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Abstract—Several new browser primitives have been pro-
posed to meet the demands of application interactivity
while enabling security. To investigate whether applications
consistently use these primitives safely in practice, we study
the real-world usage of two client-side primitives, namely
postMessage and HTML5’s client-side database storage.
We examine new purely client-side communication protocols
layered on postMessage (Facebook Connect and Google
Friend Connect) and several real-world web applications
(including Gmail, Buzz, Maps and others) which use client-
side storage abstractions. We find that, in practice, these
abstractions are used insecurely, which leads to severe
vulnerabilities and can increase the attack surface for web
applications in unexpected ways. We conclude the paper by
offering insights into why these abstractions can potentially
be hard to use safely, and propose the economy of liabilities
principle for designing future abstractions. The principle
recommends that a good design for a primitive should
minimize the liability that the user undertakes to ensure
application security.

I. INTRODUCTION

With the growing demand for interactivity from Web 2.0
applications, web application logic is significantly shifting
from the server to the browser. This need to support
complex client-side logic and cross-domain interaction
has led to a proliferation of new client-side abstractions,
such as the proposals in HTML5. A number of major web
application providers (including Google and Facebook)
have responded by offloading several security-critical parts
of their functionality to the client.

However, due to the nascence of these primitives,
the security implications of using these new client-side
abstractions on the web application’s overall security have
received little evaluation thus far. To investigate this issue,
we selected two primitives as case studies representative of
the class of emerging client-side constructs. First, we study
systems using postMessage, a primitive that enables cross-
origin communication within the web browser. Specifically,
we analyzed two new purely client-side protocols, namely
Google Friend Connect and Facebook Connect, which are
layered on postMessage. As a second case study, we
analyze the usage of client-side storage primitives (such as
HTML5 localStorage, webDatabase API and database
storage in Google Gears) by popular applications such as
Gmail, Google Docs, Google Buzz and so on.

The postMessage API is a message passing mechanism
that can be used for secure communication of primitive
strings between browser windows. However, if developers
do not use the security features of the primitive fully or

implicitly trust data arriving on this channel, a variety of
attacks can result. We aim to study how consistently this
API is used securely in practice, by analyzing two promi-
nent client-side protocols using postMessage, namely
Facebook Connect and Google Friend Connect. To system-
atically evaluate the security of these protocols, we first
reverse engineer the protocol mechanics/semantics as their
designs were not documented. In our evaluation, we find
that both protocol implementations use the postMessage
primitive unsafely, opening the protocol to severe confiden-
tiality and integrity attacks. Worse, we observed that several
sites using this protocol further widen their attack surface—
in one we were able to achieve arbitrary code injection .
We were able to concretely demonstrate proof-of-concept
exploits that allow unauthorized web sites to compromise
users protocol sessions, which can lead to stealing of
users data or even injection of arbitrary code into benign
web sites using Facebook Connect and Google Friend
Connect protocols. In our evaluation, we also observed a
strange inconsistency—developers, belonging to the same
organization and sometimes of the same application, used
the primitives safely in some places while using them
unsafely in others. The vulnerabilities in communication
primitives have been alluded to in research literature [3],
[11]. However, these new client-side protocols have not
been studied previously and we are first to demonstrate
the practicality and severity of these vulnerabilities in the
context of real-world client-side communication protocols.

As a second representative of a purely client-side
abstraction, we study client-side data storage primitives
and various applications that rely on these. We find that
a large fraction (7 out of 11) of the web applications,
including Google Buzz, Gmail and Google Maps, place
excessive trust on data in client-side storage. As a result
of this reliance, transient attacks (such as a cross-site
scripting vulnerability) can persist across sessions (even
up to months), while remaining invisible to the web
server [5], [13]. In our results, as in the case of the
postMessage study, we observed a similar inconsistency
in developer’s sanitization of the dangerous data. Our
results show that despite some prior knowledge of the
storage vulnerabilities [13], in practice, applications find it
difficult to sanitize dangerous data at all places.

We observe a common problem with these new client-
side primitives: to ensure security, every use of the primitive
needs to be accompanied by custom sanity checks. This
leads to repeated effort of developing sanity checks by
each application that uses the primitive. And, often even



within one application similar checks may be distributed
throughout the application code, a practice which is prone
to errors. We propose the economy of liabilities principle in
designing security primitives—a primitive must minimize
the liability that the user undertakes to ensure application
security. For example, in this context, the principle of
economy of liabilities implies that client-side primitives
should internally perform sanitization functionality critical
to achieve the intended security property, as much as
possible. New primitives today ignore this design principle,
achieving security only ‘in principle’ rather than ‘in
practice’1. We hope the economy of liabilities principle
will guide the designs of future primitives.

