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Dynamic Programming (DP) algorithm paradigm

• Expressing the solution recursively

• Overall, there are only small (e.g., polynomial) number of subproblems

• But there is a huge overlap among the subproblems.
So, the recursive algorithm may take exponential time
(solving the same subproblem multiple times)

• So, we compute the recursive solution iteratively in a bottom-up fashion 
or recursively (top-down) but with memoization.
This avoids wastage of computation  an efficient implementation



Today: Greedy Algorithms

A very general technique, like complete search (brute force),
Divide-and-Conquer (D&C), and Dynamic Programming (DP)

The technique is to recast the problem so that
only one subproblem needs to be solved at each step.

It beats complete search, D&C, and DP,
when it works*.

*many times it does not…
Knowing when greedy is applicable for a given computational problem is the key skill



Link to Coin-Change (Change-Making)



For some set of coin denominations, e.g., powers of twos {1, 2, 4}, being greedy
(use the largest coin denomination that does not exceed v – this seems locally good,

as it brings v down quickly), is correct (it is really optimal) and much faster

PS: On why this set of coins admits greedy strategy is not proven for this lecture

• Exponential if we try all
• O(v*k) if we use DP

(avoiding recomputations of the same sub-problem)
• There are only 223-118-96 = 9

distinct sub-problems for this screenshot

• O(v+k) if we use Greedy*

*when applicable



0/1-Knapsack

4 kg

For the 0/1-Knapsack version in DP lecture
(take the item or leave that item),

the optimal answer is 1 kg of $100 + 3 kg of $30 = $130

What if we can take fraction for each item?
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Fractional Knapsack

Input (identical to 0/1-Knapsack):
and 

Output:

Weights 2 that maximize ೔

೔
subject to:

and for all .

Compare this with 0/1-Knapsack version from DP lecture



Fractional Knapsack

4 kg
3

1

0

0

For the 0/1-Knapsack version in DP lecture
(take the item or leave that item),

the optimal answer is 1 kg of $100 + 3 kg of $30 = $130

For the Fractional Knapsack, we can take 1 kg 
of $100 and 3/5 kg of the other $100,

for $100+3/5*$100 = $160



Optimal Substructure

If we remove kgs of one item from the optimal knapsack, 
then the remaining load must be the optimal knapsack 
weighing at most kgs that one can take from
the original items and kgs of item .



Optimal Substructure: Proof
• Let be the value of an optimal knapsack.
• Suppose that the remaining load after removing kgs of item was 

not the optimal knapsack weighing at most kgs that one can 
take from the original items and kgs of item .

• This means that there is a(nother) knapsack of value 
ೕ

with weight kgs,
among the other items and kgs of item .

• Combining with kgs of item gives knapsack of value and 
weight at most for original input.

• Contradiction!
• So the sub-structure must be optimal

cut-and-paste argument



Dynamic Programming?

In the 0/1-Knapsack problem, we used the optimal substructure to 
formulate DP for deciding whether to add item .

Then use O(nW) bottom-up (or top-down with memorization) solution.

But in this case, we can do better….



Question 1 at VA (Make a Guess)

1. Will first take the item with maximum value,
then the item with second maximum value,
and so on until the weight is exceeded (the last chosen item could be fractional)

2. Will first take the item with minimum weight,
then the item with second minimum weight,
and so on until the weight is exceeded (the last chosen item could be fractional)

3. Will first take the item with maximum (value/weight),
then the item with second maximum (value/weight),
and so on until the weight is exceeded (the last chosen item could be fractional)

Suppose you do not know anything about this problem before and
you would like to solve the fractional knapsack problem in real life.
What strategy will you use? Use your intuition.



Greedy-choice Property

Claim: Let be the item with the maximum value/kg, .
Then, there exists an optimal knapsack containing ∗ kgs of item .

