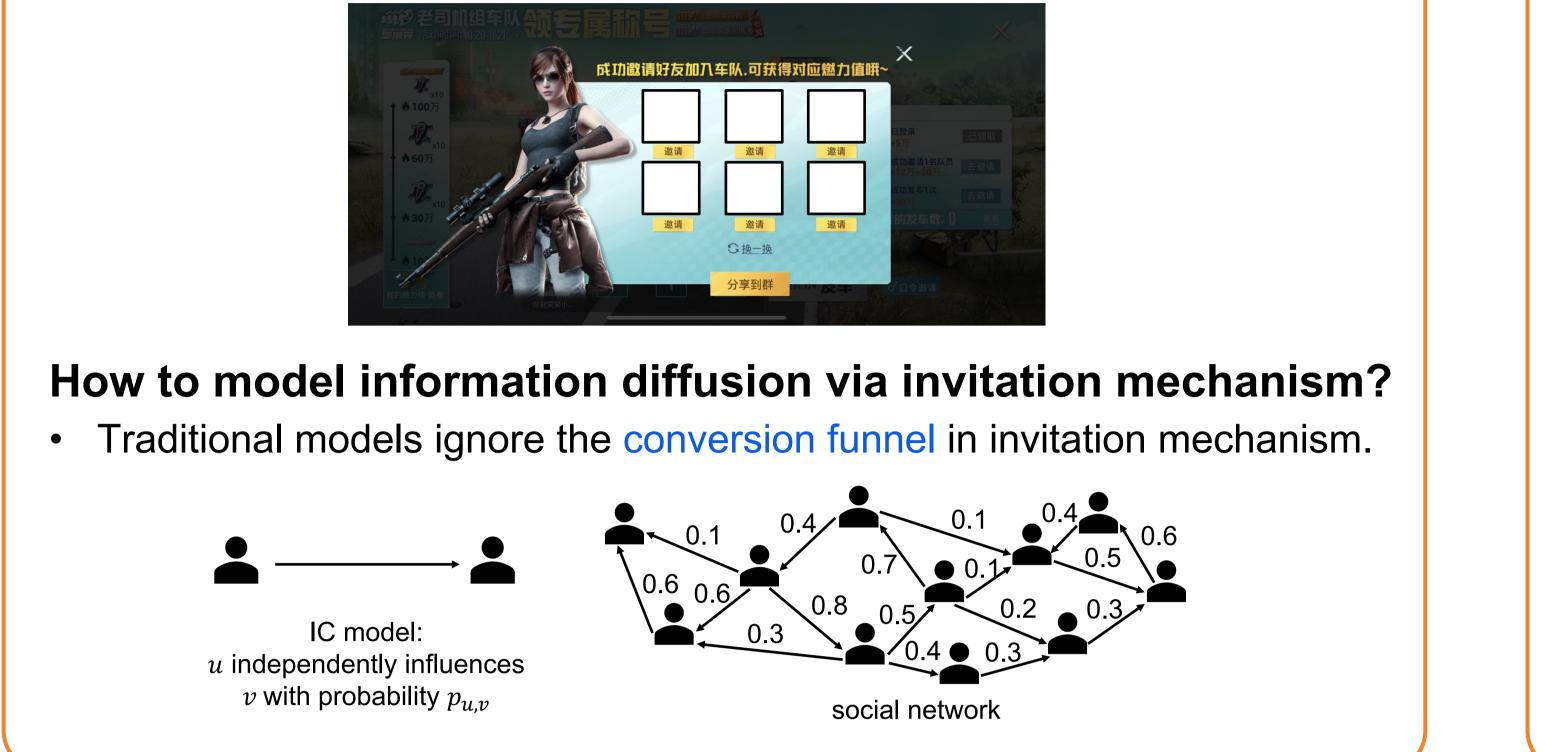


Industry Track

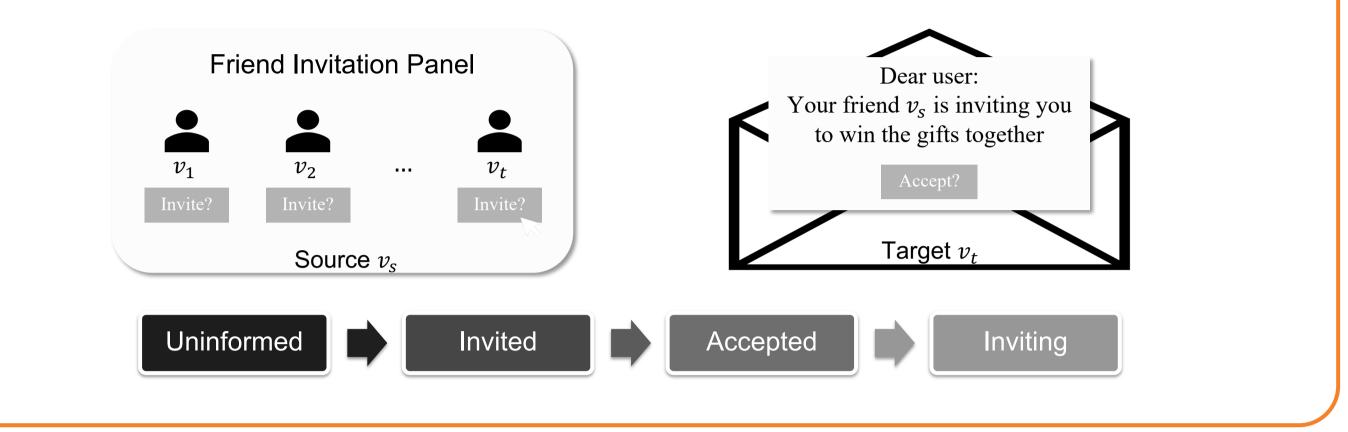

Information Diffusion Meets Invitation Mechanism

Shiqi Zhang, Jiachen Sun, Wenqing Lin, Xiaokui Xiao, Yiqian Huang, Bo Tang

Motivation

Invitation Mechanism

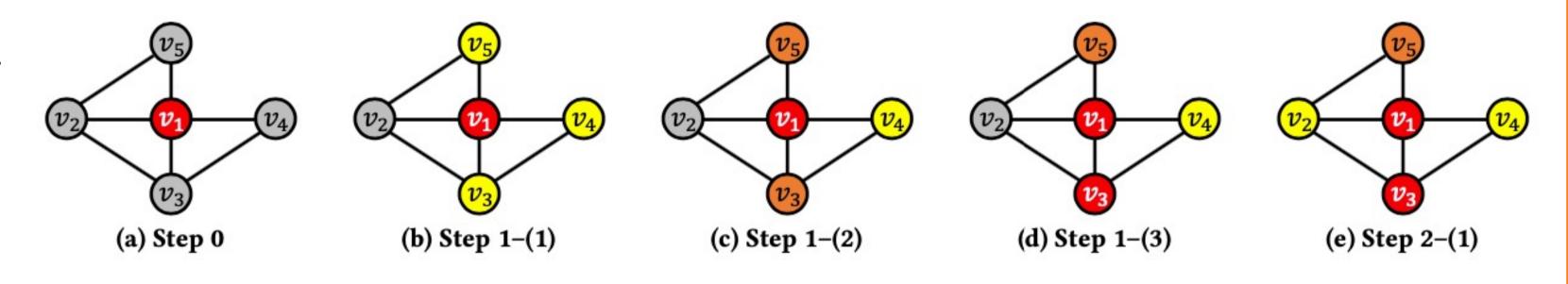
- Invitation is also everywhere in online games
- The invitation behavior can cascade



Conversion Funnel

- A distillation of a user's journey
- Describe how user behavior changes in multiple stages

Conversion funnel of a user in the invitation mechanism


ICI: Independent Cascade with Invitation

User roles:

Inactive state: uninformed (grey); Active states: inviter (red), invitee (yellow), acceptor (orange)

Procedure: Given the seeds, a diffusion instance unfolds in discrete steps

- At step 0: all seeds \rightarrow initial inviters; others \rightarrow uninformed
- At the subsequent step:
- new inviter v_i has a probability $p_{i,j}$ to invite the uninformed friend v_j
- if v_i becomes an invitee, it has a probability β to be an acceptor
- if v_i becomes an acceptor, it has a probability γ to be an inviter
- This simulation stops when no new inviters exist

Output: Given the seeds,

- Accepting spread is the expected number of acceptors directly/indirectly converted by seeds
- Accepting probability of a user is the probability of becoming an acceptor directly/indirectly converted by seeds.

