
CS4234: Optimisation Algorithms Lecture 4

TRAVELLING-SALESMAN-PROBLEM (4 variants)
V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016

Abstract

The goal of the TRAVELLING-SALESMAN-PROBLEM is to find a tour that connects all the vertices in a graph at a
minimal cost. There are several variants, depending on whether repeated visits are allowed, and depending on whether
the distances satisfy a metric. We discuss the relationship between these variants, and give a simple 2-approximation
algorithm. We then develop a more involved 1.5-approximation algorithm that relates the TSP to Eulerian tours.

1 The TRAVELLING-SALESMAN-PROBLEM

Today we consider the TRAVELLING-SALESMAN-PROBLEM1, often abbreviated TSP. The “TSP”2 is perhaps one of
the most famous3 (and most studied) Combinatorial Optimization Problem (COP).

1.1 Problem Definition

Given a set of cities (i.e., points, or vertices), the goal of the TSP is to find a minimum cost circuit (or cycle, or tour)
that visits all the points. More formally, the problem is stated as follows:

Definition 1 Given a set V of n points and a distance function d : V × V → R, find a cycle C of minimum cost that
contains all the points in V . The cost of a cycle C = (e1, e2, . . . , en) is defined to be

∑
e∈C d(e), and we assume that

the distance function is non-negative (i.e., d(x, y) ≥ 0).

Notice that, unlike the STEINER-TREE problem, there are no Steiner vertices: You have to visit every city. The
cities/points may be in some geometric space (e.g., the Euclidean plane), or they may not. If the points are in the
Euclidean plane, then it is natural to define d to be the Euclidean distance. Otherwise, d can be arbitrary, i.e. non-
metric. See Figure 1 for an example of one instance of the TSP.

1.2 Variants

As with the STEINER-TREE problem, there are several variants:

• Metric vs. General: In the metric version of the TSP, the distance function d is a metric, i.e., it satisfies the
triangle inequality4. In the general version, d can assign any arbitrary weight to an edge.

• Repeated-Visits vs. No-Repeats: The goal of the TSP is to find a cycle that visits every vertex. Can the cycle
contain repeated vertices (or does it have to be a simple cycle)? In the version with No-Repeats, the TSP cycle
must visit each vertex exactly once. In the version with repeats, it is acceptable to visit each vertex more than
once (if that results in a shorter route).

1The word ‘travelling’ (2 ‘l’s) is in British and the word ‘traveling’ (1 ‘l’) is in American.
2As the abbreviation “TSP” already includes the word ‘Problem’, we do not say “TSP problem” anymore.
3We even have a movie for this, see http://www.travellingsalesmanmovie.com/.
4In the previous lecture about Steiner Tree, we have highlighted that metric version is somewhat easier than the general version.

1

http://www.travellingsalesmanmovie.com/

Figure 1: Example of the TSP. Here, there are six locations. The problem is to find the shortest delivery circuit starting from Ikea
and visiting each of the five houses, and then returning to Ikea.

We will summarize these four variants as follows:

Repeats No-Repeats

Metric M-R-TSP M-NR-TSP

General G-R-TSP G-NR-TSP

1.3 NP-hard

All the variants of the TSP are NP-hard [2].

For the No-Repeats variants of the problem, this is easily seen by reduction from the HAMILTONIAN-CYCLE problem:
a Hamiltonian cycle is a cycle that contains every vertex exactly once; the goal of the HAMILTONIAN-CYCLE problem
is to determine whether a given graph has a Hamiltonian cycle. Deciding whether a graph has a Hamiltonian cycle
is NP-hard (and this can be shown by reduction from 3-SAT). Clearly, if we can solve the TSP, then we can solve
the HAMILTONIAN-CYCLE problem (by setting the distances properly). There are similar reductions for the other
variants.

The general No-Repeats version of TSP (the G-NR-TSP) is NP-hard even to approximate! So we will temporarily
ignore this variant in this Lecture.

