
Data-confined HTML5 Applications

Devdatta Akhawe1, Frank Li1, Warren He1, Prateek Saxena2, and Dawn Song1

1 University of California, Berkeley, Berkeley, CA, USA
2 National University of Singapore, Singapore

Abstract. Rich client-side applications written in HTML5 proliferate
on diverse platforms, access sensitive data, and need to maintain data-
confinement invariants. Applications currently enforce these invariants
using implicit, ad-hoc mechanisms. We propose a new primitive called
a data-confined sandbox or DCS. A DCS enables complete mediation
of communication channels with a small TCB. Our primitive extends
currently standardized primitives and has negligible performance over-
head and a modest compatibility cost. We retrofit our design on four
real-world HTML5 applications and demonstrate that a small amount of
effort enables strong data-confinement guarantees.

1 Introduction

Rich client-side applications written in HTML, CSS, and JS—including browser
extensions, packaged browser applications (Chrome Apps) [17], Windows 8 Metro
applications [32], and applications in newer browser operating systems (B2G [33],
Chrome OS [18])—are fast proliferating on diverse computing platforms. These
“HTML5” applications run with access to sensitive user data, such as brows-
ing history, personal and social data, and financial documents, as well as capa-
bility bearing tokens that grant access to these data. A recent study of 5,943
Google Chrome browser extensions revealed that 58% required access to the
user’s browsing history, and 35% requested permissions to the user’s data on all
websites [10].

Applications handling sensitive data need the ability to verifiably confine data
to specific principals and to prevent it from leaking to malicious actors. On one
hand, the developers want an easy, high-assurance way to confine sensitive data;
on the other, platform vendors and security auditors want to verify sensitive
data confinement. For example, consider LastPass, a real-world HTML5-based
password manager with close to a million users3. By design, LastPass only stores
an encrypted version of the user’s data in the cloud and decrypts it at the
client side with the user’s master password. It is critical that the decrypted
user data (i.e., the clear-text password database) never leave the client. We
term this requirement a data-confinement invariant. Data-confinement invariants
are fundamental security specifications that limit the flow of sensitive data to
a trusted set of security principals. These data-confinement invariants are not

3 https://www.lastpass.com

explicitly stated in today’s HTML5 applications but are implicitly necessary to
preserve their privacy and security guarantees.

We observe two hurdles that hinder practical, high-assurance data confine-
ment in existing client-side HTML5 applications. First, mechanisms to spec-
ify and enforce data-confinement invariants are absent in HTML5 platforms as
a result, they remain hidden in application designs; raising the TCB. Second,
client-side HTML5 applications have numerous channels to communicate with
distrusting principals, and no unified monitoring interface like the OS system
call interface exists. Due to the number of channels available to HTML5 appli-
cations, attackers can violate data confinement invariants even in the absence
of code injection vulnerabilities [45, 26]. As we explain in Section 3.2, previous
research proposals do not offer complete mediation, or have an unacceptably
large TCB and compatibility cost.

We introduce the data-confined sandbox (or DCS), a novel security primi-
tive for client-side HTML5 applications. A data-confined sandbox is a unit of
execution, such as code executing in an iframe, the creator of which explicitly
controls all the data imported and exported by the DCS. Our design provides the
creator of a DCS a secure reference monitor to interpose on all communications,
privileged API accesses, and input/output data exchanges originating from the
DCS.

Data-confined sandboxes are a fundamental primitive to enable a data-centric
security architecture for emerging HTML5 applications. By moving much of the
application code handling sensitive data to data-confined sandboxes, we can
enable applications that have better resilience to privacy violating attacks and
that are easy to audit by security analysts.
Contributions. We make the following main contributions:

– We introduce the concept of data confinement for client-side HTML5 appli-
cations that handle sensitive data (Section 2).

– We identify the limitations of current security primitives in the HTML5
platform that make them insufficient for implementing data-confinement in-
variants (Section 3.2).

– We design and implement a data-confined sandbox, a novel mechanism in
web browsers that provides complete mediation on all explicit data com-
munication channels (Section 4) and discuss how to implement such a new
primitive without affecting the security invariants maintained by the HTML5
platform (Section 4.3).

– We demonstrate the practicality of our approach by modifying four appli-
cations that handle sensitive data to provide strong data confinement guar-
antees (Section 6). All our code and case studies are publicly available on-
line [13].

2 Data Confinement in HTML5 applications

Data confinement is a data-centric property, which limits the flow of sensitive
data to an explicitly allowed set of security principals. In this section, we present
example data-confinement invariants from real-world applications. Our focus

is on modern HTML5 applications that handle sensitive data or tokens with
complex client-side logic leading to a large client-side TCB.

2.1 Password Managers

Password managers organize a user’s credentials across the web in a centralized
store. Consider LastPass, a popular password manager that stores encrypted
credential data in the cloud. LastPass decrypts the password database only at
the client side (in a ‘vault’) with a user provided master password. A number of
data-confinement invariants are implicit in the design of LastPass.

– First, the user’s master password should never be sent to any web server
(including LastPass servers).

– Second, the password database should only be sent back to the LastPass
servers after encryption.

– Third, the decrypted password database on the client-side should not leak
to any web site.

– Finally, only individual decrypted passwords should be sent only to their
corresponding websites: e.g., the credentials for facebook.com should only
be used on facebook.com.

2.2 Client-side SSO Implementations

Single sign-on (SSO) mechanisms have emerged on the web to manage users’
online identities. These mechanisms rely on confining secret tokens to an allowed
set of principals. Consider Mozilla’s recent SSO mechanism called BrowserID. It
has the following data-confinement invariants implicit in its design:

– It aims to share authorization tokens only with specific participants in one
run of the protocol.

