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ABSTRACT
NP-hard combinatorial optimization problems are common
in real life. Due to their intractability, local search algo-
rithms are often used to solve such problems. Since these
algorithms are heuristic-based, it is hard to understand how
to improve or tune them. We propose an interactive visual-
ization tool, VIZ, meant for understanding the behavior of
local search. VIZ uses animation of abstract search trajec-
tories with other visualizations which are also animated in
a VCR-like fashion to graphically playback the algorithm
behavior. It combines generic visualizations applicable on
arbitrary algorithms with algorithm and problem specific vi-
sualizations. We use a variety of techniques such as alpha
blending to reduce visual clutter and to smooth animation,
highlights and shading, automatically generated index points
for playback, and visual comparison of two algorithms. The
use of multiple viewpoints can be an effective way of under-
standing search behavior and highlight algorithm behavior
which might otherwise be hidden.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces (GUI),
Screen design (e.g. text, graphics, color).

General terms: Design, Human Factors.

Keywords: Local Search, Program Visualization.

1. INTRODUCTION
Local search algorithms (e.g. Tabu Search (TS)) [7] are often
used to solve a variety of intractableNP-hard combinatorial
optimization problems such as Satisfiability (SAT), Traveling
Salesman Problem (TSP), Quadratic Assignment Problem
(QAP), circuit/graph layout, etc. Local search algorithmsare
used to get good (but not necessarily optimal/feasible) solu-
tions. These algorithms are based primarily on heuristics and
are incomplete (hence, do not give solution guarantees). This
means that the precise behavior and the performance of local
search is highly dependent on the chosen search parameters,
components (heuristics), and search strategies.
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Figure 1: An example of a Local Search: X — current
solution; {A,B,C,D} — neighbors of X; Y — another
solution; E — global optima; F & G — local optima

Local search algorithms can be abstractly described as fol-
lows. Consider a satisfiability or optimization problem, we
will usesolutionto mean a possible valuation of the problem
variables (e.g. a route in a TSP). Note that a solution does
not need to be satisfiable (e.g. a TSP route with several cy-
cles). The set of all solutions is called thesearch spaceand
we also call a solution in the search space, apoint. In Fig.1,
the letters A,B,C,D,E,F,G,X,Y denote solutions/points ina
search space. Suppose the current solution is X, local search
determines a subset of its search space — the local neigh-
borhood of X here is{A,B,C,D}. A heuristic selects a new
solution from the neighborhood (e.g. improving move B), or
jumps to another solution outside the neighborhood (e.g. Y).
The curve in Fig.1 is meant to illustrate asearch trajectory, a
series of solutions traversed during search, heading towards
the desired goal (e.g. E: a global optima). As local search
is incomplete, some problems are that: it may be trapped in
local optima (e.g. F or G); and may exhibit cycling behavior
(e.g. cycling among points X,B,G,X,B,G,. . . ).

Nevertheless, local search is often the method of choice or
perhaps the only practical approach for solving many com-
binatorial optimization problems simply because it may not
be feasible to solve them with systematic search. Typically,
a local search algorithm is quite simple — consisting of a
combination of several heuristics with some search strategies
(e.g. the two-edges swap heuristic used as the local move op-
erator in our Re-TS for TSP in Section 6). Usually the search
has some stochastic elements which add non-determinism
(e.g. the search trajectory can behave differently between
runs). Thus, unlike systematic search, it is difficult to ana-
lyze and predict the algorithm behavior of local search. For
example, the algorithm designer may end up believing that
the local search is doing one thing while it is doing some-
thing different, i.e. rather than intensification it is actually a
semi-diversification or what [20] calls the metaheuristic (lo-
cal search) ‘failure modes’.



Local search algorithms usually require tuning, we call this
the TUNING PROBLEM (see [5]). One approach to tuning is
the black-box, automatic tuning approaches like CALIBRA
[1] or F-Race [3]. Instead of understanding the behavior of
local search in order to tune it, they probe the configuration
space semi-exhaustively and pick the best found configura-
tion. This is computationally intensive even for small prob-
lems. Since the approach does not attempt to explain, it does
not address how to debug or improve the underlying local
search algorithm. We believe that to improve local search al-
gorithms (including tuning), it is also essential to understand
the algorithm behavior.