Retrofitting the economy of liabilities principle to the
existing primitive designs is challenging as they have been
adopted by real-world applications already. Furthermore,
the exact sanitization policies vary significantly across
applications. However, we suggest enhancements to these
primitives which we believe achieves a reasonable compro-
mise between security and compatibility. In particular, we
suggest a declarative style, whitelist-based origin validation
scheme that should be provided by the postMessage
primitive and enforced by the browser to ensure channel
integrity. For client-side database primitives, we suggest the
browser database interface should automatically perform
output sanitization to prevent persistent XSS attacks. We
hope that these suggestions kick start discussion in the web
community on refinements to reduce developer burden.

Summary of Contributions.

• We systematically examine two representatives of
new client-side primitives which are in popular use by
real-world applications: (a) postMessage, a cross-
domain message passing API, and (b) persistent
client-side database storage (HTML5 localStorage,
webDatabase APIs and database storage in Google
Gears).

• We present the first step towards understanding purely
client-side protocols, by reverse engineering them
directly from their implementation in JavaScript and
formalizing them. We systematically extract the sanity
checks that applications implement on the security-
relevant data and use these to find new vulnerabilities
in our target applications.

• We provide practical evidence of the pervasiveness of
these new attacks on several important web application
protocols (Facebook Connect and Google Friend
Connect) and web applications (Gmail, Google Buzz,
Google Docs and others).

• To eliminate the inconsistency we observe in safe
usage of these client-side primitives, we propose the
guiding principle of economy of liabilities and suggest
remedies based on this principle to make the primitives
more practical for safe use with the aim of garnering
discussion and obtaining community feedback.

1giving the “Emperor” a false impression of his shiny new clothes

II. ATTACKS ON CLIENT-SIDE MESSAGING

The postMessage API is a client-side primitive to
enable cross-origin communication at the browser side.
Originally introduced in HTML5, postMessage aims to
provide a simple, purely client-side cross-origin channel for
exchanging primitive strings [15]. Web browsers typically
prevent documents with different origins from affecting
each other [12]. A mashup specifically aims to overcome
this restriction and communicate with another web site in
order to provide a richer experience to the user. Barth et al.
[2] study various client-side cross-origin communication
channels and recommend the postMessage mechanism,
due to the security guarantees(detailed below) it is able to
provide.

The postMessage primitive aims to provide the dual
guarantees of authenticity and confidentiality. Messages
can be sent to another window by invoking the window’s
postMessage method. Note that this message exchange
happens completely over the client side and no data is sent
over the network. The security guarantees are achieved as
follows:

• Confidentiality: The sender can specify the intended
recipient’s origin in the postMessage method call.
The browser guarantees that the actual recipient’s
origin matches the origin given in the postMessage
call, and code executing in any other origin’s context
is unable to see the message. The intended recipient’s
origin, specified in the method call, is called the
targetOrigin parameter. For use cases in which
confidentiality is not essential, a sender can specify
the all-permissive ‘*’ literal as the targetOrigin.

• Authenticity: The browser attributes each received
message with the origin of the sender, as the origin
property of the message event. The recipient is ex-
pected to validate the sender’s origin as coming from
a trusted source, thus achieving sender authenticity.

Note that if these checks are missed by the application,
the browser does not guarantee anything about the security
of the postMessage channel. For instance, a malicious
website could send arbitrary messages to a benign website,
and it is the latter’s responsibility to ensure that it only
processes messages from trusted senders. To avoid the
aforementioned problems, the HTML5 proposal recom-
mends websites to set the targetOrigin parameter for
any confidential message and to always check the origin
parameter on receiving a message.

Attacking postMessage Applications. We investigate
two prominent users of the postMessage primitive, the
Facebook Connect protocol and the Google Friend Connect
protocol. We conjecture that for complex cross-domain
interactions involving fine-grained origins, developers may
fail to follow the recommended practice. In such a case,
the channel would not provide a security property that
the developer might have come to expect. Due to the
complexity of the JavaScript code used by these protocols,
we use the Kudzu [10] system to check for the absence
of such validation in the code. We find that large parts of
the protocols are undocumented, and we reverse engineer



these protocols based on the interactions we observe.