– Similar to the ‘vault’ in LastPass, BrowserID provides an interface for man-
aging credentials in a user ‘home page.’ This home page data should not leak
to external websites.

– The user’s BrowserID credentials (master password) should never be leaked
to a third party: only the authorization credentials should be shared with the
intended web principals involved in the particular instance of the protocol
flow.

Other SSO mechanisms, like Facebook Connect, often process capability-
bearing tokens (such as OAuth tokens). Implementation weaknesses and logic
flaws can violate these invariants, as researchers demonstrated in 2010 [24, 3],
2011 [43], and 2012 [41].

2.3 Electronic Medical Record Applications

Electronic medical record (EMR) applications provide a central interface for
patient data, scheduling, clinical decisions, and billing. Strict compliance regu-
lations, such as HIPAA, require data confinement for these applications, with
financial and reputational penalties for violations. OpenEMR is the most popu-
lar open-source EMR application [38] and has a strict confinement requirement:

an instance of OpenEMR should not leak user data to any principal other than
hospital servers.

Note the dual requirements in this application: first, OpenEMR’s developers
want to ensure data confinement to their application; second, hospitals need to
verify that OpenEMR is not leaking patient data to any external servers. In the
current design, it is difficult for hospitals to verify this: any vulnerability in the
client-side software can allow data disclosure.

2.4 Web Interfaces for Sensitive Databases

Web-based database administration interfaces are popular today, because they
are easy to use. PhpMyAdmin is one such popular interface with thousands of
downloads each week [34]. The following data-confinement invariants are implicit
in its design:

– Data received from the database server is not sent to any website.

– User inputs (new values to store) are only sent to the database server’s data
insertion endpoint.

Currently, a code injection vulnerability in the client-side interface can enable
attackers to steal the entire database, as the interface executes with the database
user’s privileges. Moreover, the application is large and not easily auditable to
ensure data-confinement invariants.

Prevalence of Data Confinement The discussion above only provides ex-
emplars: any application handling sensitive data typically has a confinement
invariant. Due to space constraints, we have made our analysis of the twenty
most popular Google Chrome extensions available online [13]. All applications
handling sensitive data (sixteen applications in total) maintained an invariant
implicitly.4 The trusted code base for these extensions varied from 7.5KB to
1.24MB. Sensitive data available to the extensions vary from access to the user’s
browsing history to the user’s social media login credentials.

3 Problem Formulation

Given the prevalence of data confinement in HTML5 applications, we aim to
support secure data confinement in HTML5 applications. Due to the increas-
ingly sensitive nature of data handled by modern HTML5 applications, a key
requirement is high assurance: small TCB, complete mediation. Further, for ease
of adoption, we aim for a mechanism with minimal compatibility costs.

The idea of such high assurance mechanisms is not new, with Saltzer and
Schroeder laying it down as a fundamental requirement for secure systems [39].
Our focus is on developing a high assurance mechanism for HTML5 applications.
We first discuss the challenges in achieving high assurance data confinement in
HTML5 applications, followed by a discussion on why current and proposed
primitives do not satisfy all our goals. We discuss our design in Section 4.

4 The remaining four extensions dealt mainly with the website style and appearance
and did not access sensitive data.

3.1 HTML5 and Data Confinement: Challenges

A number of idiosyncrasies of the HTML5 platform make practical data confine-
ment with a small TCB difficult. First, the HTML5 platform lacks mechanisms
to explicitly state data-confinement invariants—current ad-hoc mechanisms do
not separate policy and enforcement mechanism. Due to the coarse-grained na-
ture of the same origin policy, enforcing these invariants on current HTML5
platforms increases the TCB to the whole application.

Achieving a small TCB is particularly important on the HTML5 platform.
The JavaScript language and the DOM interface make modular reasoning about
individual components difficult. All code runs with ambient access to the DOM,
cookies, localStorage, and the network. Further, techniques like prototype hi-
jacking can violate encapsulation assumptions and allow attackers to leak pri-
vate variables in other modules. The DOM API makes confinement difficult to
ensure even in the absence of code injection vulnerabilities [45, 26].

Achieving complete mediation on the HTML5 platform is also difficult. The
HTML5 platform has a large number of data disclosure channels, as by design
it aims to ease cross-origin resource loading and communication. We categorize
these channels as:

– Network channels. HTML5 applications can make network requests via
HTML elements like img, form, script, and video, as well as JavaScript
and DOM APIs like XMLHttpRequest and window.open. Furthermore, CSS
stylesheets can issue network requests by referencing images, fonts, and other
stylesheets.

– Client-side cross-origin channels. Web browsers support a number of
channels for client-side cross-origin communication. This includes exceptions
to the same-origin policy in JavaScript such as the window.location object.
Initially, mashups used these cross-origin communication mechanisms for
fragment ID messaging (via the location.hash property) between cross-
origin windows. Current mashups rely on newer channels like postMessage,
which are also a mechanism for data leaks.

– Storage Channels. Another source of data exfiltration are storage channels
like localStorage, cookies, and so on. These channels do not cause network
requests or communicate with another client-side channel as above; instead,
they allow code to exfiltrate data to other code that will run in the future in
the same origin (or, in case of cookies, even other related origins). Browsers
tie storage channels to the origin of an application.