A typical non-GUI approach for understanding local search
behavior is to analyze numerical/statistical informationde-
rived from the search runs, e.g. an ad-hoc technique could
be: run an experiment, compute some statistics, modify the
algorithm and repeat. The idea here is that statistical mea-
sures can condense the large amount of data collected in the
search. However, it is not easy to understand local search
simply from a gross description/statistics.

In this paper, we propose a visualization tool which can en-
able the algorithm designer to understand the behavior of lo-
cal search algorithms. A human-oriented tool is necessary
as we want to enable not only the tuning of local search al-
gorithms but also help in debugging and algorithm develop-
ment. More precisely, we want to answer questions related
to local search behavior posed in Section 2. Our visualiza-
tion tool, VIZ, providesoff-line local searchprogram visu-
alization [16, 17]. The visualization uses a number of ani-
mations: (i) generic visualizations, most notably, a 2-D ab-
straction of search trajectories; (ii) algorithm specific visual-
izations; and (iii) problem specific visualizations. We believe
that the generic visualizations capture much of the interesting
behavior and gives the main explanation as well as linking
the search trajectory to the other specific visualizations.V IZ
also allows two algorithms to be animated and compared.

Using VIZ, the algorithm designer has the ability to per-
ceive local search behavior which may not have been no-
ticed. From there, one can adjust/debug/tune/redesign the
local search algorithm to attain better performance. This
forms a tuning cycle: problem perception→ modify the lo-
cal search→ identify the results of modification (including
any problems which emerge). The tuning cycle ends when
the algorithm designer has understood and tuned/improved
the local search to achieve acceptable performance.

We are not aware of any comparable visualization to VIZ
for local search and now survey some related work in ani-
mation and visualization. In the visual programming taxon-
omy of Myers [16], VIZ has both static and dynamic data
visualizations. Although it is specific to local search, it can
support generic visualizations of arbitrary local search algo-
rithms and this can be enhanced with algorithm and problem
specific visualizations. Other program behavior visualiza-
tions are: Whyline [12] which is a debugging interface for
understanding program behavior; and [8] for visualizing dy-
namic interactions in object-oriented software. While these
are quite different, they also emphasize understanding of pro-
gram behavior from dynamic traces.

2. DESIRABLE VISUALIZATION PROPERTIES
Our main objective for developing VIZ is to enable the algo-
rithm designer to understand the behavior of local search al-
gorithms. We also want to be able to compare local search al-
gorithms against each other. Rather than to visualize/animate
the local search program itself (i.e. the algorithm code), we
want to visualize aspects of the search trajectories and solu-
tion spaces visited throughout the search. This makes sense
because although the algorithms may be quite different, the
end result is still one or more search trajectories.

Some of the specific local search behaviors that we want to
visualize are the following:

• Does it behave like as what we intended?
• How good is the local search in intensification, i.e. does it

have sufficient exploration within a local neighborhood?
• How good is the local search in diversification. i.e. does it

make successful non-local moves to previously unexplored
parts of the search space?

• Is there any sign of cycling behavior?
• How does the local search algorithm make progress?
• Where in the search space does the search spend most of

its time?
• How do two different algorithms compare?
• What is the effect of modifying a certain search parameter/

component/strategy w.r.t the search behavior?
• How far is the starting (initial) solution to the global op-

tima/best known solution?
• Does the search quickly find the global optima/best known

solution region or does it wander around in other regions?
• How wide is the local search coverage?

3. VISUALIZING LOCAL SEARCH
Clearly, it is easier to understand large volumes of informa-
tion if it can be presented graphically in an effective fash-
ion. In VIZ, we have three forms of visualization for under-
standing local search behavior, namely generic local search
visualization, algorithm-specific visualization and problem-
specific visualization. We use visualizations which exploit
the human visual strengths: understandingspatial informa-
tion, observingtrendsandpatterns, and detectinganomalies.

3.1. Generic Local Search Visualizations
Generic (or abstract) visualization is a powerful concept be-
cause it is independent of the underlying local search algo-
rithm and combinatorial problem. Generic visualization is
possible in the context of local search for combinatorial prob-
lems because every problem has a search space model [7] and
every local search algorithm works by mutating the current
solution along this search space w.r.t generic properties such
as objective values, distance, time (iterations). VIZ has vi-
sualizations of the search trajectory, objective value, fitness-
distance correlation, and generic events during the search.
Each visualization is explained below.

A). 2-D Abstraction of Search Trajectory

Since the search trajectory is closely related to behavior,the
question is how to visualize the search trajectory given that
each solution is normally in high dimensional space. We start
by describing some existing work.



