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ABSTRACT

Mixed concrete and symbolic execution is an important tejpien
for finding and understanding software bugs, including sgcu
relevant ones. However, existing symbolic execution tephes
are limited to examining one execution path at a time, in Whic
symbolic variables reflect only direct data dependencie. itw
troduce loop-extended symbolic execution, a generatinatihat
broadens the coverage of symbolic results in programs wéjd.
It introduces symbolic variables for the number of timeshdlacp
executes, and links these with features of a known input gram
mar such as variable-length or repeating fields. This alltves
symbolic constraints to cover a class of paths that inclfiféer-
ent numbers of loop iterations, expressing loop-depenutagram
values in terms of properties of the input. By performing enea-
soning symbolically, instead of by undirected exploratiapplica-
tions of loop-extended symbolic execution can achieveebe#-
sults and/or require fewer program executions. To demaiestur
technique, we apply it to the problem of discovering and oliesy
ing buffer-overflow vulnerabilities in software given ornitybinary
form. Our tool finds vulnerabilities in both a standard benark
suite and 3 real-world applications, after generating enhandful
of candidate inputs, and also diagnoses general vulniyatdn-
ditions.

Categories and Subject Descriptors

D.4.6 [Operating System$: Security and Protection; D.2.&pft-
ware Engineering: Software/Program Verification

General Terms
Security, Reliability, Verification

1. INTRODUCTION

Mixed concrete and symbolic execution generalizes a stwle
crete execution by representing inputs as variables arforper
ing operations on values dependent on them symbolicallgh(su
as [13,25]). This approach enables automated tools tomessmit
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properties of all the program executions that follow the saon-
trol flow path, and has been successfully applied to a widgean
of different applications in software engineering and siégu?,
10,14,26,41,46]. However, this approach generalizes acugion
only to a set of executions that follow exactly the same ai+ftow
path. We therefore call this approasimgle-path symbolic execu-
tion (SPSE for short).

A key limitation of single-path symbolic execution is thetiter-
acts poorly with loops, a common programming constructcBipe
cally, the generalized program executions all follow thesaum-
ber of loop iterations for each loop as in the original coteex-
ecution. For instance when used for bug-finding, in one titma
starting from a benign execution, single-path symboliccakien
will be unable to expose the bug if it is only triggered withi& d
ferent number of loop iterations as in the original exeauti§im-
ilarly, when single-path symbolic execution is appliedasttcase
generation to increase coverage, it will be unable (in cemiion)
to generate an input that forces execution down a differearidh
than in the original execution, if taking that branch is ofégsi-
ble with a different number of loop iterations. In other werih
single-path symbolic execution, the values of a symbolitatde
reflect only the data dependencies on the symbolic inputsitrao
dependencies, including loop dependencies, are ignored.

In this paper we propose a new symbolic execution technique,
loop-extended symbolic executi@r LESE for short), which gen-
eralizes from a concrete execution to a set of program exesut
which may contain a different number of iterations for eambplas
in the original execution. In loop-extended symbolic extary in
addition to the data dependencies on inputs, the value ahaalc
variable also captures certain loop dependent effects.

At a high level, our approach works by introducing new syntool
variables to represent the number of times each loop in thigram
has executed. In addition to maintaining the data depemneeoé
program state variables on inputs as in SPSE, LESE performs a
more detailed analysis to identify loop-dependent vaeghior in-
stance finding variables whose value is a linear functionnaf or
more loop execution counts. It also relates loop executmmts
to features of the program input, introducing auxiliaryightes to
capture the lengths and repetition counts of fields in a knmwn
put grammar. Together, these constraints allow LESE tctiadeli
ally express how loop-dependent variables relate to thgihsrand
counts of elements in the program input.

Loop-extended symbolic execution can be used to get better r
sults from symbolic execution whenever it is used with paogs in
which loops are important. It can make bug finding tools mdre e
fective and allow test-case generation to reach high cgeensore
quickly. Capturing more program logic in symbolic consttaial-
lows LESE to reason about loop-related constraints withcéstn



procedure, rather than requiring iterative undirectedcdeas with
SPSE.

The power of LESE is crucial for several important applicas.
As sample applications, this paper uses loop-extended aienb
execution to discover and diagnose buffer-overflow vulbiitees,
one of the most important classes of software errors thatvakt-
tackers to subvert programs and systems. Intuitively, LES©Bw-
erful enough to express the effect of varying features ofirtpet,
such as number of fields or their lengths (which, in turn,cftee
loop iteration counts), on program variables in a single.sfEhis
allows new vulnerabilities to be discovered using many fatega-
tions than single-path symbolic execution. In additiomg&nown
vulnerability, our techniques are useful to diagnose afsgtwoeral
conditions under which it may be exploited. These condgiare
useful for understanding the vulnerability, testing forfixing it,
and blocking attacks targeting it [7, 14,15, 18, 20, 26, 434

Because symbolic execution is often used in securityedlap-
plications such as this one, it is important that it works Iviet
binary programs for which source code is not available. Qur a
gorithms are designed with this constraint in mind, and cvere
some of the challenges inherent in targeting binaries—saigate-
covering program structure like the boundaries of loopsciwap-
pear trivially in the original source.

We have built a full implementation of this technique, using
dynamic tool to collect program traces and an off-the-steffi-
sion procedure to simplify and solve constraints. Our téatavers
and diagnoses vulnerabilities in both a standard benchszitk
and three real-world programs on Windows and Linux. Ourltgsu
show that LESE is practically effective, and confirms that bie-
havior of loops in real programs is often very regular.

In summary, this paper makes the following contributions:

e We introduce loop-extended symbolic execution, a new, more

powerful approach to symbolic execution that incorporates
the semantics of loops.

e \We give algorithms and heuristics to implement LESE that
are simple enough to implement at scale, but effective in
practice.

e We show an application of LESE to the important security
challenge of buffer overflow vulnerabilities, includingesi-
istic implementation that does not require source code.

e We evaluate the implementation, showing that it is effec-
tive at finding and diagnosing vulnerabilities in both star
benchmarks and vulnerable real-world programs.

The rest of the paper is organized as follows: Seiomtivates
loop-extended symbolic execution with an example and pes/a
detailed overview. SectioBdescribes the two key algorithms used
in LESE. Sectiord introduces a primitive for condition analysis
and how to apply it to security vulnerabilities. Sect®provides
an experimental evaluation of our technique on public berecks
and real-world vulnerabilities. Finally, Sectighsurveys related
work, and Sectior? concludes.

2. OVERVIEW

In this section, we first motivate our approach with an exampl
showing the limitation of single-path symbolic executitren give
an overview of our technique of loop-extended symbolic akea.