Given the wide number of channels available for inadvertent data disclo-
sure, we observe that no unified interface exists for ensuring confinement of fine-
grained code elements in the HTML5 platform. This is in contrast to system
call interposition in commodity operating systems that provides complete me-
diation. For example, mediation of data communication channels using system
call sandboxing techniques is well-studied for modern binary applications [30,
19, 36]. Previous work also developed techniques to automate identification and
isolation of subcomponents that process sensitive data [30, 7]. Our work shares
these design principles, but targets HTML5 applications.

3.2 Insufficiency of Existing Mechanisms

Table 1. Comparison of current solutions for data confinement

System Name Complete Mediation Compatibility Cost Small TCB

HSTS No: HTTPS pages only Low Yes
CSP No: anchors and window.open High: disables eval Yes
JS Static Analysis No: no CSS & DOM High: disables eval No
JS IRMs (Cajole, Conscript) No: no CSS & DOM High: disables eval Yes
JSand No: no CSS High: SES No
Treehouse Yes High: code change No
sandbox with Temp. Origins No: all network channels Low Yes
Data-confined sandboxes Yes Low Yes

None of the primitives available in today’s HTML5 platform achieve com-
plete mediation with a small TCB. Browser-supported primitives, such as Con-
tent Security Policy (CSP), block some network channels but not all. Current
mechanisms in web browsers aim for integrity, not confinement. For example,
even the most restrictive CSP policy cannot block data leaks through anchor
tags and window.open. Similarly, our previous work on privilege separation of
HTML5 applications does not provide any confinement guarantees [4]. An un-
privileged child can leak data by making a request for an image or including a
CSS style from a remote host.

Recent work on information flow and non-interference show promise for en-
suring fine-grained data-confinement in JavaScript; unfortunately, these tech-
niques currently have high overhead for modern applications [11]. IBEX proposed
writing extensions in a high-level language (FINE) in a language amenable to
deep analysis to ensure conformance with specific policies [23]. In contrast, our
work does not require significant changes to web applications. Further, as we
explain below, these approaches also have a large TCB.

Another approach to interpose on all data communication channels is to do
static analysis of the application source code [14, 16, 31]. Static analysis systems
cannot reason about dynamic constructs such as eval, which are used pervasively
by existing applications [37] and modern JavaScript libraries [1]. As a result,
such mechanisms have a high compatibility cost. When combined with rewriting
techniques, such as cajoling [16], JS analysis techniques can achieve complete
mediation on client-side cross-frame channels; but still do not provide complete
mediation over DOM and CSS channels.

JSand [2] introduced a client-side method of sandboxing third-party JavaScript
libraries. It does so by encapsulating all Javscript objects in a wrapper that me-
diates property accesses and assignments, via an application-defined policy. This
approach does not protect against scriptless attacks such as those using CSS.
Additionally, it relies on the use of Secure EcmaScript 5 (SES), which is not
compatible for some JavaScript libraries. JSand does provide a support layer to
improve compatibility with legacy JavaScript code, but this is a partial trans-
formation and involves a high performance overhead.

Treehouse uses new primitives, like web workers and EcmaScript5 sealed
objects, in the HTML5 platform to ensure better interposition [27]. Treehouse
proposes to execute individual components in web workers at the client side. One
concern with the Treehouse approach is that web workers also run with some
ambient privileges: e.g., workers have access to XMLHttpRequest, synchronous
file APIs, script imports, and spawning new workers, which attackers can use
to leak data. Treehouse relies on the seal/unseal features of ES5 to prevent
access to these APIs, but this mechanism requires intrusive changes to existing
applications and has a high compatibility cost.

Perhaps the most important limitation of all primitives not directly sup-
ported by browsers is their large TCB. For example, in the case of Treehouse,
application code (running in workers) cannot have direct access to the DOM,
since that would break all security guarantees. Instead, application code exe-
cutes on a virtual DOM in the worker that the parent code copies over to the
main web page. As a result, the security of these mechanisms depends on the
correctness of the monitor/browser model (e.g., the parent’s client side monitor
in Treehouse).

Since the DOM, HTML, CSS, and JS are so deeply intertwined in a modern
HTML5 platform, such a client side monitor is essentially replicating the core
logic of the browser, leading to a massive increase in the TCB. Further, Tree-
house implements this complex logic in JavaScript. Corresponding issues plague
static analysis systems, new language mechanisms like IBEX, and code rewrit-
ing systems like Caja—all of them assume a model of the HTML5 platform to
implement their analysis/rewriting logic.

While implementing a model of HTML5 for analysis and monitoring is diffi-
cult, the approaches discussed above suffer from another fundamental limitation:
they work on a model of HTML5, not the real HTML5 standard implemented
in the platform (browser). Any mismatch between the browser and the model
can lead to a vulnerability, as observed (repeatedly) for Caja [20, 22, 21, 15] and
AdSafe [31, 35].

3.3 Threat Model

We focus on explicit data communication channels in the HTML5 platform core,
as defined above. Ensuring comprehensive mediation on explicit data channels
is an important first step in achieving data-confined HTML5 applications. Our
proposed primitive does not protect against covert and side channels (such as
shared browser caches [28] and timing channels [6]) or self exfiltration chan-
nels [9], which are a subject of ongoing research. These channels are important.
However, we point out that popular isolation mechanisms on existing systems
also do not protect against these [46, 8, 44]. We believe explicit channels cover a
large space of attacks, and we plan to investigate extending our techniques to
covert channels in the future.

