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INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this assessment paper until you are told to do so.

2. This assessment paper contains TWO (2) sections.

It comprises ELEVEN (11) printed pages, including this page.

3. This is an Open Book Assessment.

4. For Section A, use the OCR form provided (use 2B pencil).

You will still need to hand over the entire paper as the MCQ section will not be archived.

5. For Section B, answer ALL questions within the boxed space.

If you leave the boxed space blank, you will get automatic 1 mark (even for Bonus question).

However, if you write at least a single character and it is totally wrong, you will get 0 mark.

You can use either pen or pencil. Just make sure that you write legibly!

6. Important tips: Pace yourself! Do not spend too much time on one (hard) question.

Read all the questions first! Some questions might be easier than they appear.

7. You can assume that all logarithms are in base 2.

8. Please write your Tutorial Group, ‘ ’, and Student Number only. Do not write your name.
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Section Maximum Marks Your Marks Grading Remarks

A 39

B 61

Total 100
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A Multiple Choice Questions (13× 3 = 39 marks)

Select the best unique answer for each question. Each correct answer worth 3 marks.

The rest of this page 1 is REDACTED.
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This page 2 is REDACTED.
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This page 3 is REDACTED.
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This page 4 is REDACTED.
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This page 5 is REDACTED.
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B Essay Questions (61 marks)

B.1 Prove that case 3 regularity condition is always satisfied in PA1-A (14 marks)

In Programming Assignment 1 (PA1), task A, we have to use master theorem to automatically solve

recurrences in the form of:

𝑇 (𝑛) = 𝑎 · 𝑇 (𝑛𝑏 ) + 𝑐 · 𝑛𝑑 log𝑘 𝑛

We are also given the following constraints 𝑎 > 0, 𝑏 > 1, 𝑐 > 0, 𝑑 ≥ 0, and 𝑘 ≥ 0.

When case 3 of master theorem is applicable, many students do not also check if the required

regularity condition is also satisfied, yet all of them still get the Accepted verdict (assuming there is

no other bug other than skipping regularity condition check on case 3 situations). This is not because

the test cases are weak. In fact, the regularity condition is always satisfied for case 3 of master theorem

in this semester’s PA1. Your job in this question is to formally prove it.
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B.2 Exponentiation in Addition Machine (35 marks)

We have learned that we count the number of instructions the algorithm takes to measure its running

time. If you recall our first lecture, we consider the Word-RAM as our computation model because this

model resembles our modern computers. However, what about old computers with a more primitive

computation model?

In 1990, Robert Floyd and Donald Knuth investigated a computation model called Addition Ma-

chine. This model only has the following limited arithmetic instructions:

� Addition (+)

� Subtraction (−)

� Comparisons (=, ̸=, <,≤, >,≥)

Simply put, this model is equivalent to any modern language (e.g., C++, Java, or Python) but

WITHOUT using multiplication, division, modulo, exponentiation, or even bit-wise operations. You

can assume that this Addition Machine model is a restricted Word-RAM model.

So if we want to multiply 𝑥×𝑦 or divide (and round down) ⌊𝑥/𝑦⌋, we can naively implement them

as follows:

� For multiplication, we can repeatedly increment a temporary variable by 𝑥, for 𝑦 many times,

assuming 𝑦 ≤ 𝑥. If 𝑥 < 𝑦, then we swap the 𝑥 and 𝑦 first, thus this 𝑀𝑈𝐿𝑇𝐼(𝑥, 𝑦) runs in

Θ(𝑚𝑖𝑛(𝑥, 𝑦)) time.

� For division (with round down), we can repeatedly decrement 𝑥 by 𝑦 as long as 𝑥 stays non-

negative. The number of repetitions will be the answer, thus this 𝐷𝐼𝑉 (𝑥, 𝑦) takes Θ(𝑥/𝑦) time.

B.2.1 Naive Exponentiation (5 Marks)

Suppose that we want to implement an exponentiation function 𝑎𝑛 naively by multiplying 𝑎 for 𝑛

many times as the following:

int NAIVE EXP( int a , int n) {
i f (n == 0) return 1 ;

else return MULTI( a , NAIVE EXP( a , n=1)) ;

}

What is the time complexity, in Θ(·) notation, of the above function?

