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ABSTRACT
Many applications are available on Android market place
for SMS spam filtering. In this paper, we conduct a de-
tailed study of the methods used in spam filtering in these
applications by reverse engineering them. Our study has
three parts. First, we perform empirical tests to valuate ac-
curacy and precision of these apps. Second, we test if we
can use email spam classifiers on short text messages effec-
tively. Empirical test results show that these email spam
classifiers do not yield optimal accuracy (like they do on
emails) when used with SMS data. Finally, in this work
we develop a two-level stacked classifier for short text mes-
sages and demonstrate the improvement in accuracy over
traditional Bayesian email spam filters. Our experimental
results show that spam filtering precision and accuracy of
nearly 98% (which is comparable with those of email classi-
fiers) can be obtained using the stacked classifier we develop.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Spam; I.2.7 [Natural
Language Processing]: Text analysis

General Terms
Security; Spam Filtering; Android App Analysis; Bayesian
Classifier; Support Vector Machines

Keywords
Spam Filtering; Message Tagging; Naive Bayes; SVM; An-
droid App Analysis

1. INTRODUCTION
Short message service (SMS) is a text messaging service

provided by telecommunication operators as a part of the
implementation of SS7 protocol stack [20]. These text mes-
sages, sent using standard cellphones are limited to 140
octets (70-160 characters long based on the encoding used)
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owing to the limitation imposed by constraints of the signal-
ing protocol (Mobile Application Part of SS7 protocol). We
call these as short text messages in this paper. Short text
messages are a convenient medium of asynchronous commu-
nication for the masses. On the downside, cellphones are
becoming the largest target of spammers using short text
message spam via SMS. SMS spam has been used to infect
Android smart phones and induct them to a spam botnet
via malicious links sent from a compromised device [28].

One of the reasons SMS spam has become widespread
is that SMS text messaging is becoming cost effective to
spammers. The popularity of SMS has led to messaging
charges dropping below US$0.001 in markets like China, and
even free of charge in others [4]. The cost per SMS and
profit trend with respect to SMS advertising is noted in the
GSMA Spam Reporting Service [9]. The low-cost and high-
profit of SMS is one of the reasons for spammers resorting
to SMS spam. Additionally, various web-based solutions for
bulk messaging make spammers’ job trivial [21]. The suc-
cess of SMS spam is directly related to the large user base
of SMS and similar pseudo SMS apps which are text mes-
saging applications like Whatsapp, Viber and so on. The
report by GSMA Spam Reporting Service provides a per-
spective about the consequences and varieties of SMS spam
messages [9].

Why SMS spam filtering using apps? SMS spam filtering
can be achieved at two points in a cellular network: (i) at
the cellular network operator end, and (ii) at end systems
(which are users’ mobile devices). There are several rea-
sons why SMS spam filtering is difficult on cellular network
operator end. First, though there are guidelines for spam
filtering by FCC, cellular network operators cannot enforce
many of these guidelines as users may have opted to receive
bulk messages from various sources or the origin of a spam
message is not a mobile device [5, 7]. In addition, SMS
spam filtering at cellular network operator end is difficult
as it is expensive to obtain SMS content at that point [33].
Secondly, presence of various pseudo SMS applications is
another hurdle for spam filtering at cellular network opera-
tor end. Users treat these applications as SMS applications.
These applications use packet data connection and hence
can bypass the SMS spam filters, if any, deployed at the
cellular network operator end and such messages reach end
users. These applications are equally vulnerable to short
text spam. In order to cover the entire spectrum of SMS-
type applications, it becomes necessary to deploy app-based
spam filters on end user devices.



Our Goals: There are multiple applications available on
app markets for smart phones which offer SMS spam filter-
ing. Presently there are no benchmarks for users/researchers
to evaluate the efficacy of these applications. Motivated by
this need, we perform a detailed evaluation of the SMS spam
filtering capability of the top twelve popular SMS Spam fil-
tering Android applications (based on the number of down-
loads and installs) found in the Google play store [1]. We
reverse engineer these applications to determine the method
used for spam filtering. We find that all of these apps
perform SMS spam classification based on rule based fil-
tering, filtering blacklisted numbers, filtering message from
an unknown number, keyword/url based filtering and so
on [11]. Further, our evaluation of these apps on our pub-
lished dataset shows that most of the existing SMS spam
filtering apps available for Android platform have accuracy
less than 50%. We present the details of this finding in Sec-
tion 2.