In addition to focusing on explicit channels, our primitive only targets the
core HTML5 platform; our ideas extend to add-ons/plugins, however we exclude
them from our present implementation. We defend against the standard web
attacker model, in which the attacker cannot tamper with or observe network

ParentDCS Child Iframe

Bootstrap

Code

Policy

Code

Security

Monitor
SHIM

Browser Page

Application

 Code

HTML

Parser

HTML

Content

Content

Dispatch

Network

Engine
URI Parser

Image Src

Browser Kernel

SHIM

Network

Request

Monitor

 Call

Fig. 1. High-level design of an application running in a DCS. The only component
that runs privileged is the parent. The children run in data-confined sandboxes, with
no ambient privileges and all communication channels monitored by the parent.

traffic for other web origins and cannot subvert the integrity of the HTML5
platform itself [3].

4 The Data Confined Sandbox

To draw a parallel with binary applications, current mechanisms for confining
HTML5 applications are analogous to analyzing the machine code before it ex-
ecutes to decide whether it violates any guarantees. We argued above that such
mechanisms cannot provide high assurance. Instead, taking a systems view of
the problem of data confinement, we argue for an strace-like high assurance
monitor for the HTML5 platform.

We call our primitive the data confined sandbox, or DCS (Section 4.1). Our
key contribution is identifying that the shrewd design of the DCS primitive pro-
vides high assurance with minimal compatibility concerns (Section 4.2). Intro-
ducing any new primitive on the HTML5 platform brings up security concerns.
A primitive like DCS that provides monitoring capabilities to arbitrary code is
particularly fraught. We discuss how we ensure that we do not introduce new
vulnerabilities due to our primitive in Section 4.3.

4.1 Design of DCS

Figure 1 presents the architecture of an application using the DCS design. Our
design extends our previous work on privilege separation [4]. Our key contri-
bution is identifying how to extend the ideas of privilege separation to provide
complete mediation on the HTML5 platform. We first recap privilege separated
HTML5 applications and then discuss the DCS design.

Modern HTML5 platforms allow applications to run arbitrary code (specified
via a data:/blob: URI) in a temporary, unprivileged origin [4]. Privilege sep-
arated HTML5 applications run most application code in an arbitrary number
of unprivileged iframes (children). A small privileged parent iframe, with ac-
cess to full privileges of the web origin, provides access to privileged APIs, such
as cookie access and platform APIs like camera access. Unprivileged children

communicate with the parent through a tightly controlled postMessage channel
(dotted arrows in Figure 1).

The parent can enforce policies on the requests it receives over this postMessage
channel from its unprivileged children [4]. The parent uses its privileged inter-
faces to fulfill approved requests, such as authenticated XMLHttpRequest calls
(curved dotted arrow in Figure 1). To increase assurance, the parent code en-
forces a number of security invariants such as disabling all dynamic code evalu-
ation, allowing only a text interface with the children, and setting appropriate
MIME types for static code downloaded by the bootstrap code.

Though this privilege separation architecture provides integrity, it does not
provide data confinement. Any compromised child can make arbitrary requests
on the network through the numerous data disclosure channels outlined earlier.
We propose a new primitive, the data-confined sandbox or DCS, that enforces
confinement of data in the child. Our primitive relies on the browser to ensure
confinement. Similar to privilege separation, applications only need to switch to
using the DCS and write an appropriate policy.

Consider the browser kernel in Figure 1. Any content that a DCS child re-
quests the browser to display passes through the HTML/JS/CSS parser. If the
browser encounters a URI that it needs to load, it invokes the URI parser, which
then invokes the content dispatch logic in the browser. We modify this code
for DCS children to call a security monitor that the parent defines (solid arrow
in Figure 1). The security monitor in the parent is transparent to the child.
The browser’s call to the parent also includes the unique id identifying the child
iframe and details about the request. From there, the security monitor can decide
whether to grant the request or not.

Example Consider the ‘vault’ for the LastPass web application. In our redesign,
when the user navigates to the LastPass application, the server returns bootstrap
code (the parent) that downloads the original application code and executes it in
a data-confined sandbox (the child). The code in the DCS starts executing and
makes network requests to include all the complex UI, DOM, and encryption
libraries. Finally, the LastPass child code in the DCS makes a request for the
encrypted password database and decrypts it with the user provided password.

The parent security monitor can enforce a simple policy such as only allowing
network requests to http://lastpass.com. Alternatively, the parent can en-
force stateful policies: e.g., the monitor function could only allow resource loads
(i.e., scripts, images, styles) until the DCS child loads the encrypted password
database. After loading the encrypted database, the security monitor disallows
all future network requests.

4.2 Achieving High Assurance

Recall our goals of complete mediation, small TCB, and backwards compatibility.
We discuss how our DCS design achieves all of them.

Complete Mediation As discussed Section 3, HTML5 applications only have
three channels for data leakage: storage channels tied to the origin, network
channels, and client-side cross-origin channels. Since all application code runs in

children of temporary origins that only exist for the duration of the application’s
execution, the application code does not have access to any (storage) channel
tied to the origin (e.g., cookies, localStorage).

In a DCS, except for a blessed postMessage channel to the parent, the
browser disables all client-side communication channels. This includes cross-
origin communication channels like postMessage and cross-origin window prop-
erties (like location.hash). The postMessage channel is the only client-side
cross-origin channel available to the data-confined child, and the browser guaran-
tees that the channel only connects to the parent. The postMessage channel al-
lows the parent to proxy privileged APIs for the child. Further, the postMessage
channel also allows the parent to provide a channel to proxy postMessages to
other client-side iframes—our design only enforces complete mediation by the
parent.

