

[31] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. 2020. Ques-
tion Selection for Interactive Program Synthesis. In Programming Language
Design and Implementation (PLDI). 1143–1158. https://doi.org/10.1145/3385412.
3386025

[32] K. Kawaguchi and J. Huang. 2019. Gradient Descent Finds Global Minima
for Generalizable Deep Neural Networks of Practical Sizes. In Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton). https:
//doi.org/10.1109/ALLERTON.2019.8919696

[33] Larissa Laich, Pavol Bielik, and Martin Vechev. 2020. Guiding Program Synthe-
sis by Learning to Generate Examples. In International Conference on Learning
Representations (ICLR).

[34] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2003. Pro-
gramming by Demonstration Using Version Space Algebra. Machine Learning
53, 1 (2003), 111–156. https://doi.org/10.1023/A:1025671410623

[35] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. 2000. Version Space Al-
gebra and its Application to Programming by Demonstration. In International
Conference on Machine Learning (ICML).

[36] Ben London. 2017. A PAC-Bayesian Analysis of Randomized Learning with
Application to Stochastic Gradient Descent. In Conference on Neural Information
Processing Systems (NeurIPS).

[37] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User Interac-
tion Models for Disambiguation in Programming by Example. In User Interface
Software & Technology (UIST). 291–301. https://doi.org/10.1145/2807442.2807459

[38] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury.
2018. Symbolic execution with existential second-order constraints. In ESEC/FSE.
389–399. https://doi.org/10.1145/3236024.3236049

[39] Tom MMitchell. 1982. Generalization as search. Artificial Intelligence 18, 2 (1982),
203–226. https://doi.org/10.1016/0004-3702(82)90040-6

[40] Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. 2018. Generalization
Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints. In
Conference on Learning Theory, PMLR. 605–638.

[41] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro.
2018. A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for
Neural Networks. In International Conference on Learning Representations (ICLR).

[42] Hila Peleg and Nadia Polikarpova. 2020. Perfect is the Enemy of Good: Best-Effort
Program Synthesis. In European Conference on Object-Oriented Programming
(ECOOP). https://doi.org/10.4230/LIPIcs.ECOOP.2020.2

[43] A. Pensia, V. Jog, and P. Loh. 2018. Generalization Error Bounds for Noisy,
Iterative Algorithms. In International Symposium on Information Theory (ISIT).
https://doi.org/10.1109/ISIT.2018.8437571

[44] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. 2014. Test-
Driven Synthesis. In Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/2594291.2594297

[45] Illia Polosukhin and Alexander Skidanov. 2018. Neural Program Search: Solving
Programming Tasks from Description and Examples. In ICLR workshop.

[46] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for induc-
tive program synthesis. In Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA), Vol. 50. 107–126. https://doi.org/10.1145/2858965.2814310

[47] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Principles of Programming Languages (POPL).
https://doi.org/10.1145/2676726.2677009

[48] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett, and Cesare
Tinelli. 2019. cvc4sy: Smart and Fast Term Enumeration for Syntax-Guided
Synthesis. In Computer-Aided Verification (CAV). https://doi.org/10.1007/978-3-
030-25543-5_5

[49] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark
Barrett. 2015. Counterexample-Guided Quantifier Instantiation for Synthesis in
SMT. In Computer-Aided Verification (CAV). https://doi.org/10.1007/978-3-319-
21668-3_12

[50] Omar Rivasplata, Emilio Parrado-Hernández, John Shawe-Taylor, Shiliang Sun,
and Csaba Szepesvári. 2018. PAC-Bayes Bounds for Stable Algorithms with
Instance-Dependent Priors. In Conference on Neural Information Processing Sys-
tems (NeurIPS).

[51] Ronald L. Rivest. 1987. Learning Decision Lists. Machine Learning 2 (1987).
https://doi.org/10.1023/A:1022607331053

[52] Jean E. Sammet. 1966. The Use of English as a Programming Language. Commun.
ACM (1966). https://doi.org/10.1145/365230.365274

[53] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, and Pra-
teek Saxena. 2019. Neuro-Symbolic Execution: Augmenting Symbolic Execution
with Neural Constraints. In Network and Distributed Systems Security (NDSS).
https://doi.org/10.14722/ndss.2019.23530

[54] Eui Chul Shin, Illia Polosukhin, and Dawn Song. 2018. Improving Neural Program
Synthesis with Inferred Execution Traces. In Conference on Neural Information
Processing Systems (NeurIPS).