Our study raises a natural question, “Could we reuse”
techniques from email spam detection on short messages?
We study this question from a conceptual standpoint and
validate the same with empirical evaluation. Presently, there
are many useful and effective spam filtering mechanisms
available for emails. However, the same is not true for SMS.
Among the machine learning methods used commercially in
email spam detection, there is little systematic evaluation of
the practical efficacy of one over the other. It is necessary to
evaluate the effectiveness of email spam filtering techniques
for SMS text messages so that they can be widely used by
handset manufacturers to provide a reliable spam filtering
service to end users. In this work we detail the conceptual
challenges involved in spam filtering for short text messages
which makes it difficult to reuse classical spam detection
techniques from email settings to SMS setting. We measure
the real-world performance of these email spam filters on the
same dataset.

Finally, we explore the possibility of improving spam fil-
tering accuracy for short messages using multiple levels of
classification. In this direction, we propose an effective two-
level stacked classifier which out performs Bayesian spam
filters on SMS messages. Using this two-level classifier we
could achieve spam classification precision of about 98%
which is comparable to commercial email spam classifiers
available today.

It is known from previous works that that probabilistic
graphical models based algorithms (like Bayesian filters) can
be effectively (in terms of power and memory consumption)
deployed on resource constrained mobile devices [27]. Based
on this premise, we develop a stacked classifier and evaluate
its efficacy in filtering SMS spam messages. While building
the spam filter application, we can embed the training set
withing the classifier binary or train the classifier offline to
be used with the spam classifier.

Scope. There are two broad categories of spam filtering
techniques: based on (i) SMS message content, and (ii) non-
content features. In this work, we focus on content-based
SMS filtering on mobile devices using app-based SMS spam
filters. Non-content based filtering techniques are largely
employed by cellular network operators. Several works have
studied non-content based spam filtering which employ iden-
tifying gray phone space (associated with data devices such
as data cards) message size, number of messages sent daily /
weekly, number of unique recipients, clustering co-efficients

of target numbers and IP-traffic for the purpose of spam fil-
tering [24, 26, 33]. Finally, previous works point out that
non-content features are generally less effective than con-
tent based SMS spam filtering [29], but we don’t evaluate
this comparative strength in this work.

Contributions. In this work, we claim the following con-
tributions.

• We benchmark the efficacy of the top twelve SMS spam
filtering apps available on Google Play Store. We re-
verse engineer these applications and perform code anal-
ysis to understand the method of spam filtering used.

• We provide a comparative study of using email spam
filters on SMS spam, develop a comparison of machine
learning methods for short text message spam detec-
tion using SMS corpus.

• Propose a two-level classifier for short text message
spam filtering and evaluate its advantage over the con-
ventional classifiers which can be used for SMS spam
filtering.

• Evaluate the challenges involved in using machine learn-
ing based email spam filtering mechanism to train the
SMS spam classifier.

The rest of the paper is organized as follows. We present
a detailed conceptual and empirical analysis of various An-
droid applications for spam filtering in Section 2. We present
the challenges of reusing email spam detection methods on
SMS data and the empirical performance of traditional Bayesian
classifiers on SMS data in Section 3. We describe the im-
plementation of our two level classifier for improved spam
classification on SMS data along with its empirical perfor-
mance in Section 4. Prior works related to our contributions
are detailed in Section 5. We present our conclusions in Sec-
tion 6.

2. ANALYSIS OF ANDROID APPS
In this section we benchmark the efficacy of top twelve

popular SMS spam filtering applications available in Google
Play Store and describe our findings. We select the applica-
tions based on number of downloads as reported by Google
Play Store. Eleven of the applications have over 50k down-
loads, with three of them having over 1000k downloads (as
of 31 July 2013). We omit applications having less than 10k
downloads from our evaluation. The applications we tested
are free versions, but we find that paid/premium versions
of these applications have even lesser number of downloads.
We reverse engineer these applications to the best of our
ability to obtain a conceptual understanding of the method
used for spam filtering. For those applications which could
not be reverse engineered, we perform detailed black-box
testing to identify the spam filtering method. Further, we
perform empirical analysis of these applications using a sub-
set of the dataset (see Section 3.2) to measure their spam
classification accuracy.