Why? An “Exchange Argument”:
• Suppose an optimal knapsack contains

kgs of item 1, kgs of item 2, , kgs of item such that:
∗

• Replace this weight by ∗ kgs of item .
• Total weight does not change, and total value does not decrease 

because value/kg of is maximum (sketch in the next slide).
• So, knapsack stays optimal, and it is “safe” to use this greedy-choice



Strategy for Greedy Algorithm

• Use greedy-choice property to put ∗ kgs of item in 
knapsack.

• If knapsack now weighs kgs, we are done. 

• Otherwise, use optimal substructure to solve subproblem where all of 
item is removed and knapsack weight limit is now ∗.



Iterative greedy algorithm
ITER-FRAC-KNAPSACK( ):

Sort using comparison operator where if ௩ ௜

௪ ௜

௩ ௝

௪ ௝

for to : // O(n), back to front (largest ratio to smallest ratio)
if : break

print “ kgs of item ”

return

Total time in 
due to sorting



Fractional Knapsack

$100/kg

$20/kg

$10/kg

$5/kg

4 kg
3

1

0

0

For the 0/1-Knapsack version in DP lecture
(take the item or leave that item),

the optimal answer is 1 kg of $100 + 3 kg of $30 = $130

For the Fractional Knapsack, we can take 1 kg 
of $100 and 3/5 kg of the other $100,

for $100+3/5*$100 = $160



Paradigm for greedy algorithms

1. Cast the problem where we must make a choice and are left with 
just one subproblem to solve.

2. Prove (exchange argument) that there is always an optimal solution 
to the original problem that makes the greedy choice, so the greedy 
choice is safe.

3. Use optimal substructure (cut and paste) to show that we can 
combine an optimal solution to the subproblem with the greedy 
choice to get an optimal solution to the original problem.

PS: You have seen more greedy algorithms before, i.e., Dijkstra’s
(for weighted SSSP), Prim’s/Kruskal’s (for MST)



Before Lecture Break

• There will be a few midterm-related announcement and/or tips
• All done verbally
• Review the recording if you do not attend the lecture



Huffman Code
Applications in data compression…



Binary coding
Alphabet set :  { 𝟏, 𝟐,…, 𝒏 }
A text File: a sequence of alphabets

Question:  How many bits needed to encode a text file with characters?
Answer: 𝟐 bits.

A text file F

Binary coding of F

once upon a time 
…………..

………..
…………



Fixed length encoding (1)
Alphabet set :  { 𝟏, 𝟐,…, 𝒏 }
Question: What is a binary coding of ? 
Answer:                : binary strings (PS: is read as ‘upsilon’)

Question: What is a fixed length coding of ? 
Answer: each alphabet  a unique binary string of length 𝟐 .

Question: How to decode a fixed length binary coding? 
Answer: Easy , suppose each has fixed-length of 4 bits



Fixed length encoding (2)
Alphabet set :  { 𝟏, 𝟐,…, 𝒏 }
Question: Can we use fewer bits to store alphabet set ?
Answer: No.

Question: Can we use fewer bits to store a file ?
Answer: Yes



Huge variation in the frequency of alphabets in a text (1)

http://en.wikipedia.org/wiki/Letter_frequency



Huge variation in the frequency of alphabets in a text (2)

Question: How to exploit variation in the frequencies of alphabets ?

Answer (a.k.a., the ‘greedy sense’ / ‘intuition’):

More frequent alphabets  coding with shorter bit string
Less frequent alphabets  coding with longer bit string



Variable length encoding (1)
Encoding

𝜸
Frequency 

𝑓
Alphabets

0.45

0.18

0.15

0.12

0.10

Average Bit Length per symbol using :

௫∈𝑨

(smaller than ceil(log2 5) = 3 bits)
But there is a serious problem with the encoding.
Can you see the issue?
Question: How will you decode  01010111 ?
Answer:        or    

Question: What is the source of this ambiguity?
Answer:   is  a prefix of .
Question: Can you fix it?