Scope of Attack. The threat model for our attacks on
postMessage usage is the web attacker threat model [3].
In particular, we constrain the attacker to only controlling
content on his own site. A user can visit the attacker’s
site, but may not necessarily trust content from it. Phishing
attacks are outside the scope of this work. Bugs in browser
implementations are also beyond the scope of this attack.
An attacker can assume the user to have already logged onto
Facebook and authorized Facebook Connect applications
not controlled by the attacker.

Summary of Findings. We find various inconsistencies in
the use of postMessage. Developers use these primitives
correctly in some cases, while making mistaken assump-
tions in others. We demonstrate vulnerabilities in both
Facebook Connect and Google Friend Connect protocols.
In the following sections, we explain these two protocols
in detail, point out vulnerabilities and demonstrate concrete
attacks. We end our analysis of the postMessage primitive
with a discussion of the observed real world usage of the
postMessage primitive.

A. The Facebook Connect protocol
Facebook Connect is a system that enables a Facebook

user to share his identity with third-party sites. Some
notable users include TechCrunch, Huffington Post, ABC
and Netflix. After being authorized by a user, a third party
web site can query Facebook for the user’s information
and use it to provide a richer experience that leverages the
user’s social connections. For example, a logged-in user
can view his Facebook friends who also use the third-party
web site, and interact with them directly there. Note that
the site now contains content from multiple principals—the
site itself and facebook.com.

Mechanism. The same-origin policy does not allow a third-
party site (e.g TechCrunch), called implementor in the
paper, to communicate directly with facebook.com. To
support this interaction, Facebook provides a JavaScript
library for sites implementing Facebook Connect. This
library creates two hidden iframes with an origin of
facebook.com which in turn communicate with Face-
book. The cross-origin communication between hidden
iframes and the implementor’s window are layered over
postMessage2.

Figure 1 details the protocol. The first iframe created
by the library is used for the initial session negotiation
with Facebook and the other is used for all subsequent
data exchanges between the Facebook server and its
client-side counterpart. More specifically, the first iframe
(loginFrame, top middle in Fig 1) receives a secret
key (K) and a session ID (S) from facebook.com and
sends it to implementor (message 3). The second iframe
(proxyFrame, bottom middle in Fig 1) also running in
facebook.com’s origin, acts as a proxy for requests.
Any query for data that implementor wants to make
to facebook.com is first sent to proxyFrame (message
6), which then makes the request to facebook.com using

2In older browsers, other techniques are used which we do not discuss.
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Figure 1: The Facebook Connect protocol. (top) Messages
exchanged in the protocol. The dashed arrows represent client-side
communication via postMessage and the solid arrows represent
communication over HTTP. (query,S)K represents a HMAC
using the secret K. (bottom) Frame hierarchy for the Facebook
Connect protocol. In this example, the proxyFrame is inside the
main implementor window.

XMLHttpRequest (message 7) and then sends the response
(message 8) back to implementor (message 9). At the
end of this transaction, the user has essentially logged in
to implementor using his Facebook credentials.

B. Vulnerabilities in Facebook Connect

Observation 1: During our testing, we noticed that the
origin of received messages was sporadically verified.
In particular, out of all of the messages exchanged, only
about half were accompanied with an origin check in
the receiver’s code. Further investigation revealed that
communication between proxyFrame and the implementor
(message 6 and 9), neither participant checked the origin
of received messages.

Additionally, we also noticed that the message 6 and
9 had the targetOrigin parameter set to the ‘*’ literal,
while in message 3, the targetOrigin parameter was
correctly set. We also observe that a query for data is



authenticated by an HMAC with the shared secret K. This
serves as a signature for every query (message 6) that the
proxyFrame receives.

Attack on message integrity. As discussed before, val-
idating the origin of received messages is necessary
for ensuring sender authenticity. Based on Observation
1, a malicious attacker can inject arbitrary data in the
communication between proxyFrame and implementor.
In this particular case, we find that the data received
over the channel is used in a code evaluation construct
and thus allows an attacker to inject arbitrary code into
implementor’s security context.