2.1 Conceptual Analysis
Methodology. We gathered the SMS spam filtering apps

from Google Play Store and perform two types of analysis.
First, in white-box analysis, we reverse engineered these ap-
plications in order to determine the content based filtering



Number Based Filtering Content Based Filtering

Application Spam* Ham** User
Specified
Blacklist

Rule Based
Classification

Regex/
Strcmp

Machine
Learning

# downloads

AVG Yes Yes Yes Yes – – > 50000k
SmsBlocker ‡ Yes Yes Yes – – – 1000k-5000k
Quickheal ‡ Yes Yes Yes – – – 1000k-5000k
AntiSpamSMS Yes Yes Yes Yes Yes No 100k-500k
Numbercop No No † Yes No No No 100k-500k
Private Box Yes Yes Yes No No No 100k-500k
SMS Filter Yes Yes Yes No No No 100k-500k
The Call No Yes Yes No Yes No 100k-500k
Postman Yes Yes Yes No Yes No 50k-100k
smsBlocker Yes No † Yes Yes No No 50k-100k
SMS Spam Blocker Yes Yes Yes Yes No No 50k-100k
SpamBlocker Yes Yes Yes Yes Yes No 10k-50k

*Any message marked as spam when sender is not in contact list
**Any message marked as ham when sender is in contact list

Table 1: Observed Behavior of SMS Spam Filtering Applications Obtained by Reverse Engineering

method used. We use a third party application (dex2jar [10])
to decompile dex files and a jar decompiler (Java Decom-
piler [3]) to retrieve source code from the jar archive. Three
of the applications are obfuscated and we make use of dex-
tools which is a component of dex2jar to retrieve the source
code. We performed manual inspection of the so obtained
source code to identify the method of spam filtering em-
ployed. Based on code inspection, we conclude that eight
out of the twelve apps perform number based spam filtering,
i.e., all messages sent from unknown contacts are marked as
spam and all messages sent from known contacts are marked
as ham. Two applications exhibit different behavior and we
elaborate on their behavior in Section 2.2. Two applications
could not be reverse engineered (indicated by ‡ in Table 1).
To identify the spam filtering mechanism in these four apps,
we perform a second black-box analysis of the applications
to enable various options provided for SMS spam filtering
(Section 2.2). We use Android emulator to run these tests.
Using black-box analysis we tabulate the features provided
to end users for spam control. We use a set of fifty ran-
domly drawn inputs from our published dataset to observe
the behavior of these applications and infer the spam filter-
ing method used. Specifically, we observe whether the input
was classified as spam or ham.

White-box analysis results. Based on our analysis,
we find that apps use two broad categories of techniques for
spam filtering: (i) Number based filtering, and (ii) Content
based filtering (refer Table 1). Eleven of the twelve applica-
tions provide number based filtering as an option that can
be toggled in the application settings UI. There is no such
UI option for turning on/off content based filtering.

All the applications we analyze provide spam filtering
based on number blacklisting. Some of the applications like
AntiSpamSMS also provide spam filtering based on black-
listed URLs. AntiSpamSMS retrieves a list of known spam-
mers from its centralized server on the Internet and filters
messages based on it. This option is provided to users via
the application settings. Ten of the twelve applications fil-
ter out SMS from unknown senders as spam while allowing
all messages from known senders (i.e. senders present in
contact list) to reach the message inbox. However, two ap-

plications (SMS Blocker and Numbercop) filtered few spam
messages from known senders as spam.

Nearly 50% of the applications provide some form of rule
based classification. Five of the applications use rules per-
taining to presence of certain words, blacklisting people in
the contact list and so on. Five applications (≈40%) perform
some form of regular expression matching or string compar-
ison to filter spam messages. To the extent of our analysis
of decompiled applications, none of these use any form of
machine learning but rather use rule-based content match-
ing. Therefore, we expect the accuracy of classification to be
low. Table 1 lists out the spam filtering features provided by
various apps we tested. We present our findings on accuracy
and precision in the next subsection.

Findings: Based on our analysis we summarize our find-
ings below.

• All applications provide number blacklisting facility.

• About 85% applications block any message from an
unknown sender.

• Less than 25% applications use reg-ex matching or
string matching.

• Some applications filter spam messages correctly from
known senders, however this behavior is not consistent
across all messages in the spam dataset we used.