2.1 Motivation and Challenges

Using symbolic execution to generalize over observed jamogr
behavior is a powerful technique because it combines teegtins

1 #define URI_DELIMTER *

2 #define VERSI ON_DELIM TER '\ n’

3

4 void process_request(char * input)

5 {

6 char URI[80], version[80], nsgbuf[100];
7 int ptr=0, uri_len=0, ver_len=0, i, j;
8

9 if (strncnp input, "GET ", 4) !=0)

10 fatal ("Unsupported request");

11 ptr = 4;

12 while (input[ptr] !'= UR _DELIMTER) {
13 if (uri_len < 80)

14 URI [uri_len] = input[ptr];

15 uri_l en++; ptr++;

16 }

17 ptr ++;

18 while (input[ptr] != VERSION_DELIM TER) {
19 if (ver_len < 80)

20 version[ver_len] = input[ptr];

21 ver _| ent++ ptr++;

22

23 if (ver_len <8 || version[5] I="1")
24 fatal ("Unsupported protocol version");
25

26 for (i=0,ptr=0; i < uri_len; i++, ptr++)
27 nsgbuf [ptr] = URI[i];

28 megbuf [ ptr++] =",";

29 for (j =0; j <ver_len; j++, ptr++)

30 megbuf [ptr] = version[j];

31 megbuf [ ptr++] = "\0";

32 LogRequest ( nsgbuf ) ;

33}

Figure 1: A simplified example from an HTTP server that han-
dles requests of the form:" GET_" URI " " Version "\n"

of dynamic and static analysis. It starts with a fully cotrand
detailed concrete program trace, and then generalizes$r#iuat to
predict the behavior of software on other inputs. For instarhis
approach can be used to find bugs [13,25,41] or vulneraslj#6]
in software, to understand the conditions under which anamg
path can occur [7], and even to automatically exploit a ggcur
vulnerability [8]. However, the core single-path symbaixecu-
tion technique corresponds to an analysis of just one clofitng
path in a program, which is a significant limitation in progisthat
contain loops. Next, we show this limitation with a specifiae-
ple.

Consider a simplified example of a function in an HTTP server,
shown in Figurel, that processes HTTP GET requests. The pro-
gram first checks that the request’'s method field has the Gifiie
on line 9, and then proceeds to parse the URI and version fields
into separate buffers on lines 12—-16 and 18-22 respectiltaly-
jects this request if the version number is unsupportedallyint
records the URI requested by the client and the version nuiniae
comma separated string denotechiggbuf on lines 26-30, which
it subsequently logs by invokingogRequest on line 32.

Readers may have already noticed that this code is vulrestabl
a buffer overflow, but suppose we were attempting to checkudon
vulnerabilities using a single-path symbolic executiochtéque.
For instance, in the course of its exploration, such antiteraest
generation tool might consider the program in@aT x y. Itwill
trace the execution of the program with this input, whichsesu
the program to reach the error condition on line 24. In order t
explore the rest of the function, the exploration tool netdfind
a program input that passes the checks on line 23. However, a
single path does not contain enough information to reasountab
the length check, because tkier _| en variable is not directly
dependent on any byte of the input: single-path symbolicetien
would not mark it as symbolic. At this point, testing toolsbd on
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Figure 2: Overview of our loop-extended symbolic executiotool and accessory components. LESE, our main contributiorenhances
symbolic execution for directly input-dependent data vales, as in single-path symbolic execution, with symbolic ahgis of the affects
of loops (Sectior3.1) and an analysis that links loops to the input fields they proess (Sectior8.2). Additional components, described
in Sections4 and 5.1, support LESE and particular applications such as detectig and diagnosing security bugs.

symbolic execution will usually attempt to explore otheogmam
paths, but without information from the first path to guiderth
they can only choose further paths in an undirected faslsioch
as by trying to take a different direction at one of the brascthat
occurred on the observed path. (Such tools treat the erecafi

e Step 1: Symbolic analysis of loop dependenciesio de-
termine dependencies on loop trip counts, we use a program
analysis that maintains the trip counts as symbolic vaggbl
that are implicitly incremented for each new loop iteration
and then looks for relationships between those variablds an

a loop simply as a sequence of branches, one for each time the others in the program. (This is done at the same time as the

loop end test is executed.) For instance, a tool might déterthat
changing the last character of the input from a newline teould
cause the loop at line 18 to run for one additional iteratiseries

of many such changes would be required before the versiah fiel

was long enough to pass the check.

Similarly, consider the execution of the program on the radrm

program inpuGET /i ndex. ht Ml HTTP/ 1. 1. For this simple
function, a single input already exercises a large proportif the
code (for instance, it executes all of the lines of non-ecamte in
the figure). However, examining this single path is not emotoy
elucidate the relationship between the varigile and the input,
because that relationship involves control dependencies.

2.2 Technique Overview
We propose a new type of symbolic executidmpp-extended

symbolic executiomr LESE, which captures the effects of more

related program executions than just a single path (as ghesipath
symbolic execution), by modeling the effects of loops.

Broadly, the goal of loop-extended symbolic execution isxte
tend the symbolic expressions computed from a single exechy
incorporating additional information reflecting the effeof loops
that were executed. In single-path symbolic executionyiiees
of variables are either concrete (i.e., constant, reptegpa value
that does not directly depend on the symbolic input) or apeere
sented by a symbolic expression (for instance, the sum afjaurt i
byte and a concrete value). But some of the values considered
crete by single-path symbolic execution are in fact indiyede-
pendent on the input because of loops. In loop-extended alyenb
execution these values can also be represented symbgliaat
variables whose values were already symbolic because aéet di
input dependency can have a more general abstract value.

To make loop-extended symbolic execution more tractabée, w

split the task into two parts by introducing a new class of lsglic

variables, which we cattip counts Each loop in the program has a

trip count variable that represents the number of timesdbp has
executed at any moment. Then to obtain the relationshipédsstw
a symbolic values and the program input, we separatelyobtat
the relationships between the symbolic values and one o tripr
counts (in addition to their direct relationships with timput, as
in single-path symbolic execution), and then the relatigus be-
tween the program’s trip counts and the program input:

analysis tracking direct dependencies as in SPSE, and-the re
sults combined in single symbolic expressions.) Specifical
we have found that looking for linear functions of the trip
counts covers the most important loop dependent variables
without excessive analysis cost.

e Step 2: Constraints linking the input grammar to loops.
Loops are often used when fields of the input are of variable
length, such as character strings and sequences of dat of th
same type. Our approach takes advantage of this connection
by using a grammar that specifies the inputs to the program,
and matching loops with the parts of the input over which
they operate. In particular, the approach introdwesliary
input variables to capture features of the grammar such as
lengths and repetition counts.

A summary of the components of our system is shown in Fig-
ure2; the center box, LESE, represents the primary contribugfon
this research.

To summarize our approach, we now return to the example of
Figure 1 and explain how loop-enhanced symbolic execution is
more helpful to our vulnerability testing application.

1. In the first step, the symbolic loop dependence analysis ex
presses various program values in terms of four trip count
symbolic variableg’C;, one for each loop in the program.
For instance, the value of the varialpler at the end of exe-
cution is abstracted by the expressibé’s + T'C4 + 2, and
similarlyuri |l en =TCy,ver _len=TC3,i =TCs,
andj = TC,. The path predicate is also maintained (as
in single-path symbolic execution). In this example, for in
stancej < uri _| eninside the third loop, while the nega-
tion holds after the loop has completed, and similarlyjfor
andver _| en.