Figure 2: N-to-2-Space Mapping [9]

Kadluczkaet al. [9] proposed anN-to-2-Spacemapping of
the search space and search trajectory which maps the search
space down to 2-D. However the high number of collision
between the points inexponentialsearch space (O(kn) or
O(n!)) versus the availablepolynomialscreen space causes
such static visualization to be ineffective for largen (See
Fig.2). Furthermore, a static diagram like Fig.2 does not con-
vey the dynamic behavior of search well.

Lau et al. [13, 5] introducedAnchor Points, see Fig.3 (left),
as a reference set for approximating movement in the search
space by measuring thedistance(e.g. hamming distance,
bond distance) between the current solution and the anchor
points. They used the 2-DDistance Radargraph which is an
animated histogram where the y-axis represents the distance
between the current solution and respective anchor point.
This visualization is less intuitive than the one in VIZ since
the anchor points can change and the transition between the
current solutionst to its neighborst+1 is less intuitive. It
also does not make use of 2-D layout.

We [6] use a different notion of Anchor Points from [13, 5]
and make use of a definition which makes it feasible to lay-
out the points in an abstract 2-D space, see Fig.3 (right). This
is more intuitive and does not have the difficulty in N-to-2-
Space mappings of making the visualization too complex. In
[6], the paper focuses on defining appropriate generic mea-
sures for explaining local search and develops the idea of
anchor points; while in this paper, the focus is on the user
interface issues and effective graphical presentation.

Figure 3: Distance Radar [13] (left) vs Abstract 2-D
Layout in V IZ (right) — both reveal similar information:
the movement of solution st to st+1 from the area near
solution 1 to the area near solution 2 & 3.

To layout the points, we use a spring model originally pro-
posed in graph drawing, NEATO [10]. For each pair of

points, place a ‘spring’ which has a natural length equals the
distance of that particular pair. As spring will try to return to
its natural length when stretched or shrunk, the idea is thata
good layout is one which reduces the overall spring tension,
see Fig.4. Our current implementation uses an approxima-
tion of the spring model for speed. We remark that it is not
always possible to have a ‘perfect’ 2-D layout where the 2-D
screen distance always corresponds to actual distance in the
abstract 2-D space.

Figure 4: An illustration of the spring model

After the points are laid out, they are drawn with different
colors which represent the range of objective value of the par-
ticular point w.r.t the best-known value (e.g. blue = 0%..1%
off; green = 1%..3% off; brown = 3%..7% off; grey = above
7% off). This forms a ‘contour map’ which is helpful to high-
light the quality of the region currently being searched.

We then produce an animation of the search trajectory by an-
imating the trail of current solution against the set of anchor
points. The search trajectory can be drawn as a line to show
temporal sequence (see Fig.5) or as an area to show the vis-
ited regions (see Fig.12). The trail length is adjustable to
provide different level of details. Arrows indicates direction
and drawn with different color to indicate uphill vs down-
hill moves. This gives an effective way of subtly showing
uphill and downhill moves without cluttering the animation.
The search trajectory animation is the primary tool in VIZ
to highlight various behaviors which may have been hidden.
Fig.5 illustrates an animation to demonstrate diversification
(after visiting blue colored region, the search is moving into
different search space)(A, Red Line) and solution cycling
(moving back and forth in the search space)(B, Blue Line).

Figure 5: Search Trajectory Visualization. Two search
trajectories A and B are visually compared. X: Global
Optima/Best Found.



Figure 6: Event Bar to highlight generic events: (A) & (B) – two search trajectories can be compared side by side, each
trajectory has its own indicator for: [Iterations elapsed/Iterations left (Actual search time)]; (C) – examples of ‘new best
found solution’ (blue bars); (D) – examples of ‘series of non-improving moves’ (shades of orange).

B). Objective Value over Time

Figure 7: Objective Value over Time, enhanced with
various statistical information. The ‘C’ and ‘B’ along
the y-axis refer to ‘current’ and ‘best found so far’ so-
lution at that iteration, respectively.

Objective value (or fitness) is often the key attribute that
drives a local search algorithm. Rather than simply plotting a
conventional graph of the objective value over time/iterations
(see Fig.7: plot(A) & (B)), we enhance this with various sta-
tistical information to help understand the overall context of
how the objective value is changing. This includes: max,
min, a frequency histogram to highlight the average and dis-
tribution of objective values found by a local search run(C),
a line to indicate best-found-so-far(D), and an indicator of
percentage-off (the gap in percentage between current objec-
tive value w.r.t the best objective value found throughout the
search run)(E). Notice that we can display two visualiza-
tions for the objective value simultaneously for comparing
two different algorithms (the red(A) and blue(B) lines).