The attack is illustrated in Figure 2. In particular, an
attacker replaces proxyFrame with a malicious iframe
that he controls. By sending a malicious message in place
of message 9, an attacker can inject a script into the
implementor’s security context. In the actual attack, the
attacker has to include the implementor page in a iframe
on a page controlled by him (see bottom of Figure 2). This
gives the attacker the power to replace the benign Facebook
proxyFrame with his own malicious proxyFrame. This
attack is possible because on receiving message 9, the
implementor does not validate the origin of the message
sender, and thus processes a message from the attacker.
The shared secret only provides authenticity of the query
(message 6) and not for the response (message 9).

On our test site, we were able to inject a script payload
into the benign implementor’s security context3. We have
also confirmed this attack on Facebook’s reference imple-
mentation of a Facebook Connect site. As the Facebook
Connect functionality is provided as a drop-in JavaScript
library, we believe most real-world websites directly using
this library are also vulnerable.

Attack on confidentiality. Observation 2: Setting the
targetOrigin parameter to the ‘*’ literal leaks sensitive
user data like profile information and friend lists to the
attacker. This data can then be used by the attacker to gain
the real-world identity of a visitor to his website.

The attack is illustrated in Figure 3. Message 9 and
Message 6 have the targetOrigin set to ‘*’. Based on
Observation 2, this allows a malicious attacker to easily
launch a man-in-the-middle attack against the communi-
cation between the implementor and the proxyFrame
(message 6a in Fig 3). The fact that implementor does
not validate the sender of messages (of message 9a in Fig 3,
in particular) enables a complete man-in-the-middle attack,
while the signature on the query provides no protection. The
main attack occurs at message 9 (Fig 3), which consists of
sensitive user data and is read by the attacker. In the actual
attack, the attacker again includes the benign implementor
page in an iframe and then replaces the proxyFrame with
his man-in-the-middle frame, which in turn includes the
real proxyFrame (bottom of Fig 3).

3We had previously discovered a similar flow of data to a critical
code evaluation construct, which was fixed by Facebook by adding data
sanitization routines [10]. This is not a scalable fix.
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Figure 2: Integrity attack on Facebook Connect. (top) Messages
exchanged in the protocol. Note that midway through the protocol
(after message 5), the request proxy is replaced by an attacker-
controlled proxy. (bottom) Frame hierarchy for the integrity attack.
The topmost frame is owned by the attacker.

C. The Google Friend Connect protocol

Google Friend Connect is a system that provides similar
functionality to Facebook Connect. An important difference
is that Google Friend Connect allows a user to use multiple
identity providers (like Yahoo!, Twitter, or Google) while
signing onto various third-party sites. The aim, again, is
to enable a richer social experience for users.

Mechanism. Typically, Google Friend Connect appli-
cations embed ‘gadgets’ inside iframes, which directly
communicate with the relevant server. These gadgets
communicate with the integrating page, referred to as
implementor in the paper, via postMessage for parame-
ters like colors, fonts and layouts. Like Facebook Connect,
third-party websites interested in integrating Google Friend
Connect in their sites need to include a Google JavaScript
library in their pages.

Figure 4 details the protocol. The code running in the
implementor’s context generates a random nonce (N ),
and creates an iframe that requests a gadget (message 1
in Fig. 4). The nonce is included in the request as a GET
parameter. Subsequent communication (messages 4 and 5)
between the gadget and the implementor includes this
nonce. Notice that the private user data (user info) is
never sent over a postMessage channel.
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Figure 4: Google Friend Connect’s gadget protocol: the nonce N
is generated by the implementor. Message 4 is a query Q for
parameters. The implementor responds with the parameters P
in message 5.

D. Vulnerabilities in Google Friend Connect

Observation 3: During our testing, we noticed that
all message exchanges in the Google Friend Connect
protocol had the correct targetOrigin set. Analysis of
the JavaScript code revealed the absence of any sender
authenticity checks. In particular, for all the 12 messages
that were exchanged, no participant checked the message
sender’s origin. Instead, we noticed checks for the nonce
(N in Fig. 4). The protocol uses the nonce to authenticate
all message exchanges. As the targetOrigin is correctly
set for all messages, the nonce can never leak to an attacker.

Observation 4: The random number generator provided
by the browser (via Math.random) is not cryptograph-
ically secure (as shown in [6]). With just one call to
Math.random(), an attacker can guess all future values
of Math.random(). This breaks the authentication used
by Google Friend Connect. For example, on Firefox 3.6,
we were able to exactly predict the nonce that would be
used by the Google Friend Connect protocol.