2. In the second step, we link the trip counts to auxilianyi-var
ables representing features of the input. In the running ex-
ample, the execution counts of the first two loops are equal
to the lengths of input fields7’C; = LengthURI) and
TC> = Length(Version.

In the case of vulnerability checking, we would combine ¢es
symbolic constraints describing a class of program exeositivith



the condition for a violation of the security policy. In thdase, for
instance, the array access on line 30 will faipifr > 100. Then

in the same way as in a single-path symbolic execution approa
we can pass these conditions to a decision procedure taxdeter
whether an exploit is possible, and if so, determine specdices
for input variables that will trigger it. In this case, thecg®on
procedure will report that an overflow is possible, spedifjcan

an input for which LengtfURI) + Length(Version) > 99.

Applying the approach to binaries. Because we wish to use
these analysis techniques for security applications, anismpor-
tant practical consideration that they work on binary paogs for
which source code is not available. This adds further chgé#s for
our approach: for instance, purely static analysis is mdficult

on binaries because much of the structure that existed isciinee
code has been lost. (And of course, the real constraints nerge
do not contain variable names, which we added in the exarople f
readability.) Itis in part for this reason that the symbaiecution
approach is valuable in the first place, so we choose algositio
retain these benefits in our extension. For instance, eweryththe
technigue we use to infer linear relationships betweerates is
closely related to a sound static analysis approach, we tlinmio

it to finding relationships that could hold on all possiblptits. In-
stead, our goal is to combine static and dynamic analysiouze
results that cover as large as possible a range of inputs Hahw
we can still produce useful results.

Use of an input grammar. Information that constrains the space
of valid inputs to a program, in the form of a grammar or othisey
is key to scaling input space exploration beyond the limfitsrote-
force exhaustive search. Previous research using symisaicu-
tion [10, 24, 33] demonstrates the benefit of using an inpatgr
mar for this purpose. In the application domains we targgtable
grammars are easily available, so we simply use them. Haweve
for domains in which grammars are not already availablejipos
research shows how a grammar can be inferred [11, 31, 44j;auc
system could easily be combined with ours.

3. ALGORITHMS

In this section, we discuss the algorithmic details of thedteps
in loop-extended symbolic execution introduced in Sec#io§ec-
tion 3.1describes the analysis that identifies relationships betwe
values of variables and numbers of loop iterations (stepSEc-

[e1] o [e2] — [e1 o 2] for any operatop

[e1+a1-TCi+ [ca+az-TC1] — [(c1 4+ c2) + (a1 +az2) - TCH]
[c1] - [e2 + a2 - TC1] — [(c1 - c2) + (c1 - ag) - TCH]
ToE—T EoT—T

[01 + a7 - TCl] o [CQ “+ asg - TCl] — T otherwise

raise( £(0)) — E(1) raise(E(x)) — E{x 4+ 1)
[a(0)]U[(a+b)(1)] = [a+b-TCi(x)]
[a+b-TCi(x)]U[(a+b)+b-TCi{(x+1)] = [a+b-TC(*)]

Figure 3: Key rules for linear relationship analysis. Squae
brackets delimit abstract values and lowercase charactersep-
resent constants.

self has finished, and combine dependencies on separate kmp
we implement the linear relationship analysis in style ahbyplic
execution. Our approach is intermediate between pureliastin
induction variable analysis, and a general analysis fedirequal-
ities among arbitrary program variables, which would benigig
cantly more expensive. We will first describe the abstratetrpre-
tation in general terms, in which form it can also be appliacefy
statically, and then discuss how to modify it to produce muoeful
results in our mixed static/dynamic context.

Analysis algorithm. For each loop in the program, we introduce
a symbolic trip count variabl&C};, which represents the number of
times the loop (specifically, its back edge) has execute@. cbine
of an abstract value in our analysis is a symbolic linear doab
tion whose terms are trip counts or other symbolic varighigth
integer scaling factors and an integer constant term. Fpamce,
the abstract valug0 + 4 - TC, + 2 - TC> would correspond to a
variable initialized as 10, then incremented by 4 on eadfatiten
of the first loop and by 2 on each iteration of the second loop.

In order to link these abstract values with the loops and unde
stand how to combine them between loop iterations, eaclaaibst
value also specifies the domain for each trip count variahdg-i
plies to. We refer to the four possible domain®as, x, andx* + 1.
Intuitively, 0 represents points before the loop has finished its first
iteration,1 represents later points before the end of the second iter-
ation, and« andx«+1 both represent abstract values applicable to all
iterations, before and after the trip count in questionésemented.
We write the domains in angle brackets after an expressiargdier
(first TC1, thenT'Cs, etc.); domains not listed are assumed to be

tion 3.2 outlines techniques to capture the relationships between 0. Finally, to represent values that cannot be representadirsar

loops and the input, using auxiliary variables in the exaéspeci-
fication of the input grammar (step 2).

The steps described below require accessory componernts to e
tract control flow graphs from binaries, make irreducibleG3Fe-
ducible, extract sizes of allocated objects, and parsetigmm-
mars. The details of these components, which form the patipar
phase for steps outlined here, are given later in Se&titn

3.1 Symbolic Analysis of Loop Dependencies

In order to generalize its description of computations that
volve loops, our tool must determine the relationship betwleop-
dependent variables and the loops in which they are modified.
tentially, this could be done by enhancing the basic sipgies
symbolic execution approach with any data-flow-style vanal-
ysis. Since linear dependencies on loop counts are very oomm
we choose to use a linear relationship analysis.

Specifically, our tool searches for variables whose valua is
linear function oftrip count variables representing the number of
times one or more loops execute. Unlike the syntactic “itidac
variable” analysis commonly performed in compilers [1], wish
to extend dependencies on loop execution counts after tpeito

combination of trip counts, we have a distinguished elerient

The key rules for operations on these abstract values arensho
in Figure3. The analysis builds an abstract store that associates
an abstract value as described above with abstract vesiablee-
sponding to distinct variables in our machine-level traeenfo-
raries and machine registers) and memory locations. Theaabs
store is updated with the side effect of each assignmeritidimg
stores to memory, and propagates forward through the progra
We propagate across forward control flow graph edges in a topo
logically sorted order to reduce re-computation. Téise operator
is applied to abstract values on loop back edges; the vatadben
joined with the abstract values representing previousti@ns. It
is the join operatiornJ that introduces trip count variables into a
symbolic expression;! also prefers: to * + 1, which ensures that
1 and* + 1 domain values will not be propagated. After the first
(abstract) execution of a back ed@eand1 values will be joined to
ax value. After each subsequent abstract executions Hred« + 1
values will be joined into either a value if they are consistent, or
to T otherwise.