Offline Evaluation

Experimental Settings

- Datasets: 6 real-world datasets (network, seeds, spreads)
- Competing models: IC, CT-IC, IC-N, LT, LT-C, F-TM

Table 1: Dataset statistics	$(K = 10^3, M = 10^6)$).
Table 1. Dataset statistics	$(\mathbf{M} - \mathbf{I}\mathbf{O}), \mathbf{M} - \mathbf{I}\mathbf{O}$	•

Table 2: The RMSE of estimating overall spreads ($\times 10^3$).

Dataset	$ \mathcal{V} $	3	$ \mathcal{S} $	Spread	Туре	Model	TXG-A	TXG-B	TXG-C	TXG-D	Diggs	Twitter
TXG-A	153.0K	2.3M	10.3K	12.8 <i>K</i>	Invitation	IC	40.6	32.7	32.7	39.7	40.9	13.2
TXG-B	155.5K	2.5M	4.9 <i>K</i>	12.6K	Invitation	CT-IC	20.9	8.3	8.1	22.9	30.8	42.0
TXG-C	155.9K	2.5M	4.4 <i>K</i>	11.0K	Invitation	IC-N	23.4 97.1	14.8 100.0	14.9 101.7	23.8 88.6	<i>22.0</i> 59.6	76.7 227.4
TXG-D	133.9K	2.1 <i>M</i>	12.2K	76.4K	Invitation	LT-C	69.6	71.9	73.6	63.2	39.8 42.7	227.4 161.1
Diggs	279.6K	1.5 <i>M</i>	0.6K	8.1 <i>K</i>	Vote	F-TM	103.1	112.0	113.4	92.2	120.6	241.6
Twitter	456.6K	12.5 <i>M</i>	27.0K	38.7K	Retweet	ICI	11.2	1.7	2.1	13.4	7.2	37.1

Macroscopic Task: Cascade Estimation

- Given a diffusion model M, estimate the average number of influenced users from S under M by T simulations
- ICI outperforms all competitors in terms of RMSE (Table 2)

Microscopic Task: Diffusion Prediction

Online Deployment

Application Scenario I: Friend Ranking

- Recommend existing friends for players to improve engagement
- Solution: IC, ICI
 - Compute each friend's influence spread under IC/ICI model
 - Rank friends based on their spread in descending order
 - Select the top k friends to recommend
- Competitor: Intimacy
 - Rank friends based on the number of historical interactions - Select the top k friends to recommend
- Performance on social lottery events of one RPG game

Metrics	ICI	IC	Intimacy
Invitation Rate	9.60%	6.24%	7.98%
Pay Rate	35.15%	32.91%	26.71%
Metrics	ICI	IC	Intimacy
Invitation Rate	17.89%	16.85%	16.15%

- Given a diffusion model M, compute the fraction of the number of times that each user is influenced from S under M over T simulations
- ICI outperforms all competitors on all test datasets but Diggs (Table 3)

Table 3: The AUC (%) and MAP (%) of different models in diffusion prediction.