• To the extent of our manual audit by reverse engi-
neering, none of the applications use machine learning
techniques for spam classification.

2.2 Empirical Results
In addition to reverse engineering, we perform a black-box

empirical test of the twelve applications. Black-box analysis
allows us to determine performance of candidate applica-
tions in terms of precision and accuracy. To evaluate the
applications, we select a subset of the dataset described in
Section 3. We measure the precision and accuracy of the
applications using this input set 1.
1Since the Android emulator was slow and timed out after about
ten messages sent from the telnet interface, we limit the input to
randomly selected fifty messages per application.



Application TP FP FN TN Precision Accuracy

SmsBlocker 0 0 25 25 0.00 0.50
SpamBlocker 6 12 19 13 0.33 0.38
AVG Antivirus 0 0 25 25 0.00 0.50
Postman1 0 0 25 25 0.00 0.50
SmsBlocker1 0 0 25 25 0.00 0.50
SMS Spam Blocker 0 0 25 25 0.00 0.50
Quickheal2 25 0 0 25 1.00 1.00
Quickheal3 0 25 25 0 0.00 0.00
AntiSpam SMS4 7 4 18 21 0.64 0.56

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative

1 Sender in contacts list 2 With blacklisting turned on
3 With blacklisting turned off 4 Sender in contacts, blacklist on

Table 2: Spam Filtering Performance of Apps

Experimental results. Here we present the empirical
results of spam filtering performance of various applications
that we tested. We installed these applications on Android
emulator and tested them with the same test set we used to
compare the performance of various classifiers listed in the
next section. We selected a few applications to enable vari-
ous options available in them. For some applications such as
Quickheal, performance dropped when used with default op-
tions (black listing turned off). AntiSpamSMS for instance
provided us with a precision of 64% when its blacklist look
up was turned on and when we enabled the option to treat
messages sent by senders in contact as non-spam. Applica-
tions like SpamBlocker and AntiSpamSMS performed some
spam filtering owing to the reg-ex matching/string compar-
ison present in their spam filtering logic. When we turned
on the blacklist look up option of Quickheal we obtained
100% accuracy. It would be interesting to learn the spam
filtering method used in this case (we like to point out that
Quickheal could not be reverse engineered). Five of the ap-
plications listed have accuracy of 50%. However, first, we
like to point out from our observation that this 50% accu-
racy was obtained as either all of spam SMS sent from un-
known contacts were marked as spam or all messages sent
from known contacts were marked as ham which is logically
incorrect. Second, there is evidence of no machine learning
even in the obfuscated applications since the true positives
are near zero. These results are captured in Table 2.

3. REUSING EMAIL SPAM DETECTION
METHODS

Given that existing SMS spam detectors on Android are
ineffective, we ask “is it possible to reuse spam filtering tech-
niques from email spam detection?”. In this section we de-
scribe (i) challenges involved in working with short text mes-
sages, (ii) efficacy of using email spam detection algorithms
on short text messages, and (iii) present our empirical results
of using email spam classifiers on short text messages.

3.1 Conceptual Analysis
Before getting into the details of using email classifiers on

SMS data, it is worthwhile to make a note of the challenges
related to processing short messages in general and spam
classification of short messages in particular. We make the
following observations.

• Running classifiers on email datasets give sufficiently
accurate results owing to the fact that there are more
words to help the classifier. However in case of SMS,
the character limit of 140 octets make it less words to
work with. Hence such classifiers are weaker. Char-
acter limit does not strictly hold for the pseudo SMS
applications mentioned. However, users treat these ap-
plications similar to SMS. As a result, we expect the
content pattern in the data exchanged via these appli-
cations to be similar to real SMS text.

• Due to the character limit in SMS, acronyms and ab-
breviations find extensive use. The language variabil-
ity in SMS text acronyms and abbreviations make the
representation sparse for a classifier. This further weak-
ens the classifier.

• Email spam classifiers generally remove all n-grams
(for some small n) as they do not contribute to use-
ful features for classification. However owing to the
length restrictions, bi- and tri-grams are used exten-
sively in short messages and these cannot be eliminated
directly. Such elimination may lead to having a null
vector input to the classifier. For example, this mes-
sage ok! bye! tc! will result in a null vector when
bi-grams and tri-grams are eliminated. Hence a spe-
cial treatment of bi-grams and tri-grams is needed in
case of short messages.