For instance, consider the analysis of loop 3 on lines 26427 o
Figurel. At the beginning of the loomt r has the abstract value



0(0, 0, 0). At the end of the first iteratiomt r is incremented, and
on the loop back edge the two abstract values are joined ® giv
0(0,0,0) LU 1(0,0,1) = T'C5(0,0,*). Whenpt r is incremented
again on the next iteration, its abstract value after the lealge
will be 1 + T'C5(0, 0, * + 1), which again joins td'C5(0, 0, *) LI
14+TC5(0,0,*+ 1) = T'C3(0, 0, ). The effect of the increments

we introduce the concept afuxiliary attributes. For instance, we
introducelengthattributes to represent the size of fields that might
vary in length, an@ountattributes to represent the number of times
iterative fields are repeated. Auxiliary attributes ar@aisged with
grammatical units at any level (e.g., terminals and nomiteals

in a context-free grammar), such as Ler{@iRI) for the length

on lines 28 and 31 and loop 4 on lines 30-31 are analyzed in aof a URI field in the HTTP grammar. They can also be system-

similar way, giving a final abstract value fpt r of 1 + TCs +
TC4(0,0, *, *).

Adapting to dynamic traces. Though as previously described, the
linear dependence analysis could be applied in a complstatic
context, some additional improvements are possible whenabp
ing as our tool does on a single execution trace.

An important simplification is that analysis of a trace does n
require a conservative alias analysis, which is often acsoof
scalability challenges and/or imprecision in static asialylnstead,
our analysis can distinguish memory regions using the eteed-

atically added to an existing parser as an attribute granfagain

yacc [29]); for instance, the length for a non-terminal in a rudeic

be computed as the sum of the lengths on the right-hand sithe of

rule. In some cases, the value of an auxiliary attribute aviged

in another field of the input. Our technique can take advantig

auxiliary attributes that appear in the input in this wayt ibalso

uses them in ways that do not require them to appear in theé.inpu
The goal for the linking step is to identify loop-computedues

in the program that represent auxiliary attributes; fotanse, if a

loop is used to compute the length of a field. Previous work [11

dresses observed on the trace. When a symbolic value is gsed ashows that automatic inference of variables that iteraés owilti-

a memory address (e.g., indexing an array), we use the dencre
address value, as is common in single-path symbolic exatuti

A second difference relates to our coverage goals. A putatics
analysis attempts to give an answer that holds for the espiaee
of program inputs; but sometimes, no informative answerlzan
given, such as if the true relationship is too complex forahstract
domain. Other things equal, a result that covers a larges daex-
ecutions is most useful, but results that represent no @nsat
all are useless. In mixed concrete and symbolic executiempan-
ticular set of executions to which our results apply can beble,
so we aim for the largest set of executions for which the aigly
gives an informative result.

To achieve this, we also allow our tool to lower uninformativ
T abstract values back to the constant value representingithe
the variable had in the concrete trace at that point. Thisnig-s
lar in effect to removing from consideration all the exeons on
which that variable had any other value, though less drhstiause
those executions can still contribute to the generalitytbéoab-
stract values. Given that there is a limit to the amount ofegality
our abstract values can represent, this lowering refleatdgnent
that it is more valuable for them to abstract over variatizat bc-
curs close to the point where they are queried. For instahties
combined effect of two nested loops is nonlinear, our anmnshyl
retain the dependence on the inner loop’s trip count.

Theoretically, it is not clear when the best points to lower a
abstract value in this way would be: for instance, delayitmnger-
ing at one program point might remove the need to lower amothe
value later. However, we have had good results by perforrtiag
lowering eagerly just before@ value would otherwise propagate.

3.2 Linking Loops to Input

After Step 1 (symbolic analysis of loop dependencies), yine-s
bolic expressions for program state variables our tool agegpde-
pend on two types of symbolic variables: the symbolic vdeisb
representing the data values of each byte in the input antfithe
count variables. Thus, to obtain the relationship betweenpto-
gram state variables and the input, we need to obtain théamla
ship between the trip count variables and the input. In génsuch
relationships might be very complicated. However, we lagerthe
observation that most such trip count variables relatetaicefea-
tures of the structure of the input such as the length of akbet
length field (such as a string) or the number of records of éinges
type (calledterative fields.

To precisely capture these repetitive features of prograuts,
which are missing from descriptions like context-free gnaams,

ple variable-length fields is feasible, and more recentlpallaro

et al. show how to relate certain program variables to features of a
input grammar [10]. We use similar techniques based on time sa
intuition; we determine that a loop’s iteration count is tkegth of

a field if its exit condition checks either a delimiter for tiiredd or a
value derived from a length or count auxiliary attributeloé field.

In more detail, we use the following steps:

1. Relate data-dependent bytes to fields in single-path sym-
bolic execution, our tool determines for each variable & th
trace which input byte(s) (identified by offset) it directlg-
pends on. Our tool also parses the input according to the
known grammar, and so determines which protocol field con-
tains each input byte. Therefore, one simple way of matching
variables with one or more input fields is to combine these
two mappings. For instance, in the example of Figlirthe
buffer URI contains the contents of the fidliRI.

2. Identify variable length fields, counts, and delimiteiBhe
input grammar also identifies which fields correspond to the
lengths or iteration counts of other fields, and our tool maps
this information through direct dependencies to determine
program variables that represent lengths and counts. Also,
we use the grammar to determine which values are used as
delimiters to signal the end of a variable-length field. For i
stance, in the HTTP grammar, the fiéddR| is delimited by a
space character.

3. Identify variables used in loop exit conditiorBy analyzing
loops as described in Sectiérl, our tool determines which
variables are used in the conditions that determine when to
exit a loop. For instance, the loop on lines 2627 of Fidure
is guarded by a condition on the variableanduri _| en.

4. Recognize loops over delimited fieldisthe exit condition of
aloop compares bytes of a field to a value that is the delimiter
of the field, then we link the iteration count of the loop to the
length of the field. For instance, in Figufe the loop on
lines 12-16 compares each byte of the URI field to a space,
which is known from the grammar to be the delimiter of the
URI, so the execution count of that loop is the length of the
field (I"C1 = Length(URI)). In other situations, a loop may
process several bytes on each iteration, which gives amelat
with a scale factor. For instance, if each iteration proesss
4-byte word, the field length is equal to 4 times the loop trip
count.



5. Recognize loops over counted fieldfsthe exit condition of the formula is solvable, STP returns a satisfying assiginmen

a loop compares a variable to a value that is identified in the to its free variables, which represent particular inputebyt
grammar as the length of a field or the counter for a repeated and auxiliary attributes. A grammar-based input genematio
field, then we link the iteration count of the loop to that léng tool [5, 24] can then be used to produce a version of the ini-
or count field. As in the case of a delimited field, the scale tial input, modified according to the satisfying assignment
factor between the field and the trip count may not be 1, for which is a candidate to satisfy the predicate.

instance if a loop process several items in each iteration. o
4.2 Uses for Loop-enhanced Conditions

Loop-extended condition analysis has many applicatianthis
section, we describe three: improving the coverage of esti@-
tion based on mixed concrete and symbolic execution, desony
violations of security properties, and diagnosing the eixglondi-
tions of a security flaw.

