
Chapter X

TUNING TABU SEARCH STRATEGIES
VIA VISUAL DIAGNOSIS

Steven HALIM1 and Hoong Chuin LAU2
1stevenha@comp.nus.edu.sg, School of Computing, National University of Singapore;
2hclau@smu.edu.sg, School of Information Systems, Singapore Management University

Abstract: While designing working metaheuristics can be straightforward, tuning them to
solve the underlying combinatorial optimization problem well can be tricky.
Several tuning methods have been proposed but they do not address the new
aspect of our proposed classification of the metaheuristic tuning problem: tuning
search strategies. We propose a tuning methodology based on Visual Diagnosis
and a generic tool called Visualizer for Metaheuristics Development Framework
(V-MDF) to address specifically the problem of tuning search (particularly Tabu
Search) strategies. Under V-MDF, we propose the use of a Distance Radar
visualizer where the human and computer can collaborate to diagnose the
occurrence of negative incidents along the search trajectory on a set of training
instances, and to perform remedial actions on the fly. Through capturing and
observing the outcomes of actions in a Rule-Base, the user can then decide how
to tune the search strategy effectively for subsequent use.

Key words: Metaheuristics, Software Framework, Tuning Problem, Visualization

1. INTRODUCTION

Metaheuristics have been used extensively to solve hard combinatorial
optimization problems, often with significant success. Given that
metaheuristics do not guarantee optimality in general, the challenge is not so
much to design a working algorithm but to tune it so as to obtain the best
possible result. One way to measure the goodness of a metaheuristic
algorithm is by checking its result against a set of benchmark problem
instances.

Since different problems or even instances of the same problem may
require the metaheuristic algorithm to be configured with different search
parameters, components and/or strategies in order to work optimally, some

2 Chapter X

resort to trial-and-error tuning through extensive experiments. Others use
their past knowledge or experiences to tune the algorithm. From the industry
standpoint, this process is unproductive especially against a backdrop of
tight development schedules.

Alternatively, human 1 intelligence and machines can collaborate to
shorten development time through the use of a well-designed visualization
and interaction tool. The human-plus-computer collaboration has obtained
considerable success in solving complex tasks, e.g. CAD/CAM. With the
help of a well-designed visual diagnostic tool, an algorithm designer is able
to examine search trajectories more systematically, steer the search, and
readily see the impact of his action. We argue that this significantly reduces
the time to design good search strategies which in turn speed up the overall
development time.

Using visualization to assist optimization has been proposed in the
seminal work of (Jones, 1996). In this paper, we propose a visualization
scheme that determines quickly a set of rules that are helpful to the
underlying metaheuristic algorithm. Unlike works due to (Klau et al., 2002)
and others which focused on problem-specific visualization, we emphasize
the design of a generic problem-independent tool called Visualizer for
Metaheuristics Development Framework (V-MDF). This work is an
extension of MDF proposed in (Lau et al., 2004b, 2006).

Instead of relying on specific problem domain information, V-MDF
seeks to capture a pictorial view of the search trajectories and reports any
anomalies to the human user. By visual inspection of these anomalies, the
user can determine with higher accuracy the problems encountered during
search, and apply remedial actions (such as tuning the parameters, adjusting
the components of metaheuristics, or deriving better adaptive search
strategies). With V-MDF, the algorithm designer begins with a metaheuristic
on some defined search strategies, observes the search run-time dynamics,
and dynamically improves the search strategies.

V-MDF differs from existing approaches for tuning metaheuristic which
focused on the design of an efficient method for automatically choosing the
best parameter values and/or metaheuristic components in black-box fashion
(Adenso-Diaz and Laguna, 2006; Birattari, 2004). Instead, we extend the
idea of visualizing the search process by (Kadluczka et al., 2004) and that of
analyzing the search landscape by (Fonlupt et al., 1999; Merz, 2000; Hoos
and Stuetzle, 2005), to help the users in designing better metaheuristics. This
feature makes V-MDF especially useful for designing metaheuristics for new
combinatorial optimization problems where search strategies have not been
well-defined.

1 The terms human, user, or algorithm designer are used interchangeably to refer to those

who specialize in the development of metaheuristic algorithms.