• We find that in SMS spam filtering, using the entire
text message as is for classification leads to a large
number of false positives. Considering the above dis-
cussions, we need carefully select which words to use
as features and which words to exclude. There is no
published guideline on selecting the feature set. We
touch upon the effects of using bi-grams versus not
using bi-grams on classification in Table 3.

• Treating same words in different letter cases as differ-
ent features yield different results in classification. We
cover this aspect in brief in Section 3.2.

• Many email classifiers use message probability thresh-
olds to differentiate between ham and spam. There is
no literature which specify these values and they are
determined empirically. We find that, choosing the
thresholds used for email spam classification leads to a
drastic drop in classification accuracy when used with
short message data.

3.2 Empirical Measurements
In this subsection we describe the method followed in test-

ing email spam filtering algorithms on SMS data and finally
we present our results and findings.

Reference Dataset. For empirical evaluation we com-
bined the tagged SMS datasets published by Almeida et.al., [12],
Nuruzzaman et.al., [27] and Delany et.al., [18]. Since all
these datasets were constructed using NUS SMS corpus [16]
and Grumbletext [2] they have many duplicates. To ben-
efit our evaluation, we removed the duplicates to the best
of our ability. This dataset consists of about 1450 tagged
messages (730 ham and 721 spam) which we use for training
the classifiers. The test set consists of about 700 messages.
This re-purposed dataset is made available publicly here:
https://github.com/okkhoy/SpamSMSData.



Evaluation Target. We use the reference dataset de-
scribed above to evaluate the efficacy of reusing email spam
filtering methods on short message data. In our evaluation,
we considered three different types of tokenization mecha-
nisms.

• Simple splitting of messages and using all the available
words–naive approach.

• Standard email like tokenization–removing stop words
and using standard lemmatizer like Wordnet lemma-
tizer available in NLTK library [8].

• Handling bi-grams and tri-grams while tokenization.

A discussion on using these three different variations in to-
kenization is presented later in this section.

Methodology. Most of the messages in the dataset are
raw texts. We need to perform some pre-processing before
using them in our experiments. As a part of pre-processing
we remove all non-ASCII special characters which appear as
a part text messages. These special characters mostly repre-
sent emoticons. One of the corpus had additional meta data
like time of transmission and reception, obfuscated phone
numbers etc., these additional data were removed as a part
of pre-processing as they are not relevant in comparing var-
ious classifiers.

The next step in implementing a learning algorithm is
tokenization. Tokenization is the process of dividing the
message into semantically meaningful segments. Here we
split the message into a set of words. Tokenization produces
a set of words in the message, with no repeated tokens. This
is a useful first level filtering because, having repeated words
do not add any value to the classifier.

As a part of our contributions in this paper, we consider
the usefulness of running Bayesian email spam filter on the
short message dataset. Before delving into the details, we
point out that these Bayesian classifiers use message proba-
bility thresholds to differentiate between ham and spam. For
the purpose of evaluation we used SpamBayes [6], a popular
spam filter application to classify a subset of the short mes-
sage dataset in hand. Commercially deployed email filters
like SpamBayes [6] use ham and spam thresholds as 0.2 and
0.8 respectively. There is no literature suggesting the use
of these threshold values and we believe these are obtained
empirically. When we used the same thresholds on short
messages, the precision and recall values obtained were low.
We anticipated this behavior as described earlier in this sec-
tion.

Results with Original Thresholds. We begin the dis-
cussion of experimental results to determine the efficacy
of using email spam filters on SMS with the effect of to-
kenization on the outcome of classification. Accuracy of the
Bayesian classifier (used as an example) based on different
tokenization approaches described above is listed in Table 3.
It has to be noted that better tokenization yields better ac-
curacy for each of the classifier discussed above.