HTML5 applications can request network resources via markup like scripts,
images, links, anchors, and forms and JavaScript APIs like XMLHttpRequest.
In our design, the children can continue to make these network requests; the
DCS transparently interposes on all these network channels. The parent defines
a ‘monitor’ function that the browser executes before dispatching a network
request. If the function returns false, the browser will not make the network
request.

We rely on an external monitor (i.e., one running in the parent) over an inline
one. This ensures that the monitor does not share any state with the unprivileged
child, making it easier to reason about its runtime integrity and correctness. As
we discuss in Section 5, the security monitor is not hard to implement—most
browsers already have an internal API for controlling network access, which they
expose to internal browser code as well as popular extensions such as AdBlock
and NoScript.

Small TCB The TCB in any data confinement mechanism includes the policy
code and the enforcement code. In our design, this includes the monitor code
in the parent as well as our browser modifications to ensure complete media-
tion for the parent monitor. Relying on the browser allows us to create a data
confinement design with a small enforcement code, as evidenced by our 214 line
implementation described in Section 5. This small enforcement TCB allows for
easier validation and auditing.

Compatibility Our design for network request mediation is discretionary, as
compared to client-side channels that we block outright. An alternative design
is to disallow all network requests too, and only permit network access via the
postMessage channel between the parent and child. Such a design has a sig-
nificantly higher compatibility cost. HTML5 applications pervasively employ
network channels. In contrast, the use of client-side channels is rare—for ex-
ample, Wang et al. report that cross-origin window.location read and writes
occur in less than 0.1% of pages [40]. Therefore, we find that it is acceptable
to disable cross-origin client-side channels and force the child to use the blessed
postMessage channel to the parent to access these.

4.3 Security Considerations

Our design of the DCS primitive is careful not to introduce new security vul-
nerabilities in the browser. We do not want to allow an arbitrary website to
learn information or execute actions that it could not already learn or execute.
The security policy of the current web platform is the same-origin policy. The
introduction of the DCS should not violate any of the existing same-origin policy
invariants baked into the platform. We enforce this goal with the following two
invariants:

– Invariant 1: The parent should only be able to monitor application code that
it could already monitor on the current web platform (albeit, through more
fragile mechanisms).

– Invariant 2: The parent should not be able to infer anything about a resource
requested by a DCS that is not already possible on the current web platform.

We explain how our design enforces the above invariants. First, in our design,
a data-confined sandbox can only apply to iframes with a data: URI source,
not to arbitrary URIs. Therefore, a malicious site cannot monitor arbitrary web
pages. In an iframe with a data: URI source, the creator of the iframe (the
parent) specifies the source code that executes. This code is under complete
control of the parent anyways. The parent can parse the data: URI source for
static requests and redefine the DOM APIs to monitor dynamic requests [25].
Thus, even in the absence of our primitive, the parent can already monitor any
requests a data: URI iframe makes.

To ensure Invariant 2, we only call the security monitor for the first request
made for a particular resource. As we noted above, the parent can already mon-
itor this request. Future requests (e.g., redirects) are not in the control of the
parent, and we do not call the security monitor for them. While this can cause
security issues (particularly, if the parent whitelists an open-redirect), allowing
the parent to monitor redirects would cause critical vulnerabilities.

For example, consider a page at http://socialnetwork.com/home that redi-
rects to http://socialnetwork.com/username. Consider a DCS child created
by attacker.com parent. If this child creates an iframe with source http:

//socialnetwork.com/home, our modified browser calls the security monitor
with this URI before dispatching the request. However, to ensure Invariant
2, the browser does not call the security monitor with the redirect URI (i.e.,
http://socialnetwork.com/username). Further, since the iframe is now exe-
cuting in the security context of http://socialnetwork.com/, Invariant 1 en-
sures that any image or script loads made by the socialnetwork.com iframe do
not call the security monitor.

5 Implementation

We implemented support for data-confined sandboxes in the Firefox browser.
Our modified browser and our case studies (Section 6) are all available online [13].
Our implementation is fewer than 214 lines of code, with only 60 lines being the
core functionality. The low implementation cost substantiates our intuition that

the monitoring facility is best provided by the browser. Since major browsers
already support temporary origins, we only need to add support for mediating
client-side and network channels of a DCS child.

First, we restrict cross-origin client-side channels to a blessed postMessage
channel. As a fundamental security invariant, the same-origin policy restricts
cross-origin JavaScript access to a restrictive white-list of properties. In Fire-
fox, this whitelist is present in js/xpconnect/wrappers/AccessCheck.cpp. We
modified the IsPermitted function to block all cross-origin accesses, except for
the blessed postMessage channel.

The NSIContentPolicy interface is a standard Firefox API used to monitor
network requests. Popular security and privacy extensions, such as NoScript,
AdBlock, and RequestPolicy, rely on this API, as do security features such as
CSP and mixed content blocking. We register a listener to forward requests for
monitored DCS children to the parent’s security monitor function. We do not
implement a new mediation infrastructure—any bypass of our mediation infras-
tructure would also be a critical vulnerability in the Firefox browser, allowing
bypass of all the features and extensions discussed above.

Applications can mark an iframe as a DCS using the dcfsandbox attribute,
similar to the iframe sandbox attribute. An iframe that has this attribute
only supports a data: or blob: URIs for its src attribute. Such a DCS iframe

implements all the restrictions that a sandboxed iframe supports, but provides
a complete mediation interface to the parent as described above.

To measure the overhead of calling the parent’s monitor code, we measured
the increase in latency caused by a simple monitor that allows all requests. We
measured the time required for script loads from a web server running on the
local machine and found that the load time increased from 16.73ms to 16.74ms.
This increase is statistically insignificant, and pales in comparison to the typical
latencies of 100ms observed on the web.