10

0

101

110

111



Variable length encoding (2)
Encoding

𝜸
Frequency 

𝑓
Alphabets

0.45

0.18

0.15

0.12

0.10

100

0

101

110

111

Average Bit Length per symbol using :

௫∈𝑨

(a bit more than 1.92, but still less than 3 bits)



Prefix Coding
Definition: 
A coding is called prefix coding if there does not exist
such that 

is prefix of 

Algorithmic Problem: Given a set of alphabets and their 
frequencies, compute coding such that
• is prefix coding
• is minimum



The challenge of the problem

Among all possible binary coding of ,
how to find the optimal prefix coding ?



The novel idea of Huffman

Binary coding Binary tree

?



A labeled binary tree (1) – with animations

nodes  alphabets

Code of an alphabet = ? 

0 1

0

0

0

0

0

0

1

1

1

1

1

1

Label of path from root

Leaf



A labeled binary tree (2) – with animations

nodes  alphabets

Code of an alphabet = ? 

0 1

0

0

0

0

0

0

1

1

1

1

1

1

Leaf

01,
001,
0000,
11,
100,
10110,
10111

Label of path from root



Variable length coding – with animations
Question: 
How to build the labeled tree for a 
prefix code ?

0 1

{0, 100, 101, 110, 111}

{00,01,10,11}

{0,1}

10

{0,1}10 10

Encoding
𝜸

Frequency 
𝑓

Alphabets

0.45

0.18

0.15

0.12

0.10

100

0

101

110

111



Prefix code and Labelled Binary tree
Theorem:
For each prefix code of a set of alphabets, there exists a binary tree on 

leaves s.t.
• There is a bijective (one to one) mapping between the alphabets and the leaves.
• The label of a path from root to a leaf node corresponds to the prefix code of the 

corresponding alphabet. 

Question: Can you express Average bit length of in terms of its binary tree ? 

௫∈𝑨

𝐓

௫∈𝑨

PS: depthT is non-negative, the absolute symbol is not needed



Finding the labeled binary tree
for an optimal prefix codes 



Is the following prefix coding optimal ?
– with animations

0 1

0

0

0

0

1

1

10

0 1

1

1 NO



Observations on the binary tree of an optimal 
prefix code
Lemma (not proven in this lecture):  
The binary tree corresponding to optimal prefix coding must be a full 
binary tree:

Every internal node has degree exactly 2.

Question: What next ?
We need to see the influence of frequencies on an optimal binary tree.

Let , ,…, be the alphabets of in non-decreasing order of their 
frequencies. So is the least frequent alphabet.



Observations on the binary tree of an optimal 
prefix code

Intuitively, more frequent alphabets should be closer to the root and 
less frequent alphabets should be farther from the root.

But how to organize them to achieve optimal prefix code ?
• We shall now make some simple observations about the structure of the binary tree 

corresponding to the optimal prefix codes. 

• These observations will be about some local structure in the tree.

• Nevertheless, these observations will play a crucial role in the design of a binary tree 
with optimal prefix code for given . 

Please pay full attention on the next few slides.



Observations on the binary tree of an optimal 
prefix code

0 1

0 1 10

0 1

0

.  .  .

Deepest level

Can ଵ(least frequent 
alphabet) be present 
at a higher level ? If 

not, how to prove it ?



Observations on the binary tree of an optimal 
prefix code

0 1

0 1 10

10

0

.  .  .

Deepest level

Swapping ଵ with ௜

cannot increase ABL.



Observations on the binary tree of an optimal 
prefix code

0 1

0 1 10

1

10

.  .  . 0

Deepest level

Since the tree is full
binary, 𝟏 must have 
a sibling. What can 
we say about it ?

It must be a leaf 
node. Otherwise 𝟏

is not at the deepest 
level.

What about 𝟐

(second least  
frequent 

alphabet)?



Observations on the binary tree of an optimal 
prefix code

0 1

0 1 10

1

10

.  .  . 0

Deepest level

The sibling of 
can be .



An important observation
Lemma: There exists an optimal prefix coding in which 𝟏and 𝟐 appear as 
siblings in the corresponding labeled binary tree. 

Important note: It is inaccurate to claim that “In every optimal prefix coding, 
𝟏and 𝟐appear as siblings in the labeled binary string.” 

