National University of Singapore

School of Computing

CS2040C - Data Structures and Algorithms
Midterm Quiz @ LT15+LT18
(Wed, 28 Sep 2022, ST AY2022/23, 60m)

INSTRUCTIONS TO CANDIDATES:
1. You can start immediately after you are given the password to open this file.

2. This assessment paper contains FIVE (5) sections.
It comprises EIGHT (8) printed pages, including this page.
The last page is an empty page.

3. This is an Open Book Assessment.

Additionally, you can also use your laptop too (but in airplane mode).

4. Answer ALL questions within the boxed space of the answer sheet (page 5-8).
You will only need to hand over page 5-8 after this quiz.

You can use either pen or pencil. Just make sure that you write legibly!

A Worst Case Time Complexity Analysis (10 x 4 = 40 marks)

Write down the tightesﬂ worst case time complexity of the various data structure operations or
algorithms below. Each correct answer worth 4 marks and the grading scheme is very strict (4 vs 0,
except if you also write an optional supplementary explanation).

The operations (algorithms) referred below are the unmodified version, as per discussion in
class, e.g. as currently explained in VisuAlgo or as currently implemented in C++ STL. Unless
otherwise mentioned, there are currently n (not necessarily distinct) 64-bit signed integers, i.e., long
long (100000 < n < 200000) in the data structure: std::vector v (a resize-able array), std::1list
1 (a DLL), std::stack s (LIFO), std::queue q (FIFO), std::deque dq (not really a DLL), or
std::priority _queue pq (a Binary Max Heap).

"What we meant by tightest worst case time complexity is as follows: If an operation of the stipulated data struc-
ture/an algorithm needs at best O(n3) if given the worst possible input but you answer higher time complexities than
that, e.g. O(n4) — which technically also upperbounds O(nS)7 you will get wrong answer for this question. Obviously,
any other answer that is ‘better’ than O(n®) for this specific example is also wrong.

CS2040C

No Operations
1 Insert a new integer = at index 3”an of an unsorted vector v

(important: you do not need to retain the order of integers in v)

2 Search the last index of a value x in a sorted vector v
(important: v may contain duplicates)

3 Sort vector v, but this time v contains only 0 or 1
4 Check if there are at least 3 different integers in a list 1

5 | Finding the smallest integer which appears the most in a stack s

6 Reversing a queue q
7 Finding the median of a sorted deque dq
8 Extracting only the third largest element in priority queue pq
9 Call pq.top() of priority queue pq for ¥ times
10 Inserting an initially empty priority queue pq with
n, n-1, n-2, ..., down to 1 one-by-one in that order

B A Sorting-Related Problem (30 marks)

In class, we have discussed various sorting problems and their performances on various input types.
One particular input type is of interest to Steven recently: the ‘nearly sorted’” inputs. This time, he is
interested with the following question:

Given an array A of n distinct 64-bit signed integers that is not sorted, what is the minimum
number of swaps (not necessarily swapping adjacent elements) that you need to make A sorted in
ascending order? For example, if Array B contains n = 5 integers: {2,1,7,4,3}, then the answer is
at minimum 2 swaps: swap 2 and 1, then swap 7 and 3 (or the other way around). We cannot sort

array B in just 1 swap so 2 is the optimal answer.

B.1 Manual Test Cases (4 x 2 = 8 marks)

You are given four small test cases below. For each test case, write down the answer (1 mark) and

the swap actions (the other 1 mark) needed.
1. Array C contains 7 integers: {77,2,3,4,5,6,1}.
2. Array D contains 4 integers: {2,3,7,1}.
3. Array F contains 4 integers: {2,7,1,3}.

4. Array F' contains 7 integers: {2,4,5,1,3,6,7}.

CS2040C

B.2 Find the Upperbound (4 marks)

What is the largest possible answer (the largest minimum number of swaps given any input array).

What input array causes the minimum number of swaps to be the largest possible? Explain!

B.3 Create Test Cases (2 x 3 = 6 marks)

1. Create a test case (1 mark) (to simplify grading, use a permutation of n integers of 1 to n)
so that it has the largest possible minimum swaps to sort it, yet the Optimized Bubble Sort

algorithm can still terminate in O(n). Explain! (2 marks)

2. Create a test case (1 mark) (to simplify grading, use a permutation of n integers of 1 to n too) so
that it has the largest possible minimum swaps to sort it and also causes the Optimized Bubble

Sort algorithm to still run in O(n?). Explain! (2 marks)

B.4 Propose an O(n?) Algorithm (5 marks)

There is a simple O(n?) algorithm that can be used to compute the required answer (it will work fast
(1s) for medium range of n, e.g., 1 <n < 10000). Explain what are the required modification(s) that
you will need to do to achieve this. Hint: It is related to one of the sorting algorithm(s) that we have
discussed in class. PS: If you can do the next section, i.e., the O(nlogn) solution, you can leave this

section blank and you will still get all the marks.

B.5 Propose an O(nlogn) Algorithm (7 marks)

There is a faster O(nlogn) algorithm that can be used to compute the required answer (it will work
fast (1s) for large range of n, e.g., 1 < n < 200000). Analyze your proposed algorithm carefully. Note

that the grading scheme for this section is 0 or 7 marks, i.e., attempt the previous section first.