While these techniques are not enough to recognize evepy loo
that might be written, they represent the most common petter
and we have found them to be sufficient to capture the relships
for both length and count attributes in practice.

4. APPLYING LESE

Loop-extended symbolic execution can be used to get better r - 4.2.1  Improving Test Generation
sults from mixed concrete and symbolic execution whenevisr i Test generation is the task of discovering inputs to a pragra
used with programs in which loops occur. In this section we de that cause it to explore a variety of execution paths. Sipglt
scribe how to apply it to test generation and in problems abeu symbolic execution can be used in an iterative search psaes
curity bugs in software. First, we describe the primitiveiion find such inputs [12,25,41], but it does not cope well withgremm
of using LESE to determine how a given predicate might bessati  branches that involve loop-dependent values; using LESteaal
fied during program execution: on a single program path, but p  allows test generation to achieve higher coverage.

haps involving different numbers of loop iterations. Wertlsdow The basic operation in such an iterative search is to takean e
how to use this primitive for improving coverage in test getien, ecution path and a branch along that path, sEvérsethe branch:
discovering previously unknown security bugs, and diagnpthe find an input that causes execution to reach that branchhbat t
cause of a bug given only an execution that exercises it. take the opposite direction. Reversing a branch is just gfi-ap
.. . cation of the primitive of Sectiod.1, where the query predicate
4.1 Loop-extended Condition AnaIyS|s is a branch condition or its negation. The benefit of usingloo

A basic use of single-path symbolic execution is to deteemin extended symbolic execution instead of single-path syinleske-
the conditions under which a predicate at a program locatéon cution in test generation can be seen in two aspects: Rir6E8E-

be true. For instance, the predicate might be a branch ¢ondé based exploration is able to reverse branches whose camsliti-
programmer-provided assertion, or an array bounds cheelstat volve loop-dependent values; in a tool based on SPSE, byasint
with the predicate (which we will call thguery predicaty associ- loop-dependent values are not considered symbolic. Se@md
ated with a program point, and an execution that reacheptfiat, iterative search performed with LESE is more directed, esithe
but does not satisfy the predicate. Then the task is to deterthe conditions it reasons about capture the effect on valuepuoted

conditions on an input to the program that could cause eietut in loops. For instance, if a subsequent branch depends ampa lo
to follow the same path, but cause the query predicate touse tr  derived value, LESE-based search requires only one iberadide-
Using loop-extended symbolic execution, we enhance thislieo termine a number of iterations of the loop to reverse the itimmd
tion analysis by taking into account other program exeaostithat The length check on line 23 in the example of Figlirghows this

are similar to the observed one, but might involve diffeneuin- benefit: an LESE-based generation tool can immediatelytaaris
bers of loop executions. Once the predicate has been chibéen,  an input with a long-enough version field, because the leisgéh
loop-extended condition analysis takes the following pste symbolic variable, while an SPSE-based tool could only &iem

] ) ) ) ) ] on such an input by trial and error.
1. Derive symbolic expressions in terms of inpu@Given the

original execution trace, our tool first performs loop-exted 4.2.2 Vulnerability Discovery
symbolic execution on the trace as described in previous sec Many classes of security vulnerabilities can occur wheeau-

tions. The result of this step gives a symbolic expression (iw, predicateis violated during program execution. For instance,
for each program state variable that depends on the inputs, given 4 program that writes to an array, a buffer overflow egcu
including both data dependencies and control dependenciesit the index of a write to an array is outside of the correct s

introduced by loops. In a program that uses machine integers to compute the lafigth

2. Instantiate query predicateOur tool instantiates the query & data structure, an integer overflow vulnerability occtiesdom-
predicate by using the symbolic expression computed for Putation gives the wrong result when truncated to word size.
each variable that appears in the predicate. check whether program logic is sufficient to prevent suchiurfes,

the problem of vulnerability discovery, or “fuzzing,” askéhether
3. Solve constraints.The query predicate can be satisfied if there is a program input that could violate the security joad.
there exist inputs to the program that simultaneously cause Vulnerability discovery is similar to test case generatithe only
it to reach the location of the predicate, and satisfy thepre difference is the additional checking of a security pretdict each
icate. So our tool conjoins a path condition with the query dangerous operation. Thus, like test generation, it caretfermed
predicate, and passes this formula to a decision procedure t using our loop-extended condition analysis: the queryipetd is
determine if it is satisfiable. Constraints in the path ctadi just the negation of the security predicate.
that arise from loop exit conditions are removed, since they  Loop-extended symbolic execution is a particularly goodama
are superseded by loop-dependent symbolic expressioms. Oufor discovering vulnerabilities related to input procegsibecause
implementation uses STP [21], an SMT solver that repre- the data structure size values that are misused in buffeflowe
sents machine values precisely as bounded bit vectors. If and integer overflow vulnerabilities are often processéuusops.



The buffer overflow in Figurd. is typical in this way. Depending
on the security property, some preprocessing might be degxde
precisely define the security predicate describing how @mnatjon
might be unsafe: for instance, when checking for a bufferftme,
to determine the length of the vulnerable buffer. We willcdiss
some practical aspects of such preprocessing in Segtion

4.2.3 Vulnerability Diagnosis

If a vulnerability has already been exploited by an attacier
other important application is diagnosing it: extractingeaofvul-
nerability conditions(general constraints on the values of inputs
that exploit the vulnerability). Diagnosis is an importgmbblem
in security because vulnerability conditions are usefubistomat-
ically generating signatures to search for or filter attaokso help
a security analyst understand a vulnerability.

Vulnerability diagnosis is again based on the loop-exterum-
dition analysis primitive of Sectiod.1 in fact, the combination
of a path predicate and a negated security predicate gives-a v
nerability condition. However, symbolic execution tyglgagen-
erates thousands of constraints, so our tool performs aevpti-
mizations to simplify them into a smaller set, as discussefidc-
tion 5.1 Such simplification is particularly important for applica
tions involving manual analysis, but a compact conditiols
more efficient for use by later automated tools.

Some forms of vulnerability diagnosis could be performed us
ing SPSE, but an SPSE-based diagnosis would be too narrow for
many applications, including most buffer overflows. Fortanse,
an SPSE-based diagnosis of the web server in Figaauld cap-
ture some generality in the contents of the input fields, twbuld
restrict their lengths to the particular values seen in tmde ex-
ploit. A filter based on such a diagnosis could be easily bygés
by an attack that used a different length URI. By contrastSEE
finds more general conditions; for instance, in the exampkg®
urel, itfinds thatmsgbuf can be overflowed by inputs of arbitrary
size, as long as the sum of the lengths of two fields is at l€ast 9

5. EXPERIMENTAL EVALUATION

We evaluated the effectiveness of loop-extended symbabée e
cution by implementing an infrastructure based on the pegdo
techniques and applying it to discovery and subsequennhdssg
of buffer overflow vulnerabilities. We selected two kindssabject
programs for this evaluation. For comparison with otherléngen-
tations, which require source code and/or run only on Limeuse
standard benchmark suites containing known overflows. Siatie
practical utility of our tool, we use real-world Windows ahithux
applications with historic vulnerabilities. Our tool dae@rs all the
benchmark overflows, as well as those in real-world apptioat
by generating just a few candidate inputs.