Mod	el	IC	CT-IC	IC-N	LT	LT-C	F-TM	IC+	ICI
TXG-A	AUC	82.11 ± 0.08	$79.30 {\pm} 0.10$	$82.36 {\pm} 0.10$	78.29 ± 0.03	77.77 ± 0.07	77.32 ± 0.17	$82.58 {\pm} 0.12$	83.36±0.06
	MAP	20.07 ± 0.13	$18.35 {\pm} 0.08$	$20.34{\pm}0.12$	$16.51 {\pm} 0.23$	16.15 ± 0.19	18.99 ± 0.19	$20.69 {\pm} 0.05$	$\textbf{20.71}{\pm}\textbf{0.12}$
TXG-B	AUC	$81.96 {\pm} 0.05$	$80.76 {\pm} 0.05$	83.06 ± 0.11	$74.17 {\pm} 0.04$	$73.98 {\pm} 0.10$	$75.95 {\pm} 0.17$	83.30±0.15	$84.43{\pm}0.10$
170-2	MAP	$19.48 {\pm} 0.06$	$20.13 {\pm} 0.06$	21.05 ± 0.11	12.41 ± 0.12	12.37 ± 0.14	$16.10 {\pm} 0.24$	$21.54{\pm}0.18$	$22.05{\pm}0.15$
TXG-C	AUC	82.26 ± 0.09	$81.23 {\pm} 0.07$	$83.35 {\pm} 0.13$	$73.56 {\pm} 0.06$	$73.28 {\pm} 0.07$	75.06 ± 0.17	$83.56 {\pm} 0.13$	$84.90{\pm}0.08$
170-0	MAP	18.82 ± 0.12	$19.42 {\pm} 0.08$	$20.43 {\pm} 0.16$	$11.10 {\pm} 0.21$	$10.89 {\pm} 0.09$	$13.83 {\pm} 0.20$	$20.81 {\pm} 0.11$	$21.41{\pm 0.09}$
TXG-D	AUC	78.20 ± 0.04	$74.30 {\pm} 0.11$	$78.47 {\pm} 0.08$	$78.12 {\pm} 0.04$	77.11 ± 0.08	$75.57 {\pm} 0.21$	$78.35 {\pm} 0.06$	$78.98{\pm}0.07$
	MAP	$20.04 {\pm} 0.04$	$16.43 {\pm} 0.06$	$20.03 {\pm} 0.03$	$20.03 {\pm} 0.08$	$19.14 {\pm} 0.18$	$20.01 {\pm} 0.14$	$20.08 {\pm} 0.04$	$\textbf{20.11}{\pm 0.02}$
Diggs	AUC	86.65 ± 0.03	$82.03 {\pm} 0.04$	$87.58 {\pm} 0.06$	$87.82 {\pm} 0.02$	$87.83 {\pm} 0.03$	$90.18{\pm}0.05$	88.06 ± 0.03	89.67±0.06
Diggs	MAP	$10.19 {\pm} 0.02$	7.25 ± 0.01	11.52 ± 0.12	$11.85 {\pm} 0.08$	12.02 ± 0.06	$\textbf{26.21{\pm}0.14}$	12.23 ± 0.03	$15.95 {\pm} 0.22$
Twitter	AUC	70.39 ± 0.04	72.37 ± 0.04	$72.88 {\pm} 0.03$	$69.91 {\pm} 0.03$	69.29 ± 0.05	$68.80 {\pm} 0.06$	76.62 ± 0.04	77.97±0.04
1 WILLET	MAP	15.97 ± 0.03	$19.12 {\pm} 0.04$	$18.27 {\pm} 0.06$	$14.35 {\pm} 0.04$	14.59 ± 0.06	$15.40 {\pm} 0.04$	$21.17 {\pm} 0.03$	$22.40{\pm}0.05$

Pay Rate	30.91%	24.53%	29.80%
----------	--------	--------	--------

Application Scenario II: KOL Selection

- Identify k influencers to maximize the event outreach
- Solution: IC, ICI
 - Treat IC/ICI as the diffusion model
 - Invoke the greedy algorithm of influence maximization
- Competitor: Degree
 - Select k players with the largest degree centrality
- Performance on the viral marketing event of one battle royale game

Metrics	ICI	IC	Degree
Spread Increment	2286	1923	843
Invition Rate	46.20%	39.64%	32.44%

Acknowledgement, technical report. code repository. etc.

This work is partially supported by Singapore Ministry of Education Academic Research Fund Tier 3 (Grant No. A-8001561-00-00). Proxima Beta (Grant No. A-8000177-00-00), Shenzhen Fundamental Research Program (Grant No. 20220815112848002), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001). Tencent data is collected and used under the local regulations and privacy protections. For the technical blog and code, please scan the QR code and visit PyroWis AI.