X. Tuning Tabu Search Strategies via Visual Diagnosis 3

This paper proceeds as follows: In Section 2, we discuss metaheuristic
tuning problem in a broader sense. In Section 3, we review several tuning
methods in the literature and classify them appropriately. In Section 4, a
Visual Diagnosis Tuning methodology is proposed, followed by a discussion
of V-MDF, the tool to support this methodology, in Section 5. A case study
of the usage of V-MDF is given in Section 6. Section 7 gives the conclusions
and future directions.

2. THE METAHEURISTICS TUNING PROBLEM

Recently, there is a growing interest in addressing the metaheuristics tuning
problem. There are on-going discussions in the literature about the proper
definition and scope of the tuning problem, e.g. (Birattari, 2004), as well as
various proposals of tuning methods. However, several aspects are often
overlooked. In this section, we propose a new classification to put into
perspective our broader view of the metaheuristic tuning problem, especially
in tuning search strategies.

2.1 Different Types of Tuning Problem

The term ‘tuning’ is often too broad. In the context of metaheuristics, we
classify tuning problem into three types.

2.1.1 Type-1: Calibrating Parameter Values

In this ‘easiest’ type of tuning problem, the metaheuristic algorithm has been
completely defined; and all the designer needs to do is to set the appropriate
parameter values, e.g. setting the tabu tenure, setting the size of candidate
list, etc. Different parameter values may influence the overall metaheuristic
performance. Seemingly easy as it sounds, the challenge is that varying the
value of one parameter may affect the optimal setting of the other parameter
values, since the parameters are often correlated. Furthermore, in many
practical situations, the range of parameter values is too large for the
algorithm designer to determine their values through trial-and-error.

2.1.2 Type-2: Choosing Best Components

In this type of tuning problem, the algorithm designer needs to choose
several components that will be used in a particular metaheuristic algorithm,
e.g. choosing neighborhood (2/3/k-Opt), tabu list (tabu move/attribute), etc.
Typically, each choice of metaheuristic component has its own strengths and

4 Chapter X

weaknesses. (Charon and Hudry, 1995) show that different components have
different effects to the performance of metaheuristics. Finding the optimal
mix of components of the metaheuristic is often a challenging task as one
needs to try a large number of combinations. This type of tuning problem is
considered to be more complex than type-1, because once a good
configuration is found, one may still need to properly set the parameter
values of the components in the chosen configuration.

2.1.3 Type-3: Tuning Search Strategies

In this type of tuning problem, the algorithm designer needs to design good
search strategies to optimize the run-time dynamics of the algorithm. In
general, a good search behavior has the following characteristics: intensify
the search on a good region to yield better solutions and diversify when the
region is depleted of its potential, e.g. the adaptive/reactive strategies of
Reactive Tabu Search (Battiti and Tecchiolli, 1994).

Unfortunately, search strategies are often problem-specific and deriving
them is tricky. The effectiveness of search strategies is strongly dependent
on the correct timings in which they are applied, which in turn introduce
more parameters and rules. Recently, more complex intensifying and
diversifying strategies have been proposed in the form of hybridization, in
which one metaheuristic is hybridized with other metaheuristics and/or with
other techniques such as linear programming and branch & bound. While
such hybridization can further exploit the beneficial effect of intensification
or diversification, it also adds another dimension of complexity in tuning the
strategies.

Finding the effective search strategies to enhance the performance of the
search algorithm is challenging because the number of possible search
strategies can only be limited by one’s own imagination. Moreover, due to
several circumstances, a search strategy does not always perform what it is
intended to perform as illustrated in various ‘failure modes’ (Watson, 2005).
Thus, the need to explore a lot of strategies and then verify its correctness
and effectiveness has made this type of tuning problem a tedious task.

2.2 The Need for a Good Solution

Tuning problem is a serious issue. Comments from experts highlight both
the importance and the difficulty of addressing this tuning problem:

• “The selection of parameter values that drive heuristics is itself a

scientific endeavor, and deserves more attention than it has received in
the Operations Research literature…”, (Barr et al., 1995).

X. Tuning Tabu Search Strategies via Visual Diagnosis 5

• “The design of a good metaheuristic remains an art…”, (Osman and

Kelly, 1996).
• “For obtaining a fully functioning algorithm, a metaheuristic needs to be

configured: typically some modules need to be instantiated (Type-2) and
some parameters (Type-1) need to be tuned.”, (Birattari, 2004).

• “There is anecdotal evidence that about 10% of the total time dedicated
to designing and testing of a new heuristic or metaheuristic is spent on
development, and the remaining 90% is consumed (by) fine-tuning (its)
parameters”, (Adenso-Diaz and Laguna, 2006).