Due to the semantics of network requests in HTML5, the monitor function
runs synchronously: a long running monitor function could freeze the child. The
ability to cause stability problems via long running synchronous tasks is already
a problem in browsers and is not an artifact stemming from our design.

6 Case Studies

We retrofit our application architecture to four web applications to demonstrate
the practicality of our approach. We focus on open-source software for our case
studies, since that allows us to share our results freely online [13]. Table 2 sum-
marizes all our case studies. Similar to previous work, we use TCB size instead
of lines of code as a metric due to the prevalence of JavaScript minification.

We find that we needed minimal changes (at most 184 lines of code) to
port existing applications to our design, mirroring our previous experience with
privilege separation. In this section, we focus on the policies we implemented for
each application; the accompanying technical report provides full details of our
experience porting these applications to run under a DCS [5],

Table 2. List of our case studies, as well as the individual components and policies.

Application Initial
TCB

New
TCB

Lines
Changed

Component Confinement Policy Other Policies

Clipperz 1.4MB 6.3KB 67
Vault UI Only to Clipperz server

& Direct Login Child
None

Direct Login Open arbitrary web-
sites

CSP Policy disabling
dynamic code

BrowserID 206.9KB 5.7KB 184
Management Only to BrowserID

server
None

Dialog Only to BrowserID
server, secure password
input

API requests must
match state machine

OpenEMR 149.1KB 6.1KB 51 Patient
Information

Whitelist of necessary
request signatures

None

SQL
Buddy

100KB 2.97KB 11 Admin UI Only to MySQL server User confirmation
for database writes

6.1 The Clipperz Password Manager

Clipperz is an open-source HTML5 password manager that allows a user to
store sensitive data, such as website logins, bank account credentials, and credit
card information encrypted in the cloud [12]. Clipperz decrypts it at the client
side with the user provided password. Users access their data in a single ‘vault’
page. Users can also click on ‘direct login’ links that load a site’s login page, fill
in the user name/password, and submit the login form. All of Clipperz’s code
and libraries run in a single security principal, with access to all sensitive data.
The Clipperz application uses inline scripts and data: URIs extensively. We
found that enforcing strong CSP restrictions to protect against XSS breaks the
Clipperz application.

Data-Confinement We modified Clipperz to run in a pair of data-confined
sandboxes: one for the UI and another for the non-UI functionality. Our modi-
fications required minimal effort (67 lines changed) and reduced the TCB from
1.4MB to 6.3KB. This new TCB includes 42 lines of policy code.

Invariants We apply a temporal policy for each sandbox as shown in Listing 1.1.
For both sandboxes, the monitor code in our modified Clipperz applications only
allows the DCS access to postMessage and a whitelist of images and JavaScript
files (lines 7, 13, and 23). We also enforce a temporal policy: we allow network
requests only until the sandbox downloads the password database (lines 10 and
20). Once the DCS sandbox downloads the password database, our policy dis-
allows further network access save for navigation to pages like the help page.
Relying on a whitelist of network resources means that we can guarantee the se-
crecy of the user’s master password, which is impossible in the current HTML5
platform.

We do not allow the UI code to execute direct logins, since it presents a
possible self-exfiltration channel [9]. Instead, it must send a message telling the
non-UI component to do a direct login. The non-UI component retrieves the
appropriate credentials and completes the direct login process. The non-UI com-

� �
1 var doneLoading_mainframe = false , doneLoading_secondframe = false;
2 function monitor(params) {
3 if (params.id === "mainframe") { /*Policy for UI child*/
4 if (params.url === base_uri) { /*base_uri is the installation

directory */
5 return true;
6 } else if (params.type == "IMAGE") {
7 return check_img_whitelist(params.url);
8 } else if (params.type == "SCRIPT") {
9 if (! doneLoading_mainframe && params.url === base_uri + "/shim1.

js") {
10 doneLoading_mainframe = true;
11 return true;
12 } else if (! doneLoading_mainframe) {
13 return check_script_whitelist(params.url);
14 }
15 }
16 } else if (params.id == "secondframe") { /*Policy for non -UI child*/
17 if (params.url === base_uri) { return true;}
18 else if (params.type == "SCRIPT") {
19 if (! doneLoading_secondframe && params.url === base_uri + "/shim2

.js") {
20 doneLoading_secondframe = true;
21 return true;
22 } else if (! doneLoading_secondframe) {
23 return check_script_whitelist(url);
24 }
25 }
26 }
27 return false ;}� �

Listing 1.1. A basic policy for Clipperz.

ponent does not need complex UI code and executes with a restrictive CSP,
providing higher assurance.

6.2 The BrowserID SSO Mechanism

BrowserID is a new authentication service by Mozilla. Similar to other single
sign-on mechanisms like Facebook Connect and OpenID, BrowserID enables
websites (termed Relying Parties) to authenticate a user using Mozilla’s central-
ized service. Users set up a single “master” email/password to sign in to the
trusted BrowserID service and can have the service authenticate the user to a
Relying Party. Other single sign-on mechanisms share similar designs, and our
results are more generally applicable to other single sign-on systems.

BrowserID uses the EJS templating system [29], which loads template files
from the server and converts them to code at runtime using eval. A number of
modern JavaScript templating languages use this technique [1]. The use of eval
limits the applicability of CSP and static analysis techniques.