Even so, we are going to see how to (easily!) approximate the other three variants. In almost all common real-world
cases (e.g., where the distance function satisfies the triangle inequality, or where repeats are acceptable), there are
good approximation algorithms.

2 Equivalence

The first thing we are going to see is that the three other variants are equivalent. That is, M-R-TSP, M-NR-TSP, and
G-R-TSP are all equivalent: If we have a c-approximation algorithm for any one of these variants, then we also can

2

construct a c-approximation algorithm for the other two.

We first focus on the issue of repeats: As long as the distance function is a metric, it does not matter whether or not
we allow repeats. In many ways, this should be unsurprising (given our discussion of STEINER-TREE last week): If
we have repeated vertices on the cycle, we can always “short-cut” past them producing a cycle with no repeats at the
same cost.

Lemma 2 There exists a c-approximation algorithm for M-NR-TSP if and only if there exists a c-approximation
algorithm for M-R-TSP.

Proof The proof has three claims. First, we show that both the version with repeats and no-repeats have the same
optimal cost. We then show how to transform the solution from the NR variant into the R variant (which is trivial) and
from the R variant into the NR variant (which involves skipping repeats).

Claim 1. Let (V, d) be an input for Metric TSP (for both NR or R variants). Let OPT (R) be the minimum cost
TSP cycle overall (i.e., with repeats), and let OPT (NR) be the minimum cost TSP-cycle with no repeats. Then
OPT (R) = OPT (NR).

To show this, first we observe that any cycle with no repetitions is also a legal TSP-cycle overall (i.e., for the version
that allows repeats). And so it follows immediately5 that OPT (R) ≤ OPT (NR) — Part A.

Next, let C be a cycle with repeats, for example:

C = 0, 1, 2, 3, 2, 4(, 0)

We can now create cycle C ′ by skipping the repeated vertices. For example:

C ′ = 0, 1, 2, 3, 4(, 0)

By the triangle inequality, we know that d(C ′) ≤ d(C). For example, in constructing C ′ from C, we replace (3, 2, 4)
with (3, 4); we know that d(3, 4) ≤ d(3, 2) + d(2, 5), by the triangle inequality. We can repeat this inductively for
every skipped vertex.

If we assume that cycle C = OPT (R), then we conclude that OPT (NR) = d(C ′) ≤ d(C) = OPT (R) — Part B.

Putting together the two inequalities in Part A and Part B, we have shown that OPT (NR) ≤ OPT (R) and
OPT (R) ≤ OPT (NR), which yields our desired conclusion that OPT (R) = OPT (NR).

Claim 2. If A is a c-approximation algorithm for M-NR-TSP, then A is a c-approximation algorithm for M-R-TSP.

Assume algorithm A outputs cycle C. By assumption, C has no repeats, and d(C) ≤ c ·OPT (NR). As OPT (R) =
OPT (NR) from Claim 1, we have = d(C) ≤ c ·OPT (R). Thus we see that C is also a valid solution for M-R-TSP
and provides a c-approximation.

Claim 3. If A is a c-approximation algorithm for M-R-TSP, then we can construct an algorithm A′ which is a
c-approximation for M-NR-TSP.

Specifically, construct algorithm A′ as follows: Run algorithm A to get cycle C (which may have repeats); then
construct C ′ from C by skipping any repeated vertex. There are two things we have to show.

First, the cost of cycle C is a good approximation of the optimal for M-NR-OPT, i.e. d(C) ≤ c · OPT (R). As
OPT (R) = OPT (NR) from Claim 1, we have = d(C) ≤ c ·OPT (NR).

5Remember that in Lecture 2 about relaxed ILP, when we minimize over a larger space of possible solutions, we always get a solution that is at
least as good as the best solution of the smaller subspace.

3

Second, the cycle we have constructed in A′ has cost bounded by the cost of C, i.e. d(C ′) ≤ d(C) due to the triangle
inequality, similar as in Claim 1.