• “…Optimization of an Iterated Local Search may require more than the
optimization of the individual components…” and “…There is no a priori
single best size for the perturbation. This motivates the possibility of
modifying the perturbation strength and adapting it during the run.”,
Stuetzle in (Glover and Kochenberger, 2003).

Any metaheuristic algorithm designer will face this tuning problem and they
must find the solution: metaheuristic that is optimally configured to solve the
underlying combinatorial optimization problem under its current context.

Formerly, due to the difficulty of tuning problem, algorithm designers
choose to deal with the type-1 and type-2 problems only. Unfortunately, this
effort does not guarantee good performance. One may have a good set of
components of the metaheuristic algorithm and has all its parameters
properly set. But, if the metaheuristic does not exploit adaptive memory and
conducting intelligent exploration of the search space, it will often be
outperformed by a dynamic, adaptive, self-correcting, and more intelligent
counterpart. A simple example has been shown by Reactive-Tabu Search
(Battiti and Tecchiolli, 1994), where a good search strategy which is able to
adaptively adjusts the tabu tenure can outperform the performance of the
original, static Tabu Search, on the set of unknown future instances --- even
if the tabu tenure setting of the static Tabu Search is the best over the set of
training instances.

The new classification that we propose put this type-3 tuning problem to
be equally important with the other types. Ideally, we believe that to obtain
the best solution for the metaheuristic tuning problem, all types of tuning
problem must be addressed properly.

In this paper, we propose a new approach for addressing the tuning
problem, especially in tuning search strategies.

6 Chapter X

3. LITERATURE REVIEW

There are several proposals to address the metaheuristic tuning problem. We
classify these tuning methods into two major types: Black-Box versus
White-Box tuning methods. The details of the classification are shown in the
Table X-1.

Table X-1. Black-Box versus White-Box Tuning Methods
 Black-Box Tuning Methods White-Box Tuning Methods
Definition • Treat metaheuristics as ‘black-box’.

Usually in form of automated tools
that systematically search for the best
parameter values or combination of
metaheuristic components.

• Open up the ‘box’ to allow the
algorithm designer to inspect the
inner-working of the algorithm and to
assist in designing a better algorithm.

• Require collaboration with human.
Strengths • Can relieve the burden of addressing

type-1 and type-2 tuning problem
from human.

• Can address type-1, type-2, and
especially type-3 tuning problem.

• Allow for possible human creativity,
innovation or invention.

Weaknesses • Do not allow for human creativity,
innovation, or invention.

• Have difficulty in handling type-3
tuning problem.

• Often try too many configurations,
thus in tight development time, they
can only run/test each configuration
in a relatively short period of time.

• Do not relieve the burden of tuning
from human.

• The human must understand the
behavior of the metaheuristic.

• Tuning results are inconsistent as
different users do tuning differently.

• The time required to conduct tuning
is also a variable as it depends on the
expertise of the user.

3.1 Black-Box Tuning Methods

CALIBRA. (Adenso-Diaz and Laguna, 2006) proposed a tool to
automatically calibrate parameter values when given pre-defined ranges. It
works by iteratively calling the target algorithm with various set of
parameter values and then uses the objective value feedbacks to determine
which set of parameter values should be used in the next iteration.
CALIBRA uses Taguchi’s fractional factorial design to keep the number of
parameter values being tried to be within acceptable limit. Iteratively,
CALIBRA can narrow down the range of the algorithm parameters until the
values converge. After the maximum number of iterations elapsed,
CALIBRA will return the best set of parameters found so far. This way, it
manages to solve the type-1 tuning problem quite effectively.

CALIBRA has limitations. The current version can only tune up to 5
parameters, the other parameters must be fixed to ‘appropriate values’. The
need to supply initial range is also problematic when one does not know a
good starting range for certain parameters. Furthermore, CALIBRA is not
designed to address type-2 and type-3 tuning problem.

X. Tuning Tabu Search Strategies via Visual Diagnosis 7

F-RACE. (Birattari, 2004) proposed the racing algorithm, a method that was
previously known in the machine learning community. The racing algorithm
(F-Race), paraphrasing from his work, can be summarized as follows: First,
feed F-Race with a (possibly large) set of candidate configurations. F-Race
will estimate the expected performance of the candidate configurations in an
incremental way and discard the worst ones as soon as sufficient statistical
evidence is gathered against them. This allows a better allocation of
computing power because rather than wasting time in the evaluation of low-
performance configurations; the algorithm focuses on the assessment of the
better ones. As a result, more data is gathered concerning the configurations
that are deemed yielding better results, and eventually a more informed and
sharper selection is performed among them. Finally, the last configuration is
declared as the winner (best) configuration. This process is very much
analogous with the real life racing.