Data-Confinement We modified BrowserID to execute in a data-confined
sandbox. We required minimal effort to port BrowserID—the majority of the
changes (184 lines) were to switch the EJS library from synchronous XmlHttpRe-
quests to asynchronous requests supported by privilege separated HTML5 ap-
plications. Our modifications reduced the TCB from 206.9KB to 5.7KB, which
includes 81 lines of policy code.

Invariants Running BrowserID in a DCS we were able to implement a pol-
icy to provide two key guarantees. First, the login and credential managers
(management component) do not communicate with any servers other than the
BrowserID servers. This allows us to enforce secrecy on the master BrowserID
username/password.

Second, the parent ensures that in one instance of the authentication proto-
col, the DCS executes the whole protocol with the same BrowserID and Relying
Party window. Our design guarantees that sensitive tokens are never leaked to
parties outside these participants. In the past, single sign-on mechanisms have
had implementation bugs that allowed a MITM of an authentication flow [43,
41]; our design prevents such bugs.

For further hardening, we implemented a state machine in the security pol-
icy based on the intended dialog behavior, which ensures that the dialog (which
asks for passwords and other user input) component performs a series of requests
consistent with transitions possible in the state machine. This prevents a com-
promised dialog DCS from making arbitrary requests in the user’s session, such
as deleting her account.

6.3 The OpenEMR Patient Information Pages

OpenEMR is the most popular open-source electronic medical record system [38].
With support for a variety of records like patients, billing, prescriptions, medical
reports amongst others, OpenEMR is a comprehensive and complex web appli-
cation. Patient records, prescriptions, and medical reports are highly sensitive
data, with most jurisdictions having laws regulating their access and distribu-
tion, possibly with penalties for inadvertent disclosure.

We focus on the patient information component of the OpenEMR applica-
tion. OpenEMR accesses the patient details by using a session variable named
pid (patient id). Once the user sets the patient id, all future requests, such as
‘demographic data,’ ‘notes,’ and so on, can only refer to the particular patient.
To navigate to another patient, the user uses the search interface to reset the
patient id.

Setting the patient id for a particular session just requires a GET request
with a set_pid parameter. An attacker can accomplish this with any content
injection. For example, an attacker could inject a specially crafted image tag that
causes a user to make such a request. As a result, after a user loads the image,
the OpenEMR server will return medical records for the attacker-specified user.
Note that this is not an XSS attack, but a content injection attack.

Data-Confinement We modified the patient information component to run
under a DCS. This required modifications to 51 lines of code and reduced the
TCB from 149.1KB to 6.1KB, which includes a 38-line policy.

Invariants First, the DCS verifiably ensures that sensitive medical data does
not leak to untrusted principals. The DCS can also prevent the page from making
arbitrary calls to the large, feature-rich application. In our case, we programmed
the security policy to allow only a short whitelist of (method, URL) pairs nec-
essary for the page to function. For example, the monitor denies any request

with a set_pid parameter. This protects against the content injection attack
discussed above. This would not be possible with an origin-based whitelist.

6.4 The SQL Buddy Database Administration Interface

SQL Buddy is an open-source web-based application to handle the adminis-
tration of MySQL databases. It allows database administrators to browse data
stored in a MySQL database and to execute SQL queries and manage database
users. SQL Buddy does not use any of the client-side communication channels
we block in a DCS.

Data-Confinement We reused previous work on privilege separation of SQL
Buddy, which required only 11 lines of change to the 100KB SQL Buddy appli-
cation. Our data-confined SQL Buddy application has a TCB of 2.97KB, which
includes a 124-line policy.

Invariants By executing SQL Buddy in a DCS, we can enforce strong con-
finement policies. The application runs in two logical stages. Initially, the policy
restricts communication to only static SQL Buddy resources. Our first-stage pol-
icy allows the application to load only these whitelisted JavaScript and CSS files.
After loading the scripts and stylesheets, the application only accesses the net-
work to load static images and to make XMLHttpRequests to a special endpoint.
Our second-stage policy locks down communication to these two channels. The
flexibility of the DCS policy interface is key to enforcing a different policy for
each stage.

Our policy restricts all explicit communication channels: if the SQL Buddy
DCS is compromised, it cannot send data to arbitrary servers. Our design also
allows us to enforce finer grained policies. For example, we have the secure parent
show confirmation prompt for database writes. This prevents compromised code
in the DCS from surreptitiously modifying the database.

7 Related Work

A number of previous works share our goals of improving assurance in web
applications. We gave a detailed comparison to closely related works in Sec-
tion 3.2. Data confinement has been investigated in native binary applications
as well [30]. Zalewski [45] and Heidrich et al. [26] point at a number of attacks
that violate data-confinement invariants even in the absence of code injection.
IceShield demonstrated the efficacy of modern ES5 features to create a tamper-
resistant mediation layer for JavaScript in modern browsers [25]; these may be
used a basis for implementing data confinement policy checkers in the future.

8 Conclusion

Modern HTML5 applications handle increasingly sensitive personal data, and
require strong data-confinement guarantees. However, current approaches to en-
sure confinement are ad-hoc and do not provide high assurance. We presented a
new design for achieving data-confinement that guarantees complete mediation
with a small TCB. Our design is practical, has negligible performance overhead,
and does not require intrusive changes to the HTML5 platform. We empirically

show that our new design can enable data-confinement in a number of appli-
cations handling sensitive data and achieve a drastic reduction in TCB. Future
work includes investigating and mitigating covert channels.