Putting these two facts together, we see that the algorithm A′ that produces C ′ is a c-approximation algorithm for
M-NR-TSP as d(C ′) ≤ c ·OPT (NR).

We can show exactly the same type of equivalence for the general and metric versions, as long as we allow repeats.
In this case, we cannot create “shortcuts” because the triangle inequality does not hold; however, we do not need to
create shortcuts because repeats are allowed.

Lemma 3 There exists a c-approximation algorithm for M-R-TSP if and only if there exists a c-approximation algo-
rithm for G-R-TSP.

Proof In this case, the proof contains two claims: One transforming G into M (which is trivial), and the other M
into G (need some work).

Claim 1. If A is a c-approximation algorithm for G-R-TSP, then A is a c-approximation algorithm for M-R-TSP.

This claim is immediately and obviously true. The two problems are identical, except for the restriction that the input
to M-R-TSP must be a metric. However, if a given input is a metric, then it clearly satisfies the requirements of
G-R-TSP and we can just execute algorithm A on that instance. Moreover, the optimal solution will be the same for
G-R-TSP and M-R-TSP (since they are optimizing over the exact same set of possible cycles).

Figure 2: Example of constructing A′, reducing G-R-TSP to M-R-TSP, e.g. C = {0, 4, 1, 2, 3, 0}, then C′ = {0, 4, 1, 2, 3, 4, 0}.

Claim 2. If A is a c-approximation algorithm for M-R-TSP, then we can construct algorithm A′ is a c-approximation
algorithm for G-R-TSP.

Let (V, dg) be the input to algorithm A′, i.e., an input for G-R-TSP. We construct algorithm A′ as follows.

First, we need to construct a distance metric dm. For every pair of vertices (u, v), define dm(u, v) to be the shortest
path from u to v according to the distances dg . (Recall that dg is not a metric, i.e., does not necessarily satisfy
the triangle inequality.) We can find dm by construct the complete graph on V , assign the weight of edge (u, v) to
be dg(u, v), and executing an All-Pairs-Shortest-Paths algorithm, e.g. O(V 3) Floyd Warshall’s algorithm. You will
notice that dm is now a distance metric, i.e., it satisfies the triangle inequality. Recall that dm is called the metric
completion of the graph6.

6We have done similar thing in Lecture 3b: Steiner Tree, General versus Metric.

4

Second, execute algorithm A on (V, dm), producing cycle C. We then need to construct a new cycle C ′ out of C. For
each edge (u, v), we add the shortest path from u to v according to dg to our output cycle C ′. Notice this produces a
cycle C ′ that may contain may repeated vertices7.

We now argue that the result is a good approximation of the OPT (V, dg). First, observe that d(C ′) = d(C). Each
edge in C got replaced by a path in C ′ with the exact same cost, and hence we end up with the same cost cycle.

Second, we know by assumption that d(C) ≤ c · OPT (V, dm), by the assumption that A is a c-approximation
algorithm.

Finally, we argue that OPT (V, dm) ≤ OPT (V, dg). In particular, if R is the optimal cycle for (V, dg), then R is also
a cycle in (V, dm). Moreover, for every pair (u, v), we know that dm(u, v) ≤ dg(u, v) (because dm is defined as the
shortest path). Thus dm(R) ≤ dg(R). Since the optimal cycle with metric dm has to be at least as good as dm(R), we
conclude that OPT (V, dm) = dm(R) ≤ dg(R) = OPT (V, dg).

Putting the pieces together, we conclude that d(C ′) = d(C) ≤ c · OPT (V, dm) ≤ c · OPT (V, dg), and hence algo-
rithm A′ is a c-approximation algorithm for G-R-TSP.

3 2-Approximation Algorithm

We now present a 2-approximation algorithm for G-R-TSP. We already know that this will also yield a 2-approximation
algorithm for the other two variants. Assume that the input is (V, d) where V is a set of points and d is a distance
function (but not necessarily a metric). Consider the following algorithm:

1. Construct the complete graph G = (V,E) with weights w where E contains every pair (u, v) ∈ V × V and
w(u, v) = d(u, v).