5.1 Implementation

We have implemented the core loop-extended symbolic execu-
tion component described earlier in OCaml, and the prottael
mat linkage in OCaml combined with C and Python code to in-
tegrate with off-the-shelf parsers. We utilized our exigtbinary
analysis infrastructure [4,42] for taking an executiorcérand get-
ting the semantics of x86 instructions.

In this section, we outline several additional componergsie-
veloped to realize our proposed primitives, and heuristiasmake
this approach practical when working with binaries.

Memory layout extraction. To check for overflows in pointer ac-
cesses, we need a representation of the memory allocatiads m
by the program at different points in its execution. To deishwly-
namic allocation, our existing infrastructure recordsdamguments

to memory allocation functions. For stack-based memorgsses,
we implemented an existing technique called stack anal¢éis
though more detailed techniques [2, 3] could alternatibelyised.
Loop information extraction. Our infrastructure uses the IDA
Pro tool [28] to disassemble binaries and we reused staridapd
detection analysis algorithms existing in our infrastauet[10].
There are two notable additional caveats which were usefudi-
taining results for our case studies.

1. Addition of dynamic edgedhe presence of indirect call and
jump instructions hinders static CFG extraction: an analy-
sis may completely miss code blocks that are reachable only
through indirect jumps. Our static control flow graph extrac
tion is supplemented with indirect jump targets observed in
the trace, which allow many more loops to be discovered.
For instance, such loops were critical to obtaining aceurat
results in the SQL Server case study of Seckdh

. Irreducible loops. Unlike in high-level languages, loops in
binaries are often irreducible. We dealt with this by em-
ploying standard transformation techniques to make loops
reducible.

Protocol Grammar. Our existing infrastructure interfaces with
Wireshark [43], an off-the-shelf IDS/IPS, to obtain pratbgram-
mars of network protocols we study.

Input Generation. We find that a relatively simple input genera-
tion approach works well with our LESE implementation: wleen
constraint requires that a length or count be larger, weategle-
ments from the initial input until the result is long enoughmore
general examples where the field being extended is subjeubite
additional constraints, one could also leverage gramraaedb in-
put generation approach [5, 24].

Constraint simplification. Our tool performs live-variable anal-
ysis to remove irrelevant constraints. It then performsstamt
folding on the remaining constraints, and simplifies themgithe
algebraic simplification routines built-in with the STP straint
solver [21].

5.2 Benchmarks Comparison

As benchmarks, we used a set of 14 samples extracted from
vulnerabilities in open-source network servers (BIND, @wail,
and WUFTP) by researchers at the MIT Lincoln Laboratori&$, [4
which range between 200 and 800 lines of code each. (These are
the same benchmark programs used byeXal. [46].)

Replacing SPSE with LESE would be beneficial throughout in-
put space exploration in vulnerability discovery, sincebylic ex-
pressions for loop-dependent values allow more branchies te-
versed, as discussed in Sectib2.1 However, it can be difficult
to fairly compare symbolic execution tools on an end-to-easis,
because of differences in input assumptions and searclstiesir
Therefore, we confine our evaluation to the last stage oferuln
ability search by starting both our tool and an SPSE tool ith
program input that reaches the line of code where a vulndsabi
occurs, but does not exploit it. These inputs are short aruiidse
to usual program inputs, so they could be found relativekilga
by either an SPSE-based or an LESE-based approach (thoeigh th
time required would still be highly dependent on the initigbut
and search heuristics used). Therefore, the results oa thpats
provide a bound on the performance of an end-to-end system: i
a tool is unable to find a vulnerability given the hint of a rmar
input, it would also be unable to find it starting from a contglg
unrelated input.

Results and New BugsThe upper half of Tablé shows the results
of our tool on the Lincoln Labs overflow benchmarks. The first



Program Input Format Initial Input Exploit Input Bug/ Time (s) | Loop-Dep.
Candidate Conditions
BIND 1 DNS QUERY 104 bytes, RDLen=48 RDLen=16 1/5 2511 16
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 1/2 586 13
BIND 4 DOMAINNAME “web.foo.mit.edu” “web.foo.mit.edu” (64 times) 171 4464 52
Sendmail 1 Byte Array >SS “<>" (89 times) 4/5 672 1
Sendmail 2 | struct passwd (Linux) (*",“root”,0,0,“root”,“",*") (“",“root”,0,0,“rootroo”,“",*") 11 526 38
Sendmail 3 [String N [a=\n"]? [*a=\n"]%° 1/4 626 18
Sendmail 4 Byte Array “aaa” “a” (69 times) 11 633 2
Sendmail 5 Byte Array A\ “\" (148 times) 3/3 18080 6
Sendmail 6 OPTIONo’ ' cARG “-d aaaaaaaaaa-2" “-d 4222222222-2" 1/1 676 11
Sendmail 7 DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WUFTP 1 String “aaa” “a” (9 times) 22 483 5
WUFTP 2 PATH “aaa’ “a” (10 times) 11 197 29
WUFTP 3 PATH “aaa’ “a” (47 times) 1/1 109 7
GHttpd MethocbURIoVersion | “GET /index.html HTTP/1.1" | “GET "+188 bytes + “HTTP/1.1" 2/2 1562 41
SQL Server| CommandDBName x04 x61 x61 x61 x04 x61(194 bytes) 1/3 205 1
GDI (Not required) 1014 bytes, INP[19:18]=0x0183 INP[19:18]=0x4003 1/1 353 2

Table 1:

Discovery Results for benchmarks and real-world pograms. A circle (o) represents concatenation. If X1, k denotes the

auxiliary count attribute specifying the number of times element X repeats.

column identifies each benchmark, and the second column aumm
rizes the input grammar our tool uses. The third and fourtlmns
give the initial input our tool started with, and the expliviput it
found. The fifth column gives the number of candidate inpuis o
tool generates (after the slash), and the number of thosentfact
cause an overflow (before the slash). The sixth column gives t
total runtime of our tool, starting with the initial inputaite and
including all the discovered overflows. (The seventh columilh

be discussed in Sectidn4.) All experiments were performed on a
3GHz Intel Core 2 Duo with 4GB of RAM.