[55] Rishabh Singh and Sumit Gulwani. 2015. Predicting a Correct Program in Pro-
gramming by Example. In Computer-Aided Verification (CAV). https://doi.org/10.
1007/978-3-319-21690-4_23

[56] David Canfield Smith. 1975. PYGMALION: A Creative Programming Environment.
Technical Report. Stanford University. https://doi.org/10.21236/ada016811

[57] Phillip D Summers. 1977. A methodology for LISP program construction from
examples. Journal of the ACM (JACM) (1977). https://doi.org/10.1145/321992.
322002

[58] L. G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27 (1984).
https://doi.org/10.1145/1968.1972

https://doi.org/10.4230/LIPIcs.ITCS.2020.44
https://doi.org/10.1016/0020-0190(87)90114-1
https://doi.org/10.1016/0020-0190(87)90114-1
https://doi.org/10.1145/76359.76371
https://doi.org/10.1613/jair.97
https://doi.org/10.1613/jair.1917
https://doi.org/10.1613/jair.1917
https://doi.org/10.1002/0471448354
https://doi.org/10.1145/130385.130399
https://doi.org/10.1007/978-3-319-63387-9_13
https://doi.org/10.1007/978-3-319-63387-9_13
https://doi.org/10.1007/978-3-030-25540-4_15
https://doi.org/10.1007/978-3-030-25540-4_15
https://doi.org/10.24963/ijcai.2017/227
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3428287
https://doi.org/10.1145/3428287
https://doi.org/10.1145/3318162
https://doi.org/10.7551/mitpress/4643.001.0001
https://doi.org/10.7551/mitpress/4643.001.0001
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.3233/978-1-61499-627-9-137
https://doi.org/10.3233/978-1-61499-627-9-137
https://doi.org/10.1016/0890-5401(92)90010-D
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1109/ALLERTON.2019.8919696
https://doi.org/10.1109/ALLERTON.2019.8919696
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/3236024.3236049
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://doi.org/10.1109/ISIT.2018.8437571
https://doi.org/10.1145/2594291.2594297
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1023/A:1022607331053
https://doi.org/10.1145/365230.365274
https://doi.org/10.14722/ndss.2019.23530
https://doi.org/10.1007/978-3-319-21690-4_23
https://doi.org/10.1007/978-3-319-21690-4_23
https://doi.org/10.21236/ada016811
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/1968.1972

SynGuar: Guaranteeing Generalization in Programming by Example ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[59] Vladimir Vapnik. 2000. The Nature of Statistical Learning Theory. Springer science
& business media. https://doi.org/10.1007/978-1-4757-3264-1

[60] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query
Synthesis from Input-Output Examples. In International Conference on Manage-
ment of Data (SIGMOD). 1631–1634. https://doi.org/10.1145/3035918.3058738

[61] Amit Zohar and Lior Wolf. 2018. Automatic Program Synthesis of Long Programs
with a Learned Garbage Collector. In Conference on Neural Information Processing
Systems (NeurIPS).

[62] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. 2020. Gradient descent
optimizes over-parameterized deep ReLU networks. Machine Learning 109 (2020),
1–26. https://doi.org/10.1007/s10994-019-05839-6

https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1007/s10994-019-05839-6

	Abstract
	1 Introduction
	2 Overview
	3 The SynGuar Framework
	3.1 Key Observations & Challenges
	3.2 SynGuar Algorithm
	3.3 Analysis of the Algorithm

	4 Retrofitting SynGuar into Existing Synthesizers
	4.1 SynGuar for the PROSE Framework
	4.2 SynGuar in StrSTUN

	5 Evaluation
	5.1 Accuracy Improvement
	5.2 Sample Size Sufficient for Generalization
	5.3 Reduction in Program Search Space

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