The number of possible configurations to test can be very large, thus by
not trying every possible configuration blindly, F-Race is much better than
systematic brute force try-all approach. F-Race is classified as type-1 and
type-2 tuning problem solver as it can be used to find good parameter values
and proper combination of components of the algorithm simultaneously.

However, F-Race also has several inherent limitations, which arise from
the fact that it is a black-box tuning method. Similar to CALIBRA, F-Race is
unable to help the algorithm designer to give solution beyond the best
configuration found in the set of possible configurations initially supplied to
the tuning algorithm. One should also be aware of the ‘combinatorial
explosion’ of the number of configurations to be tried, as it will require
enormous computation time that may possibly exceeding the maximum
allowed development time. Hence, to keep the size of initial set of
configurations small, the algorithm designer must intelligently decide which
should be included in the set, a process that preferably not be done blindly.

3.2 White-Box Tuning Methods

STATISTICAL ANALYSIS. The search space (a.k.a. fitness landscape) of
combinatorial optimization problems can be enormously large. Even if one is
unlikely to explore the entire search space, one may gather crucial statistical
properties of the search space, such as the structure of the search space, the
distribution of local optima, the existence of ‘big valleys’, etc. The result of
such analysis, if interpreted and reasoned correctly, may yield interesting
discoveries that can be exploited to improve the design of the metaheuristic
algorithms.

8 Chapter X

Some of the widely used methods for statistical analysis are Fitness
Distance Correlation (FDC) and Run Time Distribution (RTD) analysis. The
works by (Fonlupt et al., 1999; Merz, 2000; Hoos and Stuetzle, 2005), are
typical works that utilize statistical methods in metaheuristics design.

Statistical methods for metaheuristics design can be used to address all
types of tuning problem. However, this process is not straightforward.
Knowing the statistical information about the fitness landscape of a
combinatorial optimization problem is a necessary but not sufficient
condition to design a good metaheuristic for that problem. A significant
amount of human effort is still required to reason on the facts found using
statistical analysis before a good solution for tuning problem can be
produced. In the context of tuning problem, this lengthy process is
undesirable due to tight development time. We argue that without a proper
computer-aided tool, it is difficult if not impossible to generate the required
solution within tight development time, with merely statistical data.

HUMAN-GUIDED SEARCH. As shown in many experiments, human is
known to have advantages in visual perception and intelligence over today’s
computer. Human-guided search tries to utilize these advantages by
providing the user with a good visualization and interaction tool to view the
problem-specific visualization of the current solution (e.g. TSP tours, etc)
and to control the search, respectively. In general, human know the
ingredients of good solutions of the combinatorial optimization problem,
thus human guidance may be able to assist the algorithm to obtain good
results quicker.

Research on interactive man-machine optimization can be found in as
early as (Michie et al., 1968) and (Krolak et al., 1971). Recently, this line of
work is re-surfaced in (Klau et al., 2002).

Human-guided search is an indirect form of white-box tuning method,
where one can add the strategies that were adopted when manually guiding
the search into the underlying search algorithm. However, guiding the search
for a prolonged period of time is tedious in practice as its effectiveness will
be limited by the stamina and patience of the human user.

VISUALIZATION OF SEARCH ALGORITHM BEHAVIOR. Rather than
visualizing problem-specific information as in human-guided search above,
the generic attributes of the search algorithm can also be visualized. By
monitoring them, one can gauge the algorithm’s performance and can use
the information to tune the search algorithm accordingly.

(Kadluczka et al., 2004) proposed a generic visualizer to visualize the
search coverage. The authors proposed a mapping for N-dimensional objects
to 2-D space which can be displayed on the screen. By plotting the positions

X. Tuning Tabu Search Strategies via Visual Diagnosis 9

of the N-dimensional solutions in 2-D space, one can approximately identify
which search space has/has not been explored by the metaheuristic search
algorithm. This information can be used as a guidance to tune the algorithm.
The limitation of this approach is that the huge gap in size between of the
exponential search space and the polynomial screen space renders such
visualization inappropriate for larger values of N. Furthermore, the static
visualization adopted in this work does not convey the dynamic run-time
behavior of metaheuristic search well.