As expected, using all available words weakened the clas-
sifier and the accuracy dropped to about 84%. Email like
tokenization (stemming and lemmatization using Wordnet)
yields better accuracy (around 87%) than using all available
words. Treating bi- and tri-grams specially yielded us better
results. However, the improvement is not very significant on
this dataset, we got about 7% increase in the accuracy. We
tested the performance of the classifier by retaining the word

Tokenization Method TP FP FN TN Accuracy

Word Split 284 20 95 315 0.839
Email Like 276 28 67 343 0.867
N-Grams 284 20 20 390 0.944
Ignore Case 283 21 50 360 0.901
Retain case 278 26 60 350 0.880

TP: True Positive, FP: False Positive, FN: False Negative

Table 3: Accuracy Obtained by Different Tokeniza-
tion Mechanisms

case versus ignoring the word case. We notice that ignoring
word case gives better accuracy as against the former (90%
vs 88%). This is because, treating same words in different
case as different tokens result in reducing the word probabil-
ity and hence, has a cascading effect on message probability.

Results with Tweaked Thresholds. While discussing
the usefulness of using email like spam filters on SMS dataset,
we mentioned that commercially deployed email filters use
ham and spam thresholds. In order to make up for the lack
of words to work with, we need to tweak these thresholds.
Since there is no available reference for the typical values
of these thresholds, we empirically determine that by using
threshold values of (0.4, 0.6) for ham and spam respectively,
yields good precision in classification. Our observations are
tabulated in Table 4.

(H, S) TP FP FN TN Precision Recall Accuracy

(0.1, 0.9) 37 267 207 203 0.122 0.152 0.336
(0.2, 0.8) 85 219 130 280 0.280 0.395 0.511
(0.3, 0.7) 231 73 68 342 0.760 0.773 0.803
(0.4, 0.6) 268 36 50 360 0.882 0.843 0.880

TP: True Positive, FP: False Positive
TN: True Negative, FN: False Negative

Table 4: Performance of Bayesian Classifier with
Different Thresholds

Figure 1: Accuracy of Classifier at Different Ham &
Spam Thresholds

We plot the classifier accuracy at different (ham, spam)
threshold combinations to visualize the classifier performance.



This plot is shown in Figure 1. We note that using thresh-
olds (0.2, 0.8) from SpamBayes email classifier the classifier
accuracy is around 51%. Reducing the thresholds to (0.4,
0.6) gives us better classification accuracy. Though reduc-
ing ham and spam thresholds improves performance of email
spam filters on SMS data, it essentially means that the clas-
sification is based on weaker constraints.

Findings. Based on the discussions above, we summarize
our findings here.

• Bayesian email spam filters cannot be used with SMS
data as is.

• Tweaking ham and spam thresholds of email spam
filters result in better performance on short message
data. However, this performance on SMS data is not
comparable with email classification accuracy.

• Reducing these thresholds means classification is based
on weaker constraints.

• Special attention is needed on the tokenization mech-
anism used.

Threat to validity. First, our evaluation uses a single
dataset consisting of ≈2100 messages. Extending such eval-
uation with additional data would help ascertain the validity
of our findings. Second, the spam messages in the dataset
were collected globally via Grumbletext while the ham mes-
sages were primarily obtained from the NUS SMS corpus.
There is a variability in the language used in the two sets of
messages. Ham messages are subject to language deviation
owing to the vocabulary and style of communication used in
Singapore. However, our work primarily concern compari-
son of the various classifiers using this dataset. Since the
language bias is applicable to all the experiments described
in this section, we expect that the effect of this bias would
be nullified in the comparisons presented in this work.

4. IMPROVED SPAM CLASSIFIER FOR
SHORT TEXT MESSAGES

As presented in Section 3, we find that using email spam
filters as is on SMS data yields sub-optimal results. In this
section, we explore the possibility of improving the spam
classification accuracy for short text messages. Towards this
direction we describe the implementation of our two-level
classifier and present its performance in comparison with
email spam filters. As can be seen from empirical results,
we obtain better accuracy and precision using the two-level
classifier.

4.1 Two-Level Stacked Classifier Architecture
In text classification, clustering followed by classification

is quite common [35, 19]. The variation we implement in
this work uses two levels of classifiers. Similar technique of
stacking of classifiers has been used sparsely in email spam
filtering earlier. Specifically, Sakkis et al., use a master-slave
architecture for stacking k-nearest neighbor classifier over
Naive Bayes [30]. However, our implementation of stacking
is different. The first level Bayesian classifier records a sub-
set of words whose individual probability is higher than a
threshold (say 65%) and this set is further input to another
round of classification. The second level classifier is invoked
only when the output of first level contains words whose in-
dividual spam probability is higher than a threshold. The

(a) Bayes on Bayes Classifier (b) SVM on Bayes Classifier

Figure 2: Different Variations of the Two-level Clas-
sifier

second level classifier complements the first level to achieve
better classification accuracy. We implement two versions of
the two-level stacked classifier: (i) using Bayesian classifiers
at both levels, and (ii) using Bayesian classifier in first level
and SVM in the second. Conceptual diagrams of these two
versions of the two-level classifier are as shown in Figure 2.