Our LESE tool discovers most of the bugs in just a few minutes,
requiring only a few candidate inputs each. In each caseupe s
plied a small benign input, and the tool automatically fouhalt
a longer input could cause an overflow. Our tool also disax/er
an apparently new bug in one of the Lincoln Labs benchmarks: i
addition to the known overflows (marked withk BAD */ com-
ments in the benchmark code) our tool finds a new overflow @n lin
340 of the functiorpar se_dns_r epl y in Sendmail benchmark
7. (In the other cases where our tool reports multiple overfig
inputs, they were a set of related errors marked in the beadhjn
Comparison with Splat. Xu et al. [46] suggest a different ap-
proach to making SPSE work better for certain buffer overslow
by abstracting over the length of string buffers. Specificaheir
length abstraction technique requires programmer-seghslource
code annotation to mark a chosen prefix of the relevant bsiffen-
tents as symbolic. In contrast, our technique automagiexiiracts
memory buffers and their dependency on the input fields uaing
combination of static and dynamic analysis. More impofjant
LESE does not need any information about string-manimdati
functions and uses no programmer specifications for suraingri
common string operations—our key enhancement to handfe loo
dependencies is practically sufficient to reason about riffde-
mentations of the string functions for our applications.aA®sult,
LESE can reason about vulnerabilities present in customatipas
on array inputs that may not use any common string operateas
amples of these are available in our studied benchmarks).

Though the Lincoln Labs benchmarks were also studied by Xu
et al. [46], a head-to-head empirical comparison was not possi-
ble. Unfortunately, because of the way the original benchkmare
designed to be self-contained, it was unclear which buffersl
which parts) were annotated as program inputs in their wBtk.
instance, the BIND 2 benchmark exercises code from BIND that
parses a DNS packet, and also includes code to generate @ app

priate packet. In Xtet al. [46], it was unclear which value in the
packet generation process was treated as the input. As simown
Table 1, we considered the whole packet itself to be the input, so
that only an input that is a mostly syntactically correctkedawill
cause an overflow. We believe our choice makes for a moresreali
tic evaluation, but it implies that a direct comparison d# thols’
execution times would not be meaningful.

Our tool was able to find exploits for the two benchmarks (Send
mail 1 and 5) on which Splat times out. (In the case of Sendmail
the total running time of our tool to evaluate 3 candidateutsps
longer than the two hour timeout used with Splat, but our teel
ports its first vulnerability before two hours have elapsédh the
remaining benchmarks, our tool reproduces Splat's pesiggults
on the complete programs.

Accuracy of candidate inputs.In the fifth column, Tablél shows
the number of candidate test inputs our tool generated ipribeess

of finding each exploit. The fact that only a few tests wereainegl

(on average2.5% of the candidates our tool generates are real
exploits) demonstrates the targeted nature of LESE-basadts
the tool efficiently chooses appropriate loop iterationrtsuand
prunes buffer operations that are safe, concentrating ennibst
likely vulnerability candidates. Of course, since the ddatks are
concrete inputs that can be automatically tested, failedidates
are not reported: the tool gives no false positive results.

5.3 Evaluation on Real-World Programs

As full-scale case studies, we took 3 real-world Windows and
Linux programs which are known to have buffer overflow vuéer
bilities. These include the program targeted by the infasr®lam-
mer worm in 2003 [37], the one affected by a recent GDI vulnera
bility in 2007 [34], and an HTTP server [22]. Tablesummarizes
the vulnerabilities in these programs and the input grareroar
tool used. We gave benign initial inputs to these prograrasate
representative of normal inputs that they would receiveractice.

Starting with a benign input, our tool uses just one iteratd
LESE to discover buffer overflows in all 3 real world programs
The bugs found in the GDI and SQL cases are the same reported
earlier in these programs, as we manually confirmed. Fopdhtt
our tool discovers two buffer overflow vulnerabilities inethog
functioninut i | . c. One of these is described in previous research
using this subject program [14]. The new overflow involvegps
arate buffer and would need a separate fix. These resultb@nas
in Tablel; next we explain each vulnerability in more detail.



GHttpd vulnerability. GHttpd is a Linux web server; we use ver-
sion 1.4.3. We send an initial benign inp@&T /i ndex. ht m
HTTP/ 1. 1, to the running web service, and it responds normally.
Given atrace of this execution and the HTTP grammatr, ourdisel
covers 2 potential buffers to overflow and generates cateligla
ploits for each. These inputs are the same as the initiat iexaept
that their URI fields have lengths of 188 and 140 bytes regmbgt
Testing confirms that both candidates indeed cause overflies
shorter request overflows one buffer, and the longer onelower
both that buffer and a subsequent one.

SQL Server vulnerability. This vulnerability is a stack-based
overflow in Microsoft's SQL Server Resolution Service (S3RS
which listens for UDP requests on port 1434. Based on itsispec
fication [35], one valid message format contains 2 fields: adbe
byte of value 4, followed by a string giving a database name. W
send the SSRS service a benign request that consists ofdberhe
byte and a string&aa”, to which the service responds correctly.
Given the trace and the input grammar, our tool finds 3 patkenti
buffers to overflow and generates one candidate inputs fdn.ea
Our automated testing reports that one candidate, whicl®%s 1
bytes long, overflows a buffer that is the same one exploijetth®

SQL Slammer worm. (The other two candidate inputs are longer

than the maximum-length UDP packet, so they are discarded du
ing testing and not reported.) The fact that such large spatid

be generated in a single step, rather than via a long itergtio-
cess, shows the power of LESE.

GDI vulnerability. This vulnerability in the Microsoft Windows

Graphic Rendering Engine was patched in 2007. We created a be

nign and properly formatted WMF image file using MicrosoftlPo
erPoint, containing only the texaa”; the file is 1014 bytes long.
We attempt to open the file using a sample application anddeco
the program execution. Without using an input grammar, oak t
discovers a potential buffer read overflow and creates aloiexp
put, which crashes the sample application. The only diffees
between the exploit and the benign input are the values iesbyt
18 and 19 (shown in Tabl®. Comparing with a grammar for the
WMF format, these bytes correspond to the size of the imatgk fie

5.4 Further Applications

Improving test coverage. Though our evaluation does not focus
on the exploration phase of vulnerability detection, oyreziments
do demonstrate a feature of loop-extended symbolic exatthiat
makes it more effective in obtaining input space coveragedé:
scribed in Sectiod.2.1, LESE improves on SPSE by finding sym-
bolic expressions for more branch conditions that depenthen
number of times loops execute, making it possible for a auyer
tool to reverse them. To measure this effect, we give in tsiedal-
umn of Tablel the number of branches for which our tool found
a loop-dependent condition but no directly input-depetbdendi-
tion, so that an LESE-based tool would be able to reverse twtm

Program Buffer siz Condition for overflow Constraint
(bytes) generation time (s),

GHittpd (1) 220 URI.Ten > 172 420 + 23

GHittpd (2) 208 URI.len > 133 420 + 140

SQL Server 128 DBNane. | en > 64 192

GDI 4096 | (2-1NP[19:18])»2 < 0 200

Table 2: Diagnosis results on real-world software. Generabn
time for GHttpd consists of the pre-processing time (420 s)rad
the post-processing time (23 s and 140 s) for each condition.

already being used by attackers, and it is important to wtaled
and defend against attacks quickly: vulnerability comdisi can
accelerate or replace manual analysis of an exploit, andée 10
generate filters to detect or block attacks. But to be ussfigh
conditions must be broad enough to cover a large class a@katta

We used our tool to perform diagnosis on the same real-world
programs described in SectiérB. Either a publicly available ex-
ploit, or the exploits generated by our discovery tool, ddug used
and produce the same results.