C PS3B - congaline, revisited (5 marks)

For a ‘free’ 5 marks, re-describe in pseudo-code on how to fully solve PS3B - congaline, i.e., describe
how to store the congaline information, how to ‘quickly identify the location of someone’s partner’,
and how to implement those 5 operations F/B/R/C/P all in O(1). Note that the grading scheme
for this section has a special override. Your score will be 0 for this section if on random spot check,
what you wrote in this section totally does not tally with what your code that gets 100/100 in PS3B
actually does (and there will be additional manual follow-up discussion). This check will not be done
to anyone else who did not score 100/100 in PS3B, i.e., you can answer the ‘better version’ than what
your code did back in PS3.

D A New Priority Queue Operation (20 marks)

In class, we have learned Binary (Max) Heap data structure that can be used to efficiently (in O(logn))

supports two crucial Priority Queue (PQ) operations: insert(v) and extractMax(). Let’s assume

CS2040C

that our Binary (Max) Heap contains only 64-bit signed integers and there can be up to 0 < n < 200 000
integers inside our data structure.
This time, you have one interesting new operation: setLimit (1) that is supposed to modify the

behavior of subsequent insert(v) and extractMax() operations as follows:

e insert(v) will reject the insertion of v if v > [(greater than or equal to the limit) and,

e extractMax() will never report any integer that is currently already in the Binary (Max) Heap

that happen to be greater than or equal to the limit [.

You can assume that initially (when the Binary (Max) Heap is instantiated), [= oo, i.e., there is
no limit initially. Another peculiar property is that each call setLimit (1) will make the limit strictly

lower than the previous limit. An example run:
1. Starting from an empty Binary (Max) Heap, we insert(100), insert(60), insert(65),
insert(70), insert(77), insert(70) (duplicate is allowed) in that order.
2. If we call extractMax () now, we will extract and then return 100.
3. If we then setLimit (70), then the limit is now set at [= 70.

4. Notice that the limit [= 70 now, so subsequent calls of setLimit (1), if any, will set a strictly
lower limit than this (never greater than or equal to), i.e., setLimit (1) where [> 70 will never

be called from this point onwards.

5. If now we call extractMax () again, we need to report 65 as the two copies of 70s and 77 are all
greater than or equal to the current limit [= 70.

6. If now we call insert(70), it will be rejected as the limit is now set at [= 70.

7. If now we call extractMax() twice now, the first reports 60 and the second one reports none.

Propose the required modification(s) to Binary (Max) Heap data structure that you have learned
in class in order to support this new PQ operation. To standardize, let’s use https://www.comp.
nus.edu.sg/~stevenha/cs2040c/demos/BinaryHeapDemo.cpp as the baseline. You will get partial
marks of at most 12 out of 20 points if any of these three operations insert (v), extractMax (), and/or
setLimit (1) becomes O(n) or worse (but they works). That’s it, to get full 20 out of 20 points, all

three operations must work and run in O(logn) or better.

E Easy Marks (5 marks)

To qualify for up to easy 5 marks, you need to write both full names correctly.
My CS2040C lecturer is and Teaching Assistant (TA) is

Write a short (maybe limit yourself to up to just 2 minutes to do this and about 3-4 sentences)
but honest (and not anonymous) feedback on what you have experienced in the first 6 weeks
of CS2040C in Semester 1 AY 2022/23 (including Week -02/-01 experience, if any). Feedback that
are shared by majority (not a one-off) and can be easily incorporated to make the next 7 weeks of
CS2040C better will be done. Grading scheme: 0-blank, 3-considered trivial feedback but not blank,

5-good and constructive feedback, thanks. (Penalty -1 mark for each wrong name above...).

https://www.comp.nus.edu.sg/~stevenha/cs2040c/demos/BinaryHeapDemo.cpp
https://www.comp.nus.edu.sg/~stevenha/cs2040c/demos/BinaryHeapDemo.cpp

CS2040C

This is the answer sheet that you will hand in later, write your Student Number in the box below:

A

0

This portion is for examiner’s use only

Section | Maximum Marks | Student Marks | Remarks
A 40
B 30
C 5
D 20
E 5
Total 100

My section A answers (note that the grading scheme is 4 vs 0 marks).

However, if you supply an explanation (use page 8), you will score non-zero mark even if it is wrong.

My section B.1.1 answer:

My section B.1.2 answer:

My section B.1.3 answer:

My section B.1.4 answer:

CS2040C

My section B.2 answer:

My section B.3.1 answer:

My section B.3.2 answer:

My section B.4 answer (can be skipped if your B.5 is correct):

My section B.5 answer (very strict grading, if you can’t find O(nlogn) solution, do B.4 first):

CS2040C

Please write your Student Number again in the box below (just in case this page is detached):

A

0

My section C answers (you are allowed to review your own code on your laptop and even if you don’t

have it, i.e., you solved it on your home desktop, you still remember how to solve it, don’t you?):

My section D answers:

My section E answers (two names and a short remarks, no need to be long-winded):

CS2040C

This page 8 is for extra writing space if you need any (e.g., to elaborate on your Section A answers).

But if you ever need it, Steven thinks you are probably already digressing to wrong answers...

— End of this Paper, All the Best —

	Worst Case Time Complexity Analysis (10 4 = 40 marks)
	A Sorting-Related Problem (30 marks)
	Manual Test Cases (4 2 = 8 marks)
	Find the Upperbound (4 marks)
	Create Test Cases (2 3 = 6 marks)
	Propose an O(n2) Algorithm (5 marks)
	Propose an O(n logn) Algorithm (7 marks)

	PS3B - congaline, revisited (5 marks)
	A New Priority Queue Operation (20 marks)
	Easy Marks (5 marks)