C). Fitness Distance Correlation

Figure 8: The FDC scatter plots of two search trajec-
tories, the Red Line and Blue Line from Fig.5.

FDC analysis is meant to give a rough measure of the prob-
lem difficulty. In FDC analysis, we want to know whether
there exists a correlation between the Fitness (F) and Dis-
tance (D) of the solutions w.r.t the nearest global optima (or
best found solution). The FDC coefficient,rFD (See [7]), is
defined as:rFD = covarianceF D

varianceF ∗varianceD

. It is conjectured
that for a minimization problem, it is:

1. ‘straightforward’, whenrFD ≥ 0.15, as the fitness in-
crease as the local search is approaching global optima (≈
a linear line in FDC scatter plot).

2. ‘difficult’, when −0.15 < rFD < 0.15, as there is very
little correlation between fitness and distance w.r.t global
optima. (≈ a line parallel to x-axis in FDC scatter plot).

3. ‘misleading’, whenrFD < −0.15, as the fitness decrease
as the local search is approaching global optima. (≈ an
inverse linear line in FDC scatter plot).

The FDC can be visualized by plotting the fitness difference
along y-axis and distance along x-axis between the solutions
with the nearest global optima (or best known, if the global
optima is not available). In VIZ, rather than a static FDC
scatter plot, we can incorporate more information with an
animation of the position of current solution w.r.t the nearest
global optima/best known by plotting theF -D information
over time as shown by the movement of the points with in-
verted color against the backdrop of the overall FDC scatter
plot in Fig.8.

D). Event Bar

Like a video recorder, we employ index points/regions for
moving around in time during playback. Local search usu-
ally needs to run for a large number of iterations, e.g. thou-
sands to millions. As such, the time bar alone may be ei-
ther too fine or too coarse a granularity for moving around
the search trajectory. To highlight interesting portions of
the trajectory, VIZ automatically computes highlights (index
points/regions) ongeneric events, e.g. ‘new best found so-
lution’ (C), ‘series of non-improving moves’(D). The index
points/regions are attached to the time bar, to make it easier
to skip possibly boring parts of the animation, see Fig.6.

2.2. Algorithm-Specific Visualizations

Figure 9: Tabu Tenure over Time for two types of TS,
the details will be discussed in Section 6. The ‘TT’
along the y-axis refers to ‘tabu tenure’ at that iteration.

Algorithm-specific visualizations refer to those that are spe-
cific to a particular local search algorithm. What is being vi-
sualized here is usually the dynamic parts of the local search
algorithm. More precisely, we are interested to visualize
the change in the values of dynamic parameters over time.
Some examples are: (i) observing the current temperatureT
in Simulated Annealing; (ii) observing the tabu tenure over
time in Tabu Search, see Fig.9.

2.3. Problem-Specific Visualizations
Problem-specific visualization is the most intuitive form of
visualization as it is directly related to the problem being
solved. For example, early work using TSP visualizations



Figure 10: Combined: information is presented all at once (useful for overview) — versus — Animated: information is
presented over time (useful for details). Alpha blendingis used to show the decaying animation.

Figure 11: TSP tour visualization of instance pr76 from
TSPLIB [18], left: optimal tour, right: non-optimal tour
as there is an obvious crossing in the tour (circled).

(see Fig. 11) to assist man-machine interactive optimization
already begun in 1960s [15]. More recent work is the Human
Guided Search approach, see [11] for a representative paper.

Some local search tools (e.g. COMET [19], a programming
language approach for Constraint-Based Local Search) pro-
vide a built-in interface that allows the algorithm designer to
implement problem-specific visualizations.

Problem-specific visualizations have their limitations. While
some problems have natural visualizations, particularly those
which can be cast in a spatial setting (e.g. TSP), it is not so
clear how to do it in other cases. There is also information
overload since looking at the full solution has too much de-
tail. Also it is harder to visualize the search trajectory since a
problem specific visualization focuses too much on the cur-
rent solution in gory detail but does not show what is going
on in the local search across a time interval, e.g. it might be
difficult to see if the local search is trapped in a local minima
simply by looking at several TSP tours or a tour animation.

4. PRESENTATION ASPECTS OF VIZ
We now discuss various presentation aspects of VIZ which
are essential for effective explanation of search behavior.