Our tool’'s diagnoses, summarized in TaBJeare more accurate
and usable than those given in previous work [18]. For ircsan
for the Microsoft SQL Server vulnerability, the conditionraool
generates states that the vulnerable field’s length mustéstey
than 64 bytes, whereas the buffer overrun vulnerabilitydéom
generated in previous work states that the length must leastt 97
bytes [18]. This difference turns out to be significant. Bessawe
have no access to source code, we validated our resultsrgmer
tally by supplying inputs of various sizes to the server. \&end
that when the vulnerable field has a size larger than 64 biftes,
overflow overwrites pointers with invalid values, causimgescep-
tion when these values are dereferenced.

Also note that most diagnoses of buffer overflows, includhmney
GHttpd and SQL Server examples shown in Tebleould not be
produced by a standard SPSE tool, which lacks even a notation
refer to the length of an input field.

6. RELATED WORK

This section discusses two classes of related researdhofhier
work on analysis approaches similar to our loop-extendetbhsyic
execution; then, work that also addresses the problem obats-
ing and/or diagnosing buffer-overflow attacks.

6.1 Analysis Approaches

Single-path symbolic execution.The technique we refer to as
single-path symbolic execution has been proposed by a nuofibe
researchers, though the same core idea has been givenl sifrera
ferent names. It is also called “directed testing” [25], &emtion-
generated test cases” [12], “concolic testing” [41], andhit@box

an SPSE-based tool would not. The count is a number of unique fuzzing” [26]. It was first proposed as a test-generatiohmépue to

program-counter locations (i.e., static and contextfisg&e), and
excludes loop exit conditions. For instance, one of the 2o
dependent conditions in WUFTP 2 is a length check (on ling 464
intended to prevent the buffer overflow. Because the cheekilty,

it is false on both our benign and exploit inputs, but expigrboth
sides would be critical for an exploration task, such asyieg the
lack of overflows in a fixed version. The condition is immedigt
apparent to our tool, but would not be considered symboldeun
standard SPSE.

Vulnerability diagnosis. Our tool can also be used for vulnera-
bility diagnosis: to find a general set of conditions undefcltan
exploit occurs. Diagnosis is most useful when a vulnerigbit

produce program inputs that cover new program paths, amd-the
fore uncover bugs, including security vulnerabilities. dddition

to generating new inputs, the symbolic conditions derivedifan
execution path also have a number of other applications) asc
building signatures to filter network attacks [7] or seanghfor
differences between implementations [6].

Extensions to single-path symbolic executionSeveral previ-
ous approaches have extended single-path symbolic eseaitih
additional information about the program or its possiblpuis.
Previous grammar-based approaches [10, 23, 24, 33] hame sak
vantage of knowledge of which program inputs are legal taced
the size of the search space when generating new inputs. rBy co



parison, our use of an input grammar in Sectdis focused on
extracting more information from a single execution. ThéaGp
tool of Xu et al. [46] also targets the problem of buffer-overflow
diagnosis, but they do not explicitly model loop construassin
loop-extended symbolic execution. An empirical and amnzdyt
comparison to their approach is presented in Se@&i@nPre- and
post-conditions can summarize the behavior of a functiothad
it need not be reanalyzed [23], similar to how our approadidsv
the need to reanalyze with different numbers of loop iterati If
repeated constraints are generated, they can also bedateved
by optimizations such as constraint subsumption [26].

Static analysis. Determining linear (technically, “affine”) rela-
tionships among the values of variables, as our analysia S
tion 3.1does, is a classic problem of static program analysis, pio-
neered by Karr [30]. Like many properties that involve mdrart
one variable, it can potentially become expensive. Forirs the
polyhedron technique [16] requires costly conversion afi@ns on
a multi-dimensional abstract representation. More recesgarch
has considered restricted abstract domains that allow doe reffi-
cient computation, such as “octagons” [36] and “pentagd88].
The techniques of Muller-Olm and Seidl [38] have the advgata
of giving precise results even with respect to overflow, Inefirt
runtime is a high power of the number of variables in a program
(k" for the interprocedural case). Random analysis [27] cam als
be used to determine linear relationships, with a small qodivy
of error. For the simpler case we consider, it is sufficientate
a more efficient non-relational approach: we express theegabf
program variables not in terms of each other but in terms afalls
set of auxiliary trip-count variables.

6.2 Discovering and Diagnosing Buffer Over-
flows

Buffer-overflow vulnerabilities are a critical securityatlenge,
and many approaches target them. Sound static analysis hold
the possibility of eliminating false negatives, but in fiee buffer
overflow checking is difficult enough that sound analysisisgible
only for small programs with extensive user annotation [AMdre
comparable to our approach are scalable bug-finding tob|gl5].
However, pure static analysis approaches suffer from fadss-
tives, which tool users must examine by hand. For instance, o
comparison [47] using the same benchmarks we use in Seéeon
found that many tools produced so many false positives thety d
only slightly better than chance. Dynamic analysis techesg on
the other hand, avoid false positives by examining prograsribey
execute [15, 17, 39]. However, the requirement of runningaibn
executions means that the overhead of dynamic analysis ¢aol
limit their applicability. Symbolic execution combinesast and
dynamic techniques to generalize from observed executinsig-
ilar unobserved ones, and loop-extended symbolic exetuie
tends this generalization to include loops.

Our vulnerability diagnosis using loop-extended symbebe-
cution extends previous diagnosis approaches based de-giath
symbolic execution [7,9, 14]. Bouncer [14] employs soucode-
based static alias analysis along with SPSE.

ShieldGen [18] uses a protocol-specification-based eaptor
of the input space to diagnose a precise vulnerability dmrdi
However, in contrast to our work, it treats the program asaalol
box, ignoring the implementation. In addition, it does napture
complex relationships between fields that may be necessay-t
ploit a vulnerability. For instance, as its authors point, @hield-
Gen cannot capture the condition that the combined lengtvof
fields must exceed a buffer size for exploit (as in the example
Section2), which our techniques can.

7. CONCLUSION

We propose loop-extended symbolic execution, a new type of
symbolic execution that gains power by modeling the effedts
loops. It introduces trip count variables with a symboli@lgsis
of linear loop dependencies, and links them to features imoavh
input grammar. We apply this approach to the problem of detec
ing and diagnosing buffer overflow vulnerabilities, in altdioat
operates on unmodified Windows and Linux binaries. Rathean th
trying a large number of inputs in an undirected way, our apph
often discovers an overflow on the first candidate it triest 10al
finds all the vulnerabilities in the Lincoln Labs benchmaukeand
gives accurate symbolic conditions describing real vahiities.
These results suggest that loop-extended symbolic exechts
the potential to make many kinds of program analysis, irowd
important security applications, faster and more effectiv
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