We record the spam probabilities of individual words and
message probabilities. We assume a hitherto unseen word to
be equally likely being spam or ham. Hence, we associate a
probability of 0.5 to a new word encountered. The nature of
Bayesian approach corrects this probability value as learning
progresses and more words are seen. The probability of each
word is recorded in the form of a dictionary for future use
during the test phase.

In case of SVM classifier, we need to represent messages
as a feature vectors. The effect of tokenization is clearly evi-
dent in SVM. If the number of features are not reduced, the
classifier becomes “heavy weight” and performance degrada-
tion sets in. Hence removal of stop words and stemming
are useful in case of SVM classifier. We represent messages
as a binary vectors. We generate a word-frequency table
for spam and ham messages separately. These tables com-
prises of the mapping word ⇒ frequency as needed by the
classifier.

In the learning phase, we set up a model for spam classifi-
cation and train the classifier. For comparison purpose, we
train the Bayesian classifier and SVM classifier separately.
Results of each of the classifier are tabulated individually.
The findings are reported in the next subsection.

4.2 Empirical Results
For empirical evaluation, we use the dataset described in

Section 3.2. Our training set comprise of 730 ham messages
and 721 spam messages. Test set consists of about 700 mes-
sages. We now consider the impact of using a two-level clas-
sifier for short message classification. In Table 5, we present
a comparison of precision and accuracy of Bayesian filter



with our two-level classifier. Again for different ham and
spam message probability thresholds we run the two-level
classifier described in previous section on the short text mes-
sage dataset in hand. We observe that a two-level classifier
running Bayesian filters at both levels yield better precision
for each combination of (ham,spam) threshold. For instance,
using the empirically determined threshold of (0.4, 0.6) and
running the stacked classifier gives an improved precision
of about 91% as against a simple Bayesian classifier which
gives only 88% precision. Using SVM in the second level
provides better results as can be seen in Table 6.

Naive Bayes 2-Level Classifier
(H, S) Precision Accuracy Precision Accuracy

(0.1, 0.9) 0.122 0.336 0.280 0.508
(0.2, 0.8) 0.280 0.511 0.441 0.606
(0.3, 0.7) 0.760 0.803 0.799 0.819
(0.4, 0.6) 0.882 0.880 0.914 0.894

Table 5: Comparison of Bayesian Classifier with
Two-Level Stacked Classifier on ≈700 messages

Table 6 provides an insight into the performance of various
classifiers considered in our work. We use an SVM classi-
fier based on LIBSVM [15]. The data representation used
in this SVM classifier is similar to the SVM email classi-
fier by Shelly [31]. It is well known that SVM outperforms
Bayesian classifiers and the results we obtained reinforce this
belief. We see that the precision of the two-level classifier
using SVM in second level is marginally better than using
Bayesian classifier (98.4% of SVM vs 94.7% of Bayesian). To
see the impact of using additional levels instead of two levels
in the classifier, we used SVM over the results obtained by
two-level Bayesian classifier. Though the precision of SVM
on Bayesian (98.4%) is almost same as compared to the three
level classifier (98.7%), the recall or specificity is better in
the latter. Also the overall accuracy of this setup (SVM
on two-level Bayesian) is higher (98.8%) when compared to
other classifiers (Table 7).

A comparison of accuracies of various classifiers is listed in
Table 7. At this point we would like to bring in the compar-
ison of using Naive Bayes classifier on short text messages
and email datasets. Our experiments reveal that the best
precision obtained by using Naive Bayes classifier to classify
short text messages is 88–90%. However, literature shows
that researchers are able to achieve near 100% precision us-
ing Naive Bayes classifiers on email datasets [13, 25]. Using
stacked classifier on short messages we could achieve classi-
fication precision comparable to the email classifiers (98.4%
of SVM on Bayes vs 98.9% presented in [25]). This compar-
ison asserts the need for using a multilevel stacked classifier
on short text messages.