4.1. Multi-Source Visualizations
Each visualization that has just been described before is ca-
pable of explicating some aspect of local search behavior
which may have been hidden in the search trajectory. How-
ever, relying on one type of visualizationalonecan be my-
opic and does not convey the full picture of what is happen-
ing during search. We believe that multiple points of view are
required given the difficulty of analyzing local search behav-
ior. For example: we could observe solution cycling in Fig.5,

trajectory(B) but if we do not also observe Fig.9, right side
(S-TS), we may not realize that the cause of such cycling is
because of the low tabu tenure at that moment — a detailed
explanation about this issue is given in Section 6.

In psychology, Situation Awareness theory [4] points out that
the human user is unable to see multiple visualizations that
require high attention at the same time. When human is bom-
barded with a number of displays, the overall scanning ability
drops resulting in concentration on only a small fraction of
the displays, thus losing Situation Awareness. To address this
problem in VIZ, we designate the search trajectory visualiza-
tion as the main screen where most information about local
search behavior will be displayed. The other visualizations
serve as peripheral visualizations to backup the main one.
Nevertheless, as search playback in VIZ is not on-line, this
issue is not so severe as the user can always pause, rewind,
and replay the search at any time in case some information
was missed. To better support such multi-source visualiza-
tions, VIZ presents the visualization windows in a Multiple
Document Interface (MDI) style.

4.2. Animating the Information over Time
As local search runs for a large number of iterations, the most
natural visualization is to present the information dynami-
cally over time using animation. Such information over time
will be hard to be seen statically as trying to draw everything
in one display will tend to clutter the visualization. A com-
parison of static versus animated visualization of the same
data is given in Fig.10. The amount of data animated is a
user specifiable window of a portion of the search trajectory
with l consecutive solutions. The animation makes it look
like a trail of lengthl. By changing the window size, one can
choose the tradeoff between a static and dynamic displays.

Animation is achieved by drawing a series of consecutive
pictures with small changes drawn with smooth transitions.
To avoid flicker, VIZ exploitsalpha blendingto draw smooth
transitions by fading out the color of the trail’s tail gradually.

V IZ also allows the user to adjust the search playback speed
which determine how fast the animation will be drawn. This
is essential as different individuals have different visual ca-
pacities in discerning the information from animation.



4.3. Color and Highlighting
Given the visual complexity, it is important to make good
use of color/grey scale level, object sizes/shapes, texture, ori-
entation, labeling, etc. The idea is to highlight information
while minimizing information overload so that one can take
in more at a glance.

In V IZ, highlighting is used in a number of ways. In search
trajectory visualization, color is used to form contour map
which highlight the quality of regions in the search space;
Alpha blending is used to show search coverage (see Fig.12);
Colors are used to label similar objects, e.g. Red for search
trajectory 1 and Blue for trajectory 2 in all visualization win-
dows; The invert of a color: (255-R,255-G,255-B) can be
used to visually contrasting certain part of the objects labeled
with the original color: (R,G,B); In various charts, we draw
scale to assist the user in determining the values.

Figure 12: Alpha blendingis used to highlight search
coverage (darker ≈ more search around that region).
Here, we can see that the red search trajectory is more
spread than the blue search trajectory.

4.4. Learning via Visual Comparison
An interesting feature of VIZ, which is available in almost all
its visualizations, is its support for learning via visual com-
parison. This is done by allowing one to playback two local
search runs concurrently and draw both visualizations in ei-
ther juxtapose (side-by-side) or superimpose (overlap) mode.

Here, we want to exploit the human ability for detecting
visual similarities and differences. For example, suppose
we have two search runs of local searchLS: run1 and
run2, whererun1 is LS with parametersφ andrun2 is LS
with some different parametersφ′. Then, we can investigate
whether the changes in the parameters fromφ to φ′ is the
cause for any significant differences in the search. Another
usage of visual comparison is to compare the general behav-
ior of two distinct local search algorithmsLS1 andLS2; or
to compare two parts of the same search trajectories. We can
also use visual comparison to check the robustness of a sto-
chastic local search by checking whether the performance of
two runs of the same local search with the same settings pro-
duce similar performance. Fig.13 depicts a comparison of
two trajectories using multiple views.