Similar to the Facebook Connect attack, the attacker
can embed the benign implementor in an iframe within
his own malicious page. The attacker’s page can then
sample Math.random() to predict the value of the nonce,
and then spoof any message exchanged by implementor
and the gadget over postMessage, compromising the
Google Friend Connect session (see figure 4). Based on
Observation 3 and Observation 4 we observe that this attack
would have failed if the Google Friend Connect protocol
validated the message sender by checking the origin,
rather than relying on predictable nonces. Correctly setting
the targetOrigin on all messages makes the protocol
secure against confidentiality attacks.

E. Discussion

Authenticity and confidentiality are strong properties
that the postMessage API can provide, in principle. Our
study of real world usage of the postMessage API reveals
that developers do not use the abstractions provided by
the postMessage primitive correctly. Designing in-house
secure protocols is challenging—as we’ve seen. Both Face-
book Connect and Google Friend Connect tried to achieve
sender authenticity by using their own system (secret nonce
or HMAC), instead of the recommended practice (checking
the origin parameter). We were able to circumvent the
authentication methods used by these protocols and insert
malicious messages in the communication. In the case of
Facebook Connect, we were also able to achieve arbitrary
code execution.

Despite the fact that postMessage can provide fool-
proof authenticity and confidentiality, client-side protocol
designers use complex, network-style protocols instead.
We conjecture that this is a possibility because the ‘simple’
sender origin checks are perhaps not quite so simple. For
instance, most specifications and papers include examples
like the following:

if (event.origin == ‘http://example.com’) {
// execute code

}



Such examples give a false sense of simplicity. In the
real world, the source of messages could be one of
many possible fine grained origins and possibly differing
schemas. As a result, validating the origin becomes non-
trivial. Additionally, for complex protocols, these checks
must be repeated for every message—a tedious exercise
which can be easily forgotten. In fact, in our discussion
with Facebook, we were informed that they used the
all-permissive ‘*’ directive because postMessage does
not support multicast and implementing this function-
ality would require a series of string-based verification
comparisons—which is precisely the problem we have
outlined above. Furthermore, if a mashup includes content
from more than a couple of origins, these checks become
even more taxing. Fundamentally, this is a usability issue of
the API. In Section IV, we suggest potential enhancements
to the specifications to mitigate these issues, in keeping
with the economy of liabilities principle.

The use of the all-permissive ‘*’ as the targetOrigin
allows leakage of confidential data. The HTML5 speci-
fication [15] warns against the use of the ‘*’ literal for
confidential data. We believe giving developers the choice
of insecure usage is not a good practice. Additionally,
it is notoriously hard to figure out what data is privacy
sensitive and what isn’t [9]—and we believe this will only
get more difficult. Based on these facts, we suggest a
possible modification in Section IV.

III. PERSISTENT, SERVER-OBLIVIOUS CLIENT-SIDE
DATABASE ATTACKS

In this section, we study the usage of new client side
persistent storage mechanisms supported by HTML5 and
Google Gears. We find that data stored in client-side
databases is often used in code evaluation constructs
without sanitization. Client-side databases, thus, provide
additional avenues for attackers to persist their payloads
across sessions. For instance, attackers only need to inject
XSS attack payloads once into the client-side storage to
have them repeatedly compromise the client-side code
integrity for sustained periods of time (unlike a common
reflected XSS issue which is fixed once patched). Addition-
ally, because the attack payload is stored on the client-side,
the server is oblivious to the nefarious activity. We show
that the 7 out of 11 major applications we studied trust the
client-side storage and are vulnerable to such persistent
attacks, including: Gmail, Google Buzz, Google Documents
and others.

A. Client-side Storage: Background

HTML5 proposes two persistent storage abstractions:
localStorage and webDatabase [16], [17]. A limited
number of browsers currently support these features. The
client-side storage mechanisms work as follows:

• localStorage is a key/value store tied to an ap-
plication’s origin. Script executing within an origin
can get or set values of the data store using the
localStorage object.

• webDatabase is a client-side database that supports
execution of SQL statements. The database is bound

to the origin in which the code executes and web
applications are restricted to only modifying the
structure and contents of their associated origin’s
database. To execute SQL against the database one
can use: executeSql(sqlStatement, arguments,
callback, errorCallback).