Acknowledgements

We thank the anonymous reviewers for their valuable feedback. This research
is partially supported by research grant R-252-000-495-133 from Ministry of
Education, Singapore. This work was supported by Intel through the ISTC for
Secure Computing; by the National Science Foundation under grant numbers
CCF-0424422, 0842695, and 0831501 CT-L; by the Air Force Office of Scientific
Research under MURI awards FA9550-08-1-0352 and FA9550-09-1-0539; by the
Office of Naval Research under MURI grant no. N000140911081.

References

1. 35, I..C.: http://crbug.com/107538.

2. Agten, P., Acker, S.V., Brondsema, Y., Phung, P.H., Desmet, L., Piessens, F.:
JSand: Complete client-side sandboxing of third-party javascript without browser
modifications. ACSAC (2012)

3. Akhawe, D., Barth, A., Lam, P., Mitchell, J., Song, D.: Towards a Formal Foun-
dation of Web Security. CSF (2010)

4. Akhawe, D., Saxena, P., Song, D.: Privilege Separation in HTML5 Applications.
USENIX Security (2012)

5. Akhawe, D., Li, F., He, W., Saxena, P., Song, D.: Data-confined html5 applica-
tions. Technical Report UCB/EECS-2013-20, EECS Department, University of
California, Berkeley (Mar 2013)

6. Barth, A.: Timing Attacks on CSS Shaders. http://goo.gl/Mos4a (2011)

7. Brumley, D., Song, D.: Privtrans: Automatically Partitioning Programs for Privi-
lege Separation. USENIX Security (2004)

8. Cabuk, S., Brodley, C.E., Shields, C.: Ip covert timing channels: design and detec-
tion. CCS (2004)

9. Chen, E., Gorbaty, S., Singhal, A., Jackson, C.: Self-exfiltration: The dangers of
browser-enforced information flow control. W2SP (2012)

10. Chia, P.H., Yamamoto, Y., Asokan, N.: Is this app safe?: a large scale study on
application permissions and risk signals. WWW (2012)

11. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
JavaScript. PLDI (2009)

12. Clipperz: http://www.clipperz.com/.

13. Code Release: https://github.com/devd/data-confined-html5-applications.

14. Crockford, D.: AdSafe http://www.adsafe.org/.

15. Garteh Hayes: Hacking caja part 2 www.thespanner.co.uk/2012/09/18/

hacking-caja-part-2/.

16. Google: Caja http://developers.google.com/caja/.

17. Google: Chrome web store https://chrome.google.com/webstore.

18. Google: Chromium os http://www.chromium.org/chromium-os.

19. Google: Seccomp sandbox for linux http://code.google.com/p/

seccompsandbox/.

20. Google Caja Bug 51: http://code.google.com/p/google-caja/issues/detail?

id=51.

21. Google Caja Bug 1093: http://code.google.com/p/google-caja/issues/

detail?id=1093.
22. Google Caja: http://code.google.com/p/google-caja/issues/detail?id=520.
23. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser

extensions. IEEE S&P (2011)
24. Hanna, S., Shin, E., Akhawe, D., Boehm, A., Saxena, P., Song, D.: The emperor’s

new apis: On the (in) secure usage of new client-side primitives. W2SP (2010)
25. Heiderich, M., Frosch, T., Holz, T.: Iceshield: detection and mitigation of malicious

websites with a frozen dom. RAID (2011)
26. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:

stealing the pie without touching the sill. CCS (2012)
27. Ingram, L., Walfish, M.: Treehouse: Javascript sandboxes to help web developers

help themselves. USENIX ATC (2012)
28. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from

web privacy attacks. WWW (2006)
29. Jupiter-IT: EJS Javascript Templates http://embeddedjs.com/.
30. Khatiwala, T., Swaminathan, R., Venkatakrishnan, V.: Data Sandboxing: A Tech-

nique for Enforcing Confidentiality Policies. ACSAC (2006)
31. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted

web applications. IEEE S&P (2010)
32. Microsoft: Metro Apps http://msdn.microsoft.com/en-us/windows/apps/.
33. Mozilla: Boot2gecko https://wiki.mozilla.org/B2G.
34. phpMyAdmin: http://www.phpmyadmin.net/.
35. Politz, J.G., Eliopoulos, S.A., Guha, A., Krishnamurthi, S.: ADsafety: type-based

verification of javascriptsandboxing. USENIX Security (2011)
36. Provos, N.: Improving host security with system call policies. In: Proceedings of

the 12th conference on USENIX Security Symposium - Volume 12, Berkeley, CA,
USA, USENIX Association (2003) 18–18

37. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of javascript programs. ACM SIGPLAN Notices (2010)

38. S. Riley: 5 OpenSource EMRs worth reviewing (2011) http://bit.ly/hUa6l1.
39. Saltzer, J., Schroeder, M.: The protection of information in computer systems.

Proceedings of the IEEE 63(9) (1975) 1278–1308
40. Singh, K., Moshchuk, A., Wang, H., Lee, W.: On the incoherencies in web browser

access control policies. IEEE S&P (2010)
41. Sun, S., Hawkey, K., Beznosov, K.: Systematically breaking and fixing openid se-

curity: Formal analysis, semi-automated empirical evaluation, and practical coun-
termeasures. Computers & Security (2012)

42. Tizen: https://www.tizen.org/.
43. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook

and google: a traffic-guided security study of commercially deployed single-sign-on
web services. IEEE S&P (2012)

44. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of l2 cache covert channels in virtualized environments. CCSW (2011)

45. Zalewski, M.: Postcards from the post-xss world. http://lcamtuf.coredump.cx/

postxss/

46. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. CCS (2012)