5. RELATED WORK
In this section, we discuss few prevalent SMS spam fil-

tering mechanisms and contrast our work with existing ap-
proaches. Among the prevalent methods, Naive Bayes seems
to be a favorite among researchers. There have been various
efforts like [27, 36, 22] using Naive Bayes content based clas-
sifiers to filter SMS spam messages. Nuruzzaman et. al., [27]
were able to achieve accuracy over 90% using PGM based

spam filters. They propose a method to use a small train-
ing set and improve the classifier accuracy using subsequent
messages to train the classifier. Support vector machines
(SVM) is the second most popular classification algorithm
used in prior works in SMS spam filtering [34, 32, 36]. Some
researchers have also used Hidden Markov Models for SMS
spam filtering [29], however with lesser accuracy compared
to Naive Bayes or SVM (89% accuracy of HMM vs close
92% accuracy of SVM). It has been noted that using the
email “bag-of-words” approach to SMS spam filtering does
not work really well [17]. Hence the challenge here is to see
how the Naive Bayes and SVM based email spam classifiers
perform on SMS spam messages. Delany et. al., [18] pro-
vide a topic based classification of SMS messages to various
categories like dating, competitions etc. In their work they
use results provided by various prior research work such as
k-nearest neighbor, SVM, first order HMM on independent
datasets to draw the conclusion.

Grier et. al., [23] perform a detailed study of Twitter spam
in their work. Problems associated with blacklisting a sender
or a URL which is carried in SMS spam messages are similar
to those found in Twitter spam. Hence many of the spam
apps which perform filtering based on blacklists/white-lists
fail to curtail the impact of SMS spam. SMS spam is gener-
ally targeted towards resource constrained devices whereas
Twitter streams originate from web based applications and
are also available for viewing on the regular computing de-
vices like PCs. It would be interesting to compare spam
analysis techniques used in micro-blogging with SMS in fu-
ture work.

Chakradeo et. al., [14] use multiple categories of data
to analyze malware in Android market. We can look at
the possibility of using such techniques to use both content-
based and non-content based data for SMS spam filtering in
future work.

Sakkis et al., [30] use a master-slave architecture for stack-
ing k-nearest neighbor classifier over Naive Bayes to classify
emails. However, in this work we implement a different form
of stacking. We use the second level classifier to complement
the first classifier to achieve better classification accuracy.

Our work is the first detailed study of popular Android
apps for SMS spam filtering and insights based on our ex-
periments show that these apps are ineffective in dealing
with spam. We also explore the possibility of using Bayesian
email classifiers on SMS and further, propose a two-level
classifier to achieve improved spam filtering performance.

6. CONCLUSION
In this work we performed analysis of Android applica-

tions, email filters on SMS data and proposed an approach
to improve spam classification accuracy for short text mes-
sages. Based on our experiments and empirical results we
summarize the following.

• We provided a detailed study of the top twelve SMS
spam filtering apps available on Google Play Store and
conclude that most of these are ineffective on SMS
spam messages.

• We drew a comparative study of using email spam fil-
ters on SMS spam, and highlight conceptual challenges
in re-purposing traditional email spam filters for short
text messages.



Classifier True Positive False Positive False Negative True Negative Precision Recall F-Measure

Bayesian 268 36 10 400 0.882 0.964 0.921
SVM 292 12 26 384 0.961 0.918 0.939
SVM on Bayes 299 5 9 401 0.984 0.971 0.977
Bayes on Bayes 288 16 3 407 0.947 0.990 0.968
SVM & Bayes on Bayes 300 4 3 407 0.987 0.990 0.988

Table 6: Performance Comparison of Various Classifiers

Classifier True Positive False Positive False Negative True Negative Accuracy

Bayesian 268 36 10 400 0.936
SVM 292 12 26 384 0.947
SVM on Bayes 299 5 9 401 0.980
Bayes on Bayes 288 16 3 407 0.973
SVM & Bayes on Bayes 300 4 3 407 0.990

Table 7: Accuracy of Various Classifiers

• Proposed a two-level classifier for short text message
spam filtering and evaluate its advantage over the con-
ventional classifiers which can be used for SMS spam
filtering. We observed a good improvement in spam
classification precision using the two-level classifier.

• Enumerated the challenges involved in using machine
learning based email spam filtering mechanism to train
the SMS spam classifier.
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