• Gears is a Google product designed to enable ap-
plications to work offline. Recently, Google has
decided to deprecate Gears in favor of HTML5 [4].
Despite syntactic differences, Gears and HTML5
webDatabase data storage work in very similar ways.

In each of these cases, database modifications persist
until the creating application destroys the data.

B. Persisting Server-Oblivious Attack Payloads

We consider two possible attack vectors in our threat
model, a network attacker and a transient XSS vulnerability.

The goal of either attacker is to inject code into the
local storage in order to gain a persistent foothold in the
application—one that remains even when the transient
attack vector is fixed. Once an application has been compro-
mised, the attacker has control of the application until the
client side database is cleared. In current implementations,
this only occurs when the database is explicitly cleared by
an application, making the attack have a long lifetime.

Network Attacker. Consider the case when a network
attacker is able to modify packets destined to the victim.
When the user visits a site using client-side storage the
attacker modifies the victims network packets to allow the
network attacker to inject arbitrary JavaScript. This allows
the attacker to compromise the database with no trace
server-side that a client-side exploit has occurred until the
client-side database is cleared.

As an example of a realistic scenario, consider when a
user visits a coffee shop with open wireless. Unbeknownst
to him, the network attacker intercepts his network con-
nections so that they are forwarded through the attacker’s
computer. When the user visits Google Buzz, the network
attacker modifies the page returned to supply a script which
modifies the client-side database. Now, whenever the data
from the database is used in a code evaluation construct, the
attack payload is executed instead. The user now leaves the
cafe with a compromised machine and due to the stealthy
injection (with no server side XSS required), little evidence
remains that an attack occurred.

Transient XSS. As a second attack vector, suppose that
an attacker has exploited a transient XSS vulnerability
as a primary attack vector and has been able to execute
arbitrary code within the context of the target site. The
attacker is able to modify the database arbitrarily because
the attacker has used the XSS to execute JavaScript with
the same privilege as the code running within that origin.
Not only is this attack persistent, it is also stealthy. Besides
the initial XSS injection vector, all of the code execution
and state modification happens on the client-side rendering
the server oblivious to the attack.

For a concrete example, suppose an attacker finds
an XSS attack on a web email application that uses



webDatabase to save emails. In such a case, the attacker
writes an exploit such that its payload is stored inside an
email in the database. When the user views the email,
the injected code is executed. Now, even if the XSS
vulnerability is fixed, the payload persists as long as the
database.

In either case, it’s important to note that if the injected
database data is used in code evaluation constructs, such
as eval or document.write without proper sanitization
(as we observed), the attack can persist its attack payload.
This payload can be used for a variety of attacks such as
stealing passwords, cookies and email. The execution of
the code on the client-side and resulting payload is stealthy
because the server is oblivious to the compromise.

C. Approach

We evaluated 11 applications that use client-side storage
using Kudzu. Kudzu, a systematic vulnerability finding tool
built on the WebKit framework, is a dynamic symbolic
execution engine framework which is designed to analyze
JavaScript applications running in browsers [10]. We
modified Kudzu to mark database outputs as symbolic and
we note a possible vulnerability when a database output
flows to a critical sink (like innerHTML or eval). All
vulnerabilities were verified in Safari 4.0.4 by modifying
the content of the database being targeted to contain
executable code. Experiments using Google Gears were
verified in Firefox 3.5.8. We verify that the code is executed
by viewing the target application. In order to ensure that
HTML5 features were used when applicable, we modified
our User-Agent string to match the latest reported by an
Apple iPhone.

Experimental Results. Figure 5 shows that we find
vulnerabilities in 7 applications. In addition, it presents
the type of persistent storage being used, and whether or
not the database modification remains persistent.

Application Storage Vulns. Persistent?
Type

Gmail Database Yes Yes
Google Buzz Database Yes Yes

Google Calendar Database No N/A
Google Documents Gears Yes Yes

Google Maps Database Yes Yes
Google Reader Gears Yes Yes*

Google Translate Database No N/A
Snapbird localStorage Yes Yes

Remember The Milk Gears No N/A
Yahoo Apps Mobile Database No N/A

Zoho Writer Gears Yes Yes*
Total — — 7

Figure 5: A security evaluation of applications using client-
side database storage. The modified database persisted through
reloading of the application, closing the browser, and logging
in and logging back out. Note: (*) indicates that the attack only
persisted while the application was in offline mode.