But algorithmic implication of the Lemma mentioned above is quite important: 
We just need to focus on that binary tree of optimal prefix coding in which 
𝟏and 𝟐 appear as siblings. 

This lemma is a powerful hint to the design of optimal prefix code.



Observations on the binary tree of an optimal 
prefix code

0 1

0 1 10

1

10

.  .  .

Deepest level



Observations on the binary tree of an optimal 
prefix code

0 1

0 1 10

1

.  .  .

Deepest level



Key Idea to design an algorithm (1)

, ,…, be alphabets in non-decreasing order of frequencies 

,…, ’,…, be alphabets in non-decreasing order of 
frequencies with ’

Intuition (from the previous slide):
May be :  An optimal prefix code of  optimal prefix code of 



Key Idea to design an algorithm (2)

Two notations: 
• : Minimum ABL value over all prefix code/labelled binary 

tree for alphabet 

• : A prefix code/labelled binary tree for alphabet with ABL
value

Recall, 



Key Idea to design an algorithm (3)

𝟏, 𝟐,…, 𝒏 be alphabets in non-decreasing order of frequencies 

𝟑,…, ’,…, 𝒏 be alphabets in non-decreasing order of 
frequencies with ’ 𝟏 𝟐

Question: What should be the relation between 𝐀𝐁𝐋 and 𝐀𝐁𝐋 ?

Answer: 𝐀𝐁𝐋 𝐀𝐁𝐋 + 𝟏 𝟐

Observation:  If this relation is true, we have an algorithm for optimal prefix codes.



The algorithm based on 
+ 

OPT( )
{         If | |=2,  return                         ;

else
{     Let 𝟏 and ଶ be the two alphabets with least frequencies.

Remove 𝟏 and 𝟐 from ;
Create a new alphabet ;

 𝟏 𝟐 ;
Insert into ;
T OPT( );
Replace node            in T by                    ;

return T ;  
} }

10

10



The algorithm based on 
+ 

OPT( )
{         If | |=2,  return                         ;

else
{     Let 𝟏 and ଶ be the two alphabets with least frequencies.

Remove 𝟏 and 𝟐 from ;
Create a new alphabet ;

 𝟏 𝟐 ;
Insert into ;
T OPT( );
Replace node            in T by                    ;

return T ;  
} }

10

10

time complexityBuild a heap for the alphabets 
with frequencies as key
takes time

Perform Remove and Insert in 
time

Overall time = 



How to prove 
+ ?

Question 1: Can we derive a prefix coding for from  ? 

Question 2: Can we derive a prefix coding for from  ? 



A prefix coding for from  

: the binary tree corresponding to 𝐀𝐁𝐋

.  .  .

1

0 1

0 1 10



A prefix coding for from  

: the binary tree corresponding to 𝐀𝐁𝐋

.  .  .

1

0 1

0 1 10

10

This gives a prefix coding for with = ??



Question 2 at VA

Express ABL in terms of .

𝐀𝐁𝐋 + 𝟏 𝟐

𝐀𝐁𝐋

𝐀𝐁𝐋 + max{ 𝟏 𝟐 }

𝐀𝐁𝐋 𝟏 𝟐



To prove that a greedy strategy works
P: A given optimization problem 

1. Try to establish a relation between OPT( ) and OPT( );
2. Try to prove the relation formally by
 deriving a (not necessary optimal) solution of from OPT( )
 deriving a (not necessary optimal) solution of from OPT( )
3.  If you succeed, this would give you an algorithm.

instance of size of problem P

Greedy
step

instance of size of problem P



Summary on Proof Techniques
(for Greedy Algorithms)

• For Greedy Choice
• Exchange argument

• For Optimal Substructure
• Proof by contradiction; cut-and-paste argument
• Constructive proof



Practice Problems (DP and Greedy)

• Tips to succeed for these two topics is…
• To solve as many problems as you can

• Try solving exercises of textbooks (e.g., CLRS, CP4  ADS)
• Look for more practice problems over Internet (Kattis, leetcode, old: UVa)
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