3.3 Remarks

Each tuning method has its own strengths and weaknesses. However, their
effectiveness can only be compared relatively --- not only since they are
customized to address different types of tuning problems, but also many
subjective issues are involved, especially the tuning methods with human
intervention. In Table X-2, we provide our subjective view of the differences
of each tuning methods with respect to V-MDF as the basis of comparison.
In general, most tuning methods have difficulty in handling the type-3 tuning
problem. We also observe that most of the works (other than statistical
methods) have yet to release their tools for public use (CALIBRA is
available on the web2).

There are few other works around tuning problem, e.g. agent based
approach +CARPS (Monett-Diaz, 2004); self adaptive algorithms (Battiti
and Tecchiolli, 1994); metaheuristic to tune other metaheuristic: meta-
evolution (Pilat and White, 2002); visualization of 2-variables problem
(Syrjakow and Szczerbicka, 1999). All of them belong to either black-box or
white-box tuning method depending on whether these methods treat the
metaheuristic algorithm being tuned as black-box or not.

Table X-2. Comparison of several factors between existing tuning methods:
Tuning Methods A B C D E F

Type of Method Black Black White White White White
Can address type-1? Easy Easy Hard Hard Hard Average
Can address type-2? N/A Easy Hard Hard Hard Average
Can address type-3? N/A N/A Hard Average Average Easy
Ease of Usage Easy Easy Hard Average Average Average

Legends: A (CALIBRA), B (F-Race), C (Statistical Methods), D (Human Guided Search),
E (Visualization of Search), F (V-MDF)

2 The current version is available at http://coruxa.epsig.uniovi.es/~adenso/file_d.html

10 Chapter X

4. VISUAL DIAGNOSIS TUNING METHODOLOGY

4.1 Background

The goal of visual diagnosis tuning is to enable the user to address the tuning
problem, especially in finding good search strategies quickly, through visual
interaction with the search process.

In the past, visualization has been applied for understanding information,
e.g. data can be visualized via graphical charts. Good visualization, see
(Tufte, 1983, 1990, 1997), conveys information about underlying data or
processes and it plays a crucial enabling role in our ability to comprehend
large and complex data, to be aware of the situation (Situation Awareness
theory (Endsley, 2000)). Via such visualization, human can gain insights of
the data and possibly, create innovations --- something that is hard to be
done by today’s computer.

An interaction tool channels the human’s idea back to the machine. This
cycle of {… – visualization – interaction – visualization – ...} forms the
interactive optimization concept as discussed in (Jones, 1996; Scott et al.,
2002), and in human guided search that was discussed previously (Michie et
al., 1968; Krolak et al., 1971; Klau et al., 2002).

In the context of tuning metaheuristics, if the user is given the proper
visualization of the inner-workings of a metaheuristic algorithm, the user
may be able to discover interesting properties that are hard for the machine
to identify automatically. Such visualization can be used to help answering
the ‘why’ question on the run-time dynamics (i.e. type-3 tuning) of the
metaheuristic algorithm, which is the first necessary step to create effective
search strategies. As an illustration, suppose that the current results produced
by a Tabu Search algorithm are very poor. If presented with the visualization
of the inner-workings of Tabu Search plus prior knowledge of the desired
Tabu Search behavior, the algorithm designer may become aware of the
situation that may be the source of the problem (e.g. the search is trapped in
solution cycling) and subsequently, the algorithm designer may find possible
treatments to rectify the improper behavior (e.g. increase the tabu tenure).

Visual diagnosis tuning is tied to the metaheuristic algorithm being used
and not to the combinatorial optimization problem itself, and thus it inherits
the generic characteristic of metaheuristic. Hence, such visual diagnosis
tuning can be applied to virtually any combinatorial optimization problem as
long as a metaheuristic algorithm exists to solve it. For illustrative purpose,
our focus in this paper will be for Tabu Search (TS) only.

X. Tuning Tabu Search Strategies via Visual Diagnosis 11

4.2 {Cause-Action-Outcome} Rules

A search trajectory is stated as the path taken by the algorithm from the start
until the end of the search. Along this trajectory, the search may encounter
basic events (e.g. arrive in local optima, an uphill/downhill move, etc).

We define a more generic term incidents as the occurrence of a basic
event or a sequence/combination of basic events. These incidents can be
diagnosed visually to portray the current state of the search trajectory. We
define positive incidents as incidents that shows the search is along a good
trajectory (e.g. new best solution found) and negative incidents as incidents
that shows the search is along a bad trajectory (e.g. solution cycling).

In response to negative incidents (or cause), the user might decide to
perform a remedial action – such as adjusting search parameter(s), changing
component(s) of the algorithm, or applying intensification/diversification
strateg(ies). The hope is that this action will result in a positive, user-defined
desired incident (or outcome) within a reasonable time. This {cause-action-
outcome} sequence is defined and captured as a rule.

To measure the effectiveness of a rule, we compute its success score. The
range of success score is (0..1]. In this paper, it is measured by the
exponential function: e-∆iteration/C where ∆iteration is the number of iterations
between the first execution of the action until the observation of the desired
outcome. C is a constant and is used to adjust the rate of diminishing success
score. We set C to be 30 in this paper. Intuitively, this function dictates that
the success score diminishes slowly over time. Observe that the success
score = 1 when ∆iteration = 0 (the desired outcome is immediately
observed) and it tends to 0 when it takes a very long time (or perhaps never)
before the desired outcome is observed.

Once a rule is performed, its total execution counter is incremented by 1,
its success score is updated, and the search state is monitored for the next
application of the rule. Typically, some action needs several iterations or
even re-applied several times before the desired outcome is observable. Thus
to avoid excessive re-applications of the action of the same rule, the next
check of the search state is done using probability (1-success score), that is,
the action of an effective rule is less likely to be repeated.

The success scores of each rule throughout the search run are then
normalized with the total execution to obtain the normalized success score
(NSS), see Figure X-1. This process is repeated over several training
instances3 to avoid the danger of ‘over-fitting’. If the averaged-normalized
success score (ANSS) of a rule over several training instances is high, the
rule is regarded as successful in bringing the search trajectory into a better
one. Otherwise, the rule is regarded as less successful and the user might

3 Training instances should have different characteristics, e.g. different problem size.

12 Chapter X

decide to further adjust his search strategy (action) or to refine the definition
of his desired outcome.

By visually diagnosing the transformation from the cause incident to the
outcome incident and monitoring the averaged-normalized success score, the
user can determine the effectiveness of his search strategy.

For example, the high averaged-normalized success score of:
{Non_Improving – Greedy_Random_Restart – At_Good_Region}

signifies the potential effectiveness of this greedy random restart strategy
to steer the search from bad region to area with good quality solutions;
whereas the almost zero averaged-normalized success score of:

{Solution_Cycling – Decrease_Tabu_Tenure – No_Solution_Cycling}
shows the ineffectiveness of decreasing the tabu tenure during solution
cycling, and:

{Solution_Cycling – ‘Magic_Strategy’ – Reach_Optimal_Solution}
illustrates an almost impossible scenario where only a ‘magic strategy’
can achieve the overly optimistic desired outcome.

We argue in this work that high averaged-normalized success score is a
strong measure of the effectiveness of a remedial action, as high score
implies that the action frequently steers the search trajectory from negative
incidents to desired (positive) outcomes, at least over the several training
instances. This argument carries weight if we assume further that future
instances have similar characteristics with training instances.

Success Score of two rules plotted against time (iterations)

0

0.2

0.4

0.6

0.8

1

1 31 61 91 121 151 181

Rule 1, score: 0.2

Rule 2, score: 0.6

Rule 1, score: 0.1

Figure X-1. This is an example of the success scores of the execution of two rules. The ⊗ sign
along the X-axis marks re-applications of the action of the rule before the search manages to
arrive at the desired outcome. Here, Rule 1 is executed twice. The scores of 0.1 and 0.2,
which is normalized over two executions to obtain NSS of 0.15, imply that either the strategy
or the formulation of desired outcome adopted in Rule 1 has problem; whereas the high NSS
of 0.6 of Rule 2 implies the potential effectiveness of the strategy used in Rule 2. These rules
will then be applied to other training instances to obtain ANSS.

X. Tuning Tabu Search Strategies via Visual Diagnosis 13

5. VISUALIZER FOR MDF (V-MDF)

V-MDF is a white-box tuning tool that utilizes the visual diagnosis tuning
methodology to address the type-3 tuning problem. In this section, we
present the two main components of V-MDF: Distance Radar and Rule-
Base, followed by a discussion on how V-MDF is used for visual diagnosis
tuning.