For simplicity, assume that 𝑎 ≤ 𝑛 and the inputs are non-negative.
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B.2.2 Fast Exponentiation? (14 Marks)

You have learned from our past lecture that there is a “faster” algorithm for exponentiation using a

Divide and Conquer technique like the following:

int FAST EXP( int a , int n) {
i f (n == 0) return 1 ;

else i f (n == 1) return a ;

else {
int temp = FAST EXP( a , DIV(n , 2 ) ) ;

temp = MULTI( temp , temp )

i f (IS ODD(n ) ) temp = MULTI( a , temp ) ;

return temp ;

}
}

Even by assuming that the 𝐼𝑆 𝑂𝐷𝐷 function takes 𝑂(𝑛) time, you might think that this algorithm

should run faster than the naive one, but is it really true? Prove (or disprove) by finding the time

complexity, in Θ(·) notation, of the 𝐹𝐴𝑆𝑇 𝐸𝑋𝑃 function! For simplicity, assume that 𝑎 ≤ 𝑛, 𝑛 is a

power of 2, and the inputs are non-negative.
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B.2.3 Squaring a Number (14 Marks)

While it is not trivial, actually there is a faster division implementation such that 𝐷𝐼𝑉 (𝑥, 𝑦) runs

in only Θ(log(𝑥/𝑦)) time. We can then use it to implement 𝐼𝑆 𝑂𝐷𝐷(𝑛) also in Θ(log 𝑛) time. You

don’t need to prove them.

Instead, your job is to implement the algorithm of 𝑆𝑄𝑈𝐴𝑅𝐸(𝑛). This algorithm should return

the value of 𝑛2, and you may assume that 𝑛 is always non-negative. You must also analyze the time

complexity of your algorithm (using Θ(·) notation). You may call the naive 𝑀𝑈𝐿𝑇𝐼, the faster 𝐷𝐼𝑉 ,

and the faster 𝐼𝑆 𝑂𝐷𝐷 functions in your implementation.

To get a full mark, your algorithm should run in 𝑂(log2 𝑛) time, and you need to provide a correct

Θ(·) analysis. Partial 3 marks will be given for any algorithm which runs in Θ(𝑛) time. HINT: Use

Divide and Conquer technique!

B.2.4 Lesson Learned (2 Marks)

Lastly, please write anything that you learned from these small “experiments”! :)
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B.3 Moderately Small Element (12 marks)

Given an unsorted array of 𝑛 integers, we know how to find the smallest element in 𝑂(𝑛) time, and

also we have learned in the lecture that Ω(𝑛) time is necessary for this purpose. Now suppose we aim

to find a moderately small element (instead of the smallest element). For an 𝑛-length array 𝐴, we

call the element 𝐴[𝑖] moderately small if its rank is at most 𝑛/10. (Recall, if 𝐴[𝑖] is the 𝑗-th smallest

element in the array 𝐴, then its rank is 𝑗.)

Given an unsorted array of length 𝑛, our objective is to find a moderately small element in 𝑜(𝑛)

time with the help of randomization. For that purpose, try to solve the following questions.

B.3.1 What is the Probability (I)? (2 marks)

Let us pick an index 𝑖 uniformly at random from the set {0, 1, · · · , 𝑛 − 1}, and return 𝐴[𝑖]. What is

the probability that the returned output is a moderately small element?

B.3.2 What is the Probability (II)? (7 marks)

Let us now modify the procedure described in subsection B.3.1 as follows: Pick a sequence of indices

𝑖1, 𝑖2, · · · , 𝑖𝑠 uniformly at random and independently from the set {0, 1, · · · , 𝑛− 1} with replacement.

Then output the smallest element among the set {𝐴[𝑖1], 𝐴[𝑖2], · · · , 𝐴[𝑖𝑠]}. What is the probability

that the returned output is a moderately small element?
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B.3.3 What is the Running Time? (3 marks)

Given any 𝑛-length array, if you want to output a moderately small element with probability at least

1 − 1
𝑛 , what would be the tightest 𝑂(·) bound on the time complexity of the procedure described in

subsection B.3.2?

B.4 Bonus Question (5 marks)

Suppose you are given as input a circular array 𝐴[0 · · ·𝑛 − 1] of length 𝑛 containing all the distinct

integers between {1, 2, · · · , 𝑛} in an arbitrary order. Your goal is to decide whether there exists three

consecutive indices 𝑖, 𝑖+1, 𝑖+2 such that 𝐴[𝑖]+𝐴[𝑖+1]+𝐴[𝑖+2] > 1.5 ·𝑛. (Note, since the input array

is circular, you should actually consider 𝑖 + 1( mod 𝑛) and 𝑖 + 2( mod 𝑛).) So if there exists such

three consecutive indices, you should output “YES”; otherwise “NO”. How many cells of the input

array 𝐴 you must read (in the worst-case) to output the correct answer? (Provide proper explanation

in support to your answer.) [No partial marks will be given for this question.]

– END OF PAPER; All the Best –
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