2. Let T be the Minimum Spanning Tree of G.

3. Let C be the cycle constructed by performing a Depth-First Search of T .

To analyze this algorithm, as usual8, we start with the optimal solution and work backwards. Let C∗ be the optimal
(minimum cost) TSP cycle for input (V, d) and let E∗ be the edges in C∗. Notice that the graph G∗ = (V,E∗) is
connected, because C∗ is a cycle that includes every point. Let T ∗ be the Minimum Spanning Tree of G = (V,E∗).
At this point, we know that:

d(T ∗) ≤ d(C∗) = OPT

Since the tree T is a minimum spanning tree of G = (V,E) and E∗ ⊆ E, we know that:

d(T) ≤ d(T ∗)

Finally, since C is construct by a Depth-First Search traversal of T , we know that C includes each edge in T exactly
twice, and so:

d(C) = 2× d(T)

Putting these inequalities together, we conclude that:

d(C) = 2× d(T) ≤ 2× d(T ∗) ≤ 2× d(C∗) ≤ 2×OPT

That is, the cost of C is at most twice the cost of OPT, and hence the algorithm is a 2-approximation algorithm.

7Again, this is the same as with Lecture 3b: Steiner Tree, General versus Metric.
8We have done similar thing in Lecture 3b: Steiner Tree, General versus Metric.

5

4 Eulerian Cycles

We now want to develop a better approximation algorithm, one that will have a better approximation ratio than 2. In
order to do that, we are going to need a few additional tools. Let’s begin with a famous problem, known as the Bridges
of Konigsberg.

Figure 3: Illustration of the Bridges of Konigsberg.

In Konigsberg, there is a river with two islands. Historically, these two islands were connected by seven bridges. The
bridges were beautiful and famous, and so the question that everyone wanted to answer was whether it was possible to
cross each bridge exactly once—and end up back where you started. With a little bit of thought, it becomes obvious
that you cannot. But how would you prove it? Euler solved this problem, and his solution is often seen as marking
the beginning of graph theory as a mathematical field. Notably, he realized that the problem could be represented as a
graph:

Figure 4: Illustration of the Bridges of Konigsberg as a graph.

Once the problem was represented abstractly as a graph, we can apply more powerful techniques to solve the problem.

For the purpose of this section, we will be talking about multigraphs rather than simple graphs. A multigraph is a
graph G = (V,E) where E is a multiset, rather than a set, of edges. This means that each edge can appear in the graph
more than once. For example, a given edge (u, v) might appear in graph G four times.

Definition 4 A Eulerian Cycle in a multigraph G is a cycle that crosses each edge exactly once.

Notice that, unlike a TSP-cycle, an Eulerian Cycle focuses on edges, rather than vertices. The goal is to cross each
edge exactly once—though that may mean visiting a given vertex many times. Clearly the problem of the Bridges of
Konigsberg is simply asking whether there is an Eulerian Cycle in the associated graph.

The key claim is to detect when a graph has an Eulerian Cycle. Amazingly, there is a very simple characterization:

Lemma 5 A multigraph G = (V,E) has an Eulerian Cycle if and only if:

• It is connected (except for vertices of degree 0).

6

• Every vertex has even degree.

Proof Notice that one direction of this claim is easy. Assume graph G has an Eulerian Cycle. In that case, since the
cycle cross every edge, clearly the cycle visits every vertex (except those vertices with degree zero) and hence graph is
connected—except for vertices with degree zero. In addition, the cycle enters and exits each vertex the same number
of times. For example, if the cycle enters a vertex v some k times, then it also exits vertex v the same k times. From
this we conclude that every vertex has even degree. (In our example, vertex v has degree 2k, which is even.)

The surprising result is the opposite direction. Assume graph G is connected (except for vertices of degree 0) and that
every vertex has even degree. We need to construct a Eulerian Cycle. We will proceed by induction on the number of
edges, proving a stronger invariant as we go: If every vertex in G has even degree, then each connected component
with > 1 vertices has an Eulerian Cycle.