4.5. Viz Graphical User Interface
The overall VIZ GUI is shown in Fig.13. The GUI ele-
ments should be familiar as it utilizes the Windows XP look
and feel. VIZ is developed using Microsoft Visual C# 2005
which utilizes .NET Framework 2.0 for the implementation
of the common controls used in Windows XP. The core vi-
sualizations screens are drawn using CsGL: a C# Graphics
Library wrapper for the standard Graphics Library OpenGL.

One notable UI feature of VIZ is a trivial but yet very impor-
tant feature: customizability, as not every user are comfort-
able with the default visualization settings. The control panel
in V IZ allows user to zoom/pan the search trajectory visual-
ization screen, to choose between juxtapose or superimpose
mode for visual comparison, to change color scheme, etc.

5. USING VIZ
The current version of VIZ is designed foroff-line (post-
mortem) analysis. This means that VIZ is used for analyz-
ing one or more runs of one or more local searches after they
have been completed. It uses log files created during runs
of the local search to do its visualization. It is important to
record enough information (keep the log size small) and to
reduce the amount of disturbance (if any) to the local search
being analyzed. These issues are outside the scope of this
paper. Fig.14 gives an overview of how VIZ is used as a lo-
cal search program visualizer/debugger. an instance of the
abstraction and visualization process discussed in [17] inthe
context of local search.

Figure 14: Overview of V IZ workflow and usage

We have focused on off-line local search visualization for the
following reasons:

1. We want to avoid impacting on local search performance
and avoid the overhead of visualization and time spent in
the interactive user visualization process.

2. We want interactive visualization where the visualizations
and interactions are smooth and not lagging. Depending on
the complexity of the local search, it may be computation-
ally intensive such that it causes jerky animation and slow
response per iteration. An off-line mode has the advantage
that one does not have to wait for the search process to
generate new data and furthermore, some of the necessary
works can be pre-computed.



Figure 13: The overall GUI of V IZ; A - Search Playback Controller: Each search trajectory can be played back indepen-
dently or played back simultaneously with the other search trajectory. We can also turned on/off the drawing of the search
trajectory and adjust its playback speed; B - Control Panel: Most of the UI elements of V IZ are customizable.

3. The VIZ visualizations make use of the fact that we have
access to the entire search trajectories, e.g. we know
the best solutions found, can select representative anchor
points for a search trajectory, pre-compute statistical infor-
mation, pre-compute index points for the event bar, etc.
It also allows one to jump into the ‘future’, in general,
move anywhere within existing search trajectory or trajec-
tories. Anon-linevisualizer would be more limited since
it would only has access to past trajectories. For instance,
this makes it harder to select anchor points since there is
less points to work with. Because VIZ is off-line, it also
means that one can make more stable visualizations, e.g.
the objective value visualization makes use of the best in-
formation rather than relative information. It also makes it
easier to do comparisons of two trajectories.

4. The off-line mode uses log files which makes it easy to be
interfaced with virtually any local search implementation,
e.g. COMET [19], MDF [14], etc.

We remark that on-line visualization for local search is also
interesting but since it will be more restrictive, it is natural to
first develop good tools for the off-line problem.

Apart from its basic usage as program visualizer/debugger,
V IZ is also useful as a presentation tool for explaining to oth-
ers in a more intuitive fashion how a local search algorithm
works. In fact, since local search algorithms are usually not
complex, one might on the basis of a VIZ animation be able
to implement a variant of the algorithm simply by looking at
a VIZ presentation without any other details. We envisage
V IZ can be a useful tool for giving talks and teaching!

6. AN IN-DEPTH EXAMPLE: Developing Re-TS for TSP
To better understand the visualization and how to use VIZ
user interface, we use a working example which shows how
one can use VIZ to aid in developing a Reactive-Tabu Search
(Re-TS) [2] local search algorithm for solving TSPs.

Phase 1: Understanding
We begin by analyzing the problem theoretically. A typical
TSP search space isO(n!) as there aren! valid tours/solutions
— these tours would have vary in their solution quality. Al-
though the search space is very big, one strategy is to make
use what is known about TSPs. Here we use the idea that
TSPs have been shown to follow a ‘Big Valley’ property [7]
— this means that good local optima, including the global



Figure 15: Search behavior of S-TS local search algorithm with different tabu tenure (TT) settings for TSP instance ‘pr76’.

optima, are clustered in the ‘Big Valley’ region. A heuristic
is to assume that when the local search finds a local optima
for the TSP, this solution shouldn’t be too far from the ‘Big
Valley’, and thus not too far from the global optima. In this
heuristic, the size of this ‘Big Valley’ is assumed to be much
smaller than the full search space. This heuristic leads us to
concentrate the local search effort in the ‘Big Valley’ region
so that it has a better chance to find good solutions quicker
than if the local search does not intensify around it.