Gmail. We walk through a sample attack on Gmail to give
an idea how a typical persistent attack may take place. First,
we launch Gmail using Kudzu to analyze the application.

We login to our account and are then taken to our Inbox.
After this we close the browser. Kudzu then notifies us
that it found data going from the database into the inner
text of a div tag, without proper sanitization.

We concretely verified the attack. First, we note that
Safari implements an SQLite database on a per origin
basis. We open the database associated with Gmail,
in this case /Library/Safari/Databases/https
mail.google.com_0, and modify the body field of
message found in the cached_messages table to include
the text <img src=dne onerror=alert(1);>. When
the Gmail application uses the database, the cached
message containing the attack payload is executed.

D. Discussion

Our experimentation reveals a lot of inconsistency in the
way that developers sanitize their database outputs before
using them in critical constructs. We found that many
prominent applications, such as Google Reader, Gmail and
Google Buzz do not sanitize their database output at all. In
contrast, we found a few applications aware of the severity
of the mentioned attacks and they perform some kind of
sanitization on their database output.

One such application, Google Calendar, sufficiently
mitigates the attack. It uses a complex combination of
JSON and XML to verify the data format, and sanitizes the
user input to further ensure that scripts were not injectable.

Another application that mitigates code injection is
Google Translate. When using Translate, the result of
a translation is placed into a text node on the user’s
page. Therefore, the attack is mitigated as no code can be
executed in a text node.

However, all of the other applications failed to suffi-
ciently sanitize database outputs. We speculate that some
applications did not sanitize database outputs because
of the complexity of the sanitization process required to
eliminate the attack. Consider Gmail and Google Buzz, two
applications that have fields in their database representing
the textual content of an email or buzz respectively, in both
cases, containing HTML. When these fields are modified
by an attacker, the original content and injected attack
text are rendered to the user, without the attack text being
sanitized. In Gmail and Buzz, the textual content is mixed
with HTML and the task of stripping away all of the
possible scripting elements which result in code execution
is difficult. Thus, when an attacker views the email or buzz,
the persistent code in the database executed.

We also found some intermediate cases, including Zoho
Writer, a web browser based document editor, and Google
Reader. Both applications were only susceptible to a
transient client-side database attack. That is, the data only
persists in the offline store for as long as the client was
offline. When the user returned online, the cache was
cleared and refreshed with new content.

These examples show that different applications vary in
the richness of content that they store in the database. For
instance, the juxtaposition of the policies of Gmail and
Buzz versus Translate indicates that there is an inherent
disconnect between what security features are necessary



and what are currently provided. In Section IV we suggest
several enhancements to these primitives that make the
secure use of database outputs easier.

IV. ENHANCEMENTS

Client-side browser primitives expect users to perform
multiple sanitization checks at various points in the code,
to prevent the attacks we outlined. Further, such valida-
tion functionality is duplicated across applications. These
checks are tedious, repetitive and sometimes complex,
which adds unnecessary liability to developers leading to
inconsistencies in use and errors. In Section I, we proposed
the general principle of economy of liabilities in the design
of abstractions which helps minimize the required liability
on users to ensure security.

Retrofitting the principle in existing client-side primitive
designs is challenging. Below we suggest enhancements to
the primitives we study, in ways which are a compromise
between the need for flexibility, compatibility and security.

A. Enhancing postMessage

In Section II, we raised the question of whether it should
be possible to make the postMessage design easier for
safe usage. We believe this is a topic of debate for the web
community, in light of the empirical fact that early adopters
of postMessage are using the primitives unsafely. On the
flip side, we point out that any changes to the web platform
come with cost to compatibility and generality too. We
outline our suggestions below to stimulate the discussion
on the best way to use these primitives securely.

Origin Whitelist. Based on the current usage, in order
to ensure authenticity of messages received, we suggest a
declarative system for specifying origins allowed to send
messages will function better than manual origin checks.
For instance, the Content Security Policy proposal allows a
website to specify a whitelist of origins trusted to execute
code in the website’s security context [7]. We suggest
extending CSP with a directive to specify origins allowed to
send messages to the website. Moreover, the CSP proposal
has gone through intense community discussion and at
least one implementation—making it a potential starting
point to build on.