We will begin (in the base case) with an empty graph containing only the vertices, and add one edge at a time back to
the graph. At every step, we will construct an Eulerian Cycle for each connected component.

Base case: In this case, m = 0, i.e., there are no edges, and hence trivially the claim holds.

Inductive step: Assume we have m edges. Let V1, V2, . . . , Vk be the connected components of G that contain > 1
vertices. We consider two cases:

Case 1: k ≥ 2: There are at least two connected components. Each connected component has < m edges. Hence, by
induction, each component has an Eulerian Cycle.

Case 2: k = 1: V1 is the only connected component with > 1 vertices. Recall that all the vertices in V1 have even
degree, and every vertex note in V1 has degree zero.

First, we claim that there must be a cycle in V1. Let n1 = |V1|. If there are no cycles in V1, then V1 is a tree and
contains exactly n1 − 1 edges. However, the degree of every vertex in V1 is at least 2 (since the degree is even and
> 0). Thus there are at least 2V1 endpoints of edges in V1, and hence at least V1 edges in V1. (Notice in general that
if d(v) is the degree of vertex v, then a graph has exactly

∑
u∈V d(u)/2 edges.) This contradicts the claim that V1 is a

tree.

Let C be any cycle in V1. Let G′ be the the graph G where the edges in C are removed. Let V ′1 , V
′
2 , . . . , V

′
k′ be the

new connected components of G′. (By removing the cycle C, we may have split V1 into several distinct connected
components; or V1 may remain connected.) Each of these components now has < m edges. Hence, by induction, each
of these components has an Eulerian Cycle. Let C1, C2, . . . , Ck be the Eulerian Cycles for connected components
V ′1 , V

′
2 , . . . , V

′
k′ .

It remains to stitch these Eulerian Cycles back together. Notice that these connected components are all connected by
the initial cycle C. That is, if we add back the cycle C, we will have a single connected component. Here’s how we
do that:

Let C = (v1, v2, . . . , v`). Begin at vertex v1. We know that vertex v1 is part of one of the Eulerian Cycles Vj . Follow
the Eulerian Cycle Vj until it returns to vertex v1. Then proceed to vertex v2. If v2 is part of a new Eulerian Cycle (i.e.,
not Vj), then follow the new Eulerian Cycle until it returns to v2. Otherwise move on to v3. And so on. At each step,
we move to the next vertex vi in the cycle C. If that vertex vi is part of a new Eulerian Cycle Vi that has not yet been
traversed, then we traverse the cycle until it returns to vi. Then we continue to vi+1. This continues until we return to
vertex v1.

Notice that the new cycle we have constructed traverses every edge in the graph G, as it traverses all the edges in the
connected components V ′1 , . . . , V

′
k′ as well as all the edges in C. Hence we have constructed an Eulerian Cycle for G.

7

The other interesting fact is that this Eulerian Cycle can be easily constructed in polynomial time, exactly by following
the steps of the algorithm:

1. Find a cycle in G (e.g., via DFS). If there is none, then skip the next step.

2. Remove the cycle.

3. Find the connected components in the residual graph.

4. Recurse: Find an Eulerian Cycle in each connected component.

5. If a cycle was found in Step 1, paste the cycles back together.

This can readily be implemented in O(m2) time. Can you optimize it further? (see [3]).

5 A Better TSP Approximation

We consider the M-R-TSP variant again, and as before, if we can have a c-approximation algorithm for this variant,
then we can also approximate the other two variants: M-NR-TSP and G-R-TSP. Assume (V, d) is the input to our
problem.

5.1 Basic Idea

Imagine that we built a multigraph G = (V,E) that contained an Eulerian Cycle. Then that cycle would give us a
feasible solution to the TSP problem. Conversely, if had a solution to the TSP problem, we could build a multigraph
consisting of only the edges in the TSP-cycle, which would result in a graph with a Eulerian Cycle. Hence solving
TSP is equivalent to finding a minimum cost set of edges E such that G = (V,E) has an Eulerian Cycle.

For example, consider the following proposed algorithm:

1. Find the MST T of the complete graph on V with weights defined by d.

2. Add every edge in T twice to the set E. This ensures that each vertex in V has even degree.

3. Since every vertex in multigraph G = (V,E) has even degree, we can find a Eulerian Cycle C for G.

4. Return C (skipping repeated vertices).

This is a correct algorithm for solving the TSP problem. Unfortunately, it will not yield any improvement over the
earlier 2-approximation algorithm because we are still adding each edge in the MST twice, leading to a cost that is at
most twice optimal.

Notice that it is quite inefficient to add each edge twice! Our only goal is to ensure that each vertex has even degree—if
a vertex already has even degree, why are we doubling all of its outgoing edges, and thus increasing our cost? Consider
the example in Figure 5.

Thus the question we must answer is: How do we add the minimal number of edges to a multigraph to ensure that
each vertex has even degree? Thus, in summary, the resulting algorithm should look like:

1. Find the MST T of the complete graph on V with weights defined by d.

2. Add every edge in T to the set E.

8

Figure 5: Example of finding a TSP by creating vertices with even degree. Initially, we have a graph with nine edges. If we double
every edges, we have a graph with 18 edges. However, if we want to ensure that eachvertex has even degree, it suffices to add just
one edge to the graph, yielding a graph with only 10 edges.

3. Add the minimum cost set of edges E′ to E such that in E ∪ E′, every vertex has even degree.

4. Since every vertex in multigraph G = (V,E ∪ E′) has even degree, we can find a Eulerian Cycle C for G.

5. Return C (skipping repeated vertices).

We already know that cost(T) ≤ cost(OPT), since the optimal TSP-cycle is also a spanning tree (once you have
removed a single edge). The key is to prove that cost(E′) ≤ OPT/2.

5.2 Matchings

The last tool we need is a perfect matching:

Definition 6 We say that (V,M) is a matching if no two edges in M share an endpoint, i.e., all vertices in V have
degree ≤ 1. We say that (V,M) is a perfect matching if every vertex in V has exactly degree 1, i.e., every vertex is
matched.

Notice that a perfect matching only exists if |V | is even: if there are an odd number of vertices, it is clearly impossible
to match them all.

If each edge has a weight, then we may want to find the minimum cost perfect matching. One of the most beautiful
results in combinatorial optimization yields exactly that:

Theorem 7 There is a polynomial time algorithm for finding the minimum cost perfect matching.

This finds the optimal solution, and it does it efficiently! Unfortunately, this algorithm is beyond the scope of today’s
class. (See Edmonds’s algorithm [1]. The solution involves his famous Blossom Algorithm for finding matchings,
along with the primal-dual method and linear programming.) For now, we are just going to assume that we can find a
minimum cost perfect matching.

9

5.3 Evens and Odds

We want to use the idea of perfect matchings to pair up the vertices in the multigraph that have odd degree. If we can
assign each of them a partner, then they will have even degree. But there is one potential problem: what if there are an
odd number of vertices that need a partern? Luckily, that is impossible due to a nice counting argument:

Lemma 8 In every graph G = (V,E), there are an even number of vertices with odd degree.

Proof Let O be the set of vertices with odd degree, and V − O the set of vertices with even degree. Let deg(u) be
the degree of u.

Recall that we can count the number of edges in the graph by summing up the total degree and diving by 2, i.e.:∑
u∈V

deg(u) = 2|E|

That is, the sum of the degrees of all the vertices is even.

Now, consider just the vertices in V − O: since each vertex has even degree, the sum of their degrees must also be
even: ∑

u∈V−O
deg(u) = 2k

Summing everything, we conclude that:∑
u∈O

deg(u) +
∑

u∈V−O
deg(u) =

∑
u∈V

deg(u)

∑
u∈O

deg(u) + 2k = 2|E|

Since the right-hand-side of the expression is even, the left-hand side of the expression must also be even. That is:∑
u∈O

deg(u) = 2`

But each vertex in O has odd degree. Hence the only way that the sum of their degrees can be even is if there are an
even number of odd vertices, i.e., |O| is even.

5.4 Christofides Algorithm

Putting the pieces together, we now have the following algorithm:

1. Find the MST T of the complete graph on V with weights defined by d.

2. Add every edge in T to the set E.

3. Let O be the vertices in T with odd degree. Notice that |O| is even.

4. Let M be the minimum cost perfect matching for O.

5. Construct the multigraph G = (V,E ∪M).

6. Since every vertex in multigraph G = (V,E ∪M) has even degree, we can find a Eulerian Cycle E for G.

10

7. Return E (skipping repeated vertices).

To analyze this, we notice that the cost consists of the following:

cost(E) =
∑
e∈E

d(e) +
∑
e∈M

d(e)

The first part of the expression comes from the MST, and hence we already know that:∑
e∈E

d(e) ≤ OPT

Since OPT forms a cycle, we can remove any edge from the cycle to get a spanning tree; the MST T must have cost
no greater than this cycle.

We now need to argue that 2 ×
∑

e∈M d(e) ≤ OPT . Let C be the cycle for OPT. Let C ′ be the same cycle as C
where we skip all the vertices in V −O, and we skip repeats. That is, C ′ is a cycle on the odd vertices with no repeats.
Notice that cost(C ′) ≤ cost(C), since we have only skipped vertices (and the triangle inequality holds).

Also, notice that cycle C ′ has an even number of vertices (because there are an even number of odd vertices) and an
even number of edges. Assume that C ′ = (v1, v2, . . . , v2k).

We can now construct two different perfect matchings M1 and M2. We define them as follows:

M1 = (v1, v2), (v3, v4), (v5, v6), . . . , (v2k−1, v2k)

M2 = (v2, v3), (v4, v5), (v6, v7), . . . , (v2k, v1)

Notice that each of these perfect matchings has k = |O|/2 edges, and both are valid perfect matchings for the set O.
Since M is the minimum cost perfect matching, we conclude that:

cost(M) ≤ cost(M1)

cost(M) ≤ cost(M2)

Notice, though, that cost(M1) + cost(M2) = cost(C ′) ≤ cost(C). So, if we sum the matchings, we get:

2× cost(M) ≤ cost(M1) + cost(M2) ≤ cost(C) = OPT

Thus we have shown that cost(M) ≤ OPT/2.

Putting the pieces together, we see that the cost of the cycle output by the algorithm is:

cost(E) =
∑
e∈E

d(e) +
∑
e∈M

d(e) ≤ cost(T) + cost(M)

≤ OPT +OPT/2

≤ 1.5 ·OPT

Thus, we have discovered a 1.5-approximation algorithm for the M-R-TSP.

References

[1] Jack Edmonds. Paths, trees, and flowers. Canadian Journal on Maths, 17:449–467, 1965.

[2] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[3] Steven Halim and Felix Halim. Competitive Programming: The New Lower Bound of Programming Contests.
Lulu, 3rd edition, 2013.

11

Index
1.5-Approximation Algorithm, 8
2-Approximation Algorithm, 5
3-SAT, 2

All-Pairs-Shortest-Paths, 4

Bridges of Konigsberg, 6

Christofides Algorithm, 10
Combinatorial Optimization Problem, 1

Eulerian Cycles, 6

Hamiltonian-Cycle, 2

Matching, 9
Min-Spanning-Tree, 5

Steiner-Tree, 1

Travelling-Salesman-Problem, 1

12

	The Travelling-Salesman-Problem
	Problem Definition
	Variants
	NP-hard

	Equivalence
	2-Approximation Algorithm
	Eulerian Cycles
	A Better TSP Approximation
	Basic Idea
	Matchings
	Evens and Odds
	Christofides Algorithm