We can use FDC analysis to check the existence of ‘Big Val-
ley’ in TSP by checking whether the TSP solutions that are
close to global optima/best found also have small TSP tour
costs (better fitness), and whether the solutions that are far
from global optima/best found are relatively poorer than so-
lutions in the ‘Big Valley’ region, i.e. we want to see a posi-
tive correlation between Fitness and Distance. Let’s examine
Fig.16: All the scatter plots have linear shape and highrFD

(> 0.15) — a positive correlation. We also observe that al-
most all local optima are close to global optima/best found
(distance≈ 1

3
∗ n). This means that the objective value can

provide good guidance for the local search since the FDC
analysis shows that when local search moves to a better so-
lution, it is somewhat closer to the global optima.

Figure 16: FDC Scatter Plots for TSP instances ([18]).

We will use a local search method calledtabu search(TS)1

with two-edges swap heuristic to solve the TSP. For TS,tabu
tenureis one of the most important parameter to set. To make
TS effective, the algorithm designer must find a good tabu
tenure length — which is not too short as it may cause TS
to be trapped in solution cycling, and also not too long as it
may prevent TS to explore promising regions of the search
space. Currently, setting a good tabu tenure seems to be an
art as many algorithm designers either try a large number of
values by trial-and-error, or perhaps set a value that happens

1Tabu Search is a neighborhood based local search that iteratively moves
the current solution to the best non-tabu neighbors. Recently applied moves
are forbidden/tabu to be re-applied for the duration of a sensitive parameter
calledtabu tenure. This forms a short term memory mechanism to prevent
solution cycling. The details of how Tabu Search works can befound in [7].

to be good. In this example, we show how VIZ is used to
intelligently design a Re-TS strategy for adjusting the tabu
tenure. Note that in this example, we will only modify the
tabu tenure and keep other tabu search configurations (para-
meter values/components/search strategies) intact.

We first use VIZ to investigate the effects of various tabu
tenure settings for Strict-TS (S-TS) — TS with a static tabu
tenure (TT). Fig.15 (Trajectory{(A). . .(E)}) shows the S-
TS search behavior on the fitness landscape of TSP instance
‘pr76’ (n is the problem size, heren = 76) when we set TT:
(A). TT = 2
(B). TT = 30% ∗ n
(C). TT = 50% ∗ n
(D). TT = 150% ∗ n
(E). TT = 300% ∗ n

We observe that for TT= 2, obvious solution cycling occurs
after steepest descent to the first local optima (Fig.15-1).For
TT < 50% ∗ n, we observe solution cycling in the first lo-
cal optima found with an increasing cycle length (Fig.15-2).
This is because with TT< 50%∗n, it is inadequate for S-TS
to escape from the first local optima that it found. If this sit-
uation is not fixed, no matter how long we run the S-TS, the
overall solution quality will never improve beyond the best
solution found in that first local optima.

In the other extreme, when TT> 150% ∗n, we observe poor
intensification (Fig.15-4). The search trajectory(E) tends to
go very far from the region where the global optima (X) lies
— the ‘Big Valley’. The quality of solutions found along
trajectory(E) is also generally poor. When TS is unable to
intensify around the ‘Big Valley’, the search seems poor.

For TT between range [50% ∗ n . . . 150% ∗ n], there are dif-
ferences in the search behavior (see Fig.15-3), but we did not
find obvious solution cycling nor obvious poor intensifica-
tion. However, we observed that using smaller TT, S-TS will
explore more around a local optima that it found whereas
when using larger TT, S-TS will diversify from that local op-
tima quicker. This is best shown using an animation. How-
ever, a static snapshot in Fig.15-3 is roughly sufficient to ex-
plain this behavior. Here, trajectoryC (red) — TT =50%∗n,
is not too diverse. However, the trajectoryD (blue) — TT =
150% ∗ n, covers more search space and the objective value
variance is wider (more diverse) than trajectoryC.



Figure 17: Left side: Search Trajectory of S-TS (red) with TT = 110% ∗ n; X = global optima; Y = initial solution (greedy
nearest neighbor); Z = the non improving period where the search is venturing around region A, which is far from the ‘Big
Valley’; Right side: The same search space with additional Search Trajectory of Re-TS (blue). This Re-TS concentrates
its search around ‘Big Valley’ region B better than S-TS. Thus, in this instance (pr76), by the time Re-TS (blue) able to
find the global optima, S-TS (red) is still wandering quite far from region B.

We tried this hypothesis on other TSP instances and conclude
that a reasonable range for the tabu tenure setting for most
TSP instances tested is in the interval [50%∗n . . . 150%∗n].
Without visualization, it is harder to determine this tabu
tenure range nor is it easy to see this tabu search behavior.
However, the range is still quite large and furthermore differ-
ent TSP instances require different tabu tenure settings.

We also observe another pattern in the search trajectory vi-
sualization. A full run of S-TS with TT =110% ∗ n for pr76
managed to obtain the global optima (as reported in TSPLIB)
after≈ 3500 iterations. However, when we animate the run
(shown in Fig.17, left side), we observe that starting fromY
(initial solution), most of the time S-TS is already close to
X (global optima). However, S-TS ventures to areas very far
from the ‘Big Valley’ during periodZ and during that period,
no improvement is found at all. A natural question is: sup-
pose most of the time the local search is already close toX
— but can’t actually reach it, can we tune the local search to
reachX from Y quicker with a better strategy?

Phase 2: Tuning
After understanding the problems encountered, we move on
to the tuning phase. We use Re-TS to help alleviate the prob-
lems found. In Re-TS, we avoid setting the tabu tenure stati-
cally, but instead we allow the tabu tenure to change within a
pre-defined range according to certain event(s) encountered
during search. Reactive tabu tenure value is quite logical be-

cause there are different local optima with different depths
in the search space which requires different tabu tenure to
make TS able to escape from it. Our task now is to set a re-
active strategy: when and by how much should we increase
or decrease the tabu tenure?

We have observed that smaller tabu tenure tends to inten-
sify tabu search around a local optima and larger tabu tenure
tends to diversify tabu search from a local optima. Our aim
is to intensify around the ‘Big Valley’ region without being
trapped in solution cycling. This gives the following Re-TS
strategy — keep decreasing the current tabu tenure by 1 for
every iteration until we reach the lower bound (50%∗n). Re-
TS trajectory will be more focused on intensification in the
local optima region. However, once the distance between the
current solution to the best found solution (our guess for the
location of ‘Big Valley’) is very close (< 10, possibly cy-
cling), we set tabu tenure to be the upper bound (150% ∗ n).
This produces a pattern of tabu tenure over time as shown
in Fig.17, right side. The resulting Re-TS local search algo-
rithm behaves better than S-TS, as it manages to concentrate
its search on TSP ‘Big Valley’ region more than S-TS.

We have tested this Re-TS strategy with several other TSP
instances and found that this Re-TS strategy produces rea-
sonable resultsacrossdifferent TSP instances though not al-
ways better than S-TS with a ‘lucky’ tabu tenure setting on a
particular instance (see lin105 in Table 1).



Instance S-TS S-TS S-TS Re-TS
(90%*n) (100%*n) (110%*n)

pr76 109307 109091 109091 108159
eil101 630 629 629 629
lin105 14484 14479 14379 14484

Table 1: Best results of Strict-TS with different tabu
tenure settings vs Reactive-TS after 3000 iterations

To summarize, this extended example illustrates how one can
use VIZ to solve a problem by making some initial observa-
tions, form a hypothesis, improve the algorithm and test it.
We can iterate this process as needed.

7. CONCLUSION
We have seen the power of visualization to explain the kinds
of behavior listed in Section 2 that we would like to observe
and understand in order to ‘demystify’ local search. We em-
phasize that some of these observations are hard to derive
without proper visualizations. We believe that with visual-
ization tools like VIZ, the algorithm designer can gain new
insights in problem solving which can lead to the develop-
ment of better as well as novel local search algorithms.

On a more practical front, it gives the algorithm designer,
who is trying to solve a combinatorial optimization problem
with local search, a tool for tuning the local search program
to obtain better or faster solutions.

A takeaway message for program visualization is that per-
haps the ideas of generic visual abstractions could be also
useful in other domains. Having a variety of simple visual-
izations to enable insights from multiple viewpoints is also a
basic idea which could be effective elsewhere.
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NOTE
This paper is in color — the animations in the visualiza-
tions are best experienced with the prototype VIZ system or
with the video demos. More details on VIZ can be found at:
http://www.comp.nus.edu.sg/˜stevenha/viz
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