5.1 Distance Radar

The Distance Radar is the underlying graphical user interface for visualizing
incidents in the search trajectory. The function of the Distance Radar in this
paper is to display incidents that occur along a Tabu Search trajectory. These
incidents either indicate the necessity for a remedial action or to display the
outcome of an applied strategy. From these incidents, the user can derive
rules in form of {cause-action-outcome} discussed above.

Essentially, Distance Radar graphically plots generic properties of
distance4, fitness (objective value), and recency information of the elite
solutions with respect to the current solution. In the trajectory based search,
the current solution can be seen as the ‘current position’ in the search space
and the elite solutions, which were found and recorded along the search
trajectory traversed so far, can be seen as the signposts or anchor points in
the search space. By measuring the distance of current solution (current
position) to these ‘anchor points’, coupled with the other two generic
properties: fitness and recency information, one can gain information of the
relative movement of the search along its trajectory with respect to these
‘anchor points’. This new search trajectory tracking concept enables the user
to visualize the previously infeasible search trajectory visualization. This is
because the size of the set of recorded elite solutions/anchor points is fixed
and much smaller than the exponential size of the search space.

The Distance Radar consists of dual 2D graphs: Radar A (with Recency
graph) and Radar B (with Fitness graph). Each of the radar is used to
exhibit distance information from different perspective. In both radars, the
X-axes represent the anchor points and Y-axes show the distance between
current solution with each of the anchor point. The Y-axes is drawn in
logarithmic scale to emphasize the importance of anchor points within short
distances with respect to the current solution. Points in the radars are
connected with lines to help the user in diagnosing the trend.

4 Discussions about various distance functions can be found in (Sevaux and Soerensen, 2005;

Ronald, 1997,1998; Fonlupt et al., 1997), etc. For example, the user can use ‘bond
distance’ and ‘hamming distance’ to measure the distance of two Traveling Salesman
Problem (TSP) and two Military Transport Planning (MTP) solutions, respectively.

14 Chapter X

Radar A displays the sorted anchor points by their fitness values. The
recency values of these anchor points are plotted in the complementary
Recency graph. Radar A displays only a visually manageable number of
anchor points (a small but adjustable fraction with respect to the problem
size) and any better elite solution found will replace the poorest recorded
anchor point. The effect of Radar A is to approximate the ‘goodness’ of the
region currently being searched. Generally, if Radar A shows a trend that is
gradually moving upward (distance to current solution increases) from some
anchor points, it indicates that the search is diversifying from the region of
these anchor points. On the other hand, if the trend is moving downward, the
search is intensifying onto region near these anchor points.

Radar B displays the sorted anchor points by their recency. The fitness
of these anchor points is plotted in the complementary Fitness graph.
Typically the number of recent solutions being recorded is set to be the same
as the tabu tenure. Radar B can be seen as a long-term memory mechanism
that complements the tabu list (short term memory). As cycling usually
occurs around these recently visited solutions (especially local optima),
Radar B can detect cycling in them quickly.

All the graphs: Radar A, Recency graph, Radar B, and Fitness graph
complements each other to help a user in detecting various incidents. Figure
X-2 illustrates some incidents observeable using these graphs, e.g. solution
cycling, plateau effect, non-improving, etc.

Figure X-3 illustrates an example of how the observation of the incidents
via Distance Radar can assist the selection of a remedial action. In this
example, three elite solutions/anchor points have been found along the
search trajectory of a minimizing problem and recorded as Local Optima 1,
2, 3. Now, suppose from the 3rd local optima to current solution, the search
experienced a series of non-improving solutions (drawn as dotted lines from
Local Optima 3 to current solution). The situation (cause) triggered the need
for a remedial action. At this point, the algorithm designer may attempt to
improve the search by applying a search strategy Z (action). Let one of
either Solution X or Y be the solutions (outcome) reached after applying the
strategy Z.

For Solution X, Radar A shows that the search is heading towards the
current best local optima solution and Radar B shows that the nearest local
optima solution is the one that is 2nd most recently found. Both radars have
shown the algorithm designer that after applying strategy Z, the search is
heading towards good recently found local optima. Hence, if strategy Z is
intended to perform intensification, the observation from the Radar plots
shows that it is indeed on the right track; otherwise it is considered as
ineffective (as moving towards Solution X is not its intended purpose).

X. Tuning Tabu Search Strategies via Visual Diagnosis 15

For Solution Y, Radar A and B shows an upward moving horizontal line.
This indicates that the current solution is moving away from all known local
optima solutions, which is the ‘correct’ outcome if the purpose of strategy Z
is to conduct diversification.

Figure X-2. Examples and interpretations of several incidents: negative (above) and positive
(below).

16 Chapter X

Figure X-3. This is a visualization of the search trajectory of a minimizing problem. Without
the aid of Distance Radar, it is hard to see the search behavior. On the other hand, one can
understand the run-time dynamics of the Tabu Search algorithm by observing the plots shown
in Distance Radar (moving to X is intensification to region around solution 2 and moving to Y
is diversification).

5.2 Rule-Base

The {cause-action-outcome} rules that are derived while observing the
incidents using Distance Radar are stored in a repository called the Rule-
Base (RB), which maintains the normalized success scores of the rules.

Upon completing visual diagnosis tuning, the user may examine the RB
to decide whether to discard statistically inferior rules. The rules that survive
eventually will form the basis for the solution of the tuning problem, in the
sense that these rules can be either left as search strategies (triggered as
needed/type-3) or merged into the metaheuristic algorithm (by modifying the
parameters/type-1 or components of the algorithm/type-2).

The {cause-action-outcome} rules are implemented by the event-driven
mechanism of MDF (Lau et al., 2004b, 2006), as follows.

First, the user implements a V-MDF’s EVENT class that describes an
incident and links it with the desired HANDLER class. The user can refine the
implementation of these EVENT classes to adjust the accuracy of the sensing
of those incidents. The examples of the pseudo-code of V-MDF EVENT
classes that describe two negative incidents (which were shown previously
in Figure X-2) are listed in Table X-3a.

Next, the user needs to define a remedial action: the necessary steps
required to alter the search trajectory, in form of the HANDLER class. When
V-MDF senses an EVENT (cause) for the first time, it will trigger the
associated HANDLER (action), register the ID of the desired outcome in the
V-MDF desired_event table, and increment the total execution of the
associated rule. However, subsequent re-applications of the action of the
same rule will be done using (1-success score) probability. The example of
the pseudo-code of V-MDF HANDLER classes is shown in Table X-3b.

Finally, V-MDF will automatically check the search state after the
execution of the HANDLERs with another EVENT (desired outcome). These

X. Tuning Tabu Search Strategies via Visual Diagnosis 17

events have no associated HANDLERs. If this EVENT is expected to occur (by
checking the IDs listed in desired_event table), then the success score of the
associated rule is computed using the formula explained in Section 4.2. The
desired outcomes that occur after a long time will obtain a very low score.
The example of the pseudo-code of V-MDF EVENT classes for checking
desired outcome is shown in Table X-3c.

Table X-3. Examples of cause (EVENT), action (HANDLER), & outcome (EVENT) in pseudo-code.
Non_Improving : Event {
 return true if there is no new entry to
 Radar A after a long period, return false
 otherwise;
}

Set Handler: ‘Greedy_Random_Restart’
Add total execution of this rule by 1.

Solution_Cycling : Event {
 return true if the distance to one or more
 recent elite solutions in Radar B is short,
 return false otherwise;
}

Set Handler: ‘Increase_Tabu_Tenure’
Add total execution of this rule by 1.

A
. C

A
U

SE

Greedy _Random_Restart : Handler {
 pick TS current best solution, perturb it in
 greedy fashion, and set TS to resume from
 the newly created solution;
}

Add ‘At_Good_Region’
in desired_event table.

Increase_Tabu_Tenure : Handler {
 get TS current tabu tenure,
 increase it a bit,
 set current tabu tenure to the new value;
}

Add ‘No_Solution_Cycling’
in desired_event table

B
. A

C
T

IO
N

At_Good_Region : Event {
 return true if the fitness difference
 between the current and best found local
 optima is low; return false otherwise;
}

Add the success score of the
associated rule if this event’s ID
is found in desired_event table.

No_Solution_Cycling : Event {
 return true if the distance to all recent
 elite solutions in Radar B are far enough,
 return false otherwise;
}

Add the success score of the
associated rule if this event’s ID
is found in desired_event table.

C
. O

U
T

C
O

M
E

Table X-4. Overall Workflow of V-MDF
A. Implementation Phase
• Implement the metaheuristic algorithm in MDF framework (Lau et al., 2004b, 2006)
B. Visual Diagnosis Tuning Phase
• Using V-MDF’s Distance Radar, diagnose the run-time dynamics of the metaheuristic

algorithm when applied