In addition, from our experiments and evaluation of ap-
plications that use the postMessage API, we recommend
that broadcast should be disabled in favor of multicast, in
order to protect confidentiality. Currently, postMessage
does not permit wildcard characters in domain names.
However, to support multicast the API could be changed
to allow the application declaratively specify a wildcard in
a domain name (e.g. *.facebook.com). This would restrict
the domains capable of sending messages without the
need for complex regular expressions for parsing and
verification. Additionally, if required, allowing for finer-
grained control for recipients is also a possibility—the
postMessage function could take a list of origins that
are allowed to receive the specified message. With this
primitive in place, it would be the browser’s responsibility
to check the sender’s origin with this whitelist before
delivering the message.

Origin Comparison Primitive. Instead of requiring every
user of the postMessage API to implement a function
for comparing origins, it would be much more efficient
for the browser to provide this as a primitive function. If
the browser provided the primitive, such a function would
support comparison based on some standard language for
specifying origins (like the grammar in CSP [7]). Note that
browsers already have to do such checks for enforcing the
same origin policy [12]. The grammar for this list could
be similar to the grammar for origins specified in Content
Security Policies, omitting the all-permissive ‘*’ [7].

B. Database output sanitization

Sanitizing the values stored by a database before
using them in critical constructs can protect against
persistent XSS attacks. We found few applications which
performed any type of database output sanitization. But,
like postMessage, we noticed that the output sanitization
can often be complex and occur throughout the application
code.

This is not a scalable approach. Instead, the browser
should automatically remove any potentially executable
script constructs inside database values before returning
them. In order to accomplish this, browsers could take
the output of the database and filter it through a function
similar to toStaticHTML. This construct, found natively in
Internet Explorer, removes dynamic HTML elements and
attributes from a fragment of HTML [8]. In the exceptional
case, where a web application requires that its own routines
be used to sanitize and verify the database output, the call
to the database could disable this check by including an
optional boolean argument. In our experience, this change
would not impact functionality of all applications that we
studied, but would protect them against persistent XSS
attacks.

Most importantly, no matter what the embodiment of
the final primitive, the user needs to understand the full
limitations of the API as to not be lulled into a false sense
of security, as we have seen in the past [1].

C. A Cryptographically Secure PRNG

As we have seen in Google Friend Connect, the lack
of a cryptographically secure Pseudo-Random Number
Generator has not deterred developers from creating their
own cryptographic protocols. We observe that if the
implementation of Math.random() was cryptographically
secure, our attack on Google Friend Connect would have
been mitigated. Nonetheless, we reiterate that developers
should use postMessage for enforcing authenticity and
confidentiality in their applications instead of creating
their own cryptographic solutions.

We realize that the above discussion to retrofit additional
security involve changes to existing or developing speci-
fications. As the APIs studied are relatively nascent, we
are hopeful of a positive response from the community.
In the present scenario, without modification, users of
these APIs can use JavaScript analysis techniques to
detect and eliminate such attacks during testing [10],



[14]. Analysis systems similar to ours can be extended
to taint data from postMessage, localStorage and
webDatabase, ensuring that no tainted data flows to critical
code evaluation constructs without sufficient validation.
We have had some success in the past with such an
approach [10], [11].

V. CONCLUSION

New primitives, especially for browser-side functionality,
are being designed and proposed at a rapid pace to
facilitate the demand for interactivity while enabling
security. However, a recurring problem in these designs is
that these abstractions are not designed with the economy
of liabilities principle in mind, i.e., they rely significantly
on the developers to ensure security. In this paper, we
found this to be true of two recent client-side abstractions:
postMessage, a cross-domain communication construct
and client-side persistent storage (HTML5 and Google
Gears). In the case of postMessage, we reverse engineered
the client-side protocols and systematically extracted the
security-relevant checks in the code to find new vulnerabil-
ities in them. In the case of client-side storage, we found
that applications do not sanitize database outputs, which
can lead to a stealthy, persistent, client-side XSS attack. We
found bugs in several prominent web applications including
Gmail and Google Buzz and uncovered severe new attacks
in major client-side protocols like Facebook Connect and
Google Friend Connect.

We hope our study encourages future primitives to be
designed with the economy of liabilities principle in mind.
We offer some enhancements to existing to the current
APIs to shift the burden of verifying and ensuring security
properties from the developer to the browser. And, we
encourage developers to scrutinize their applications for
similar problems using automated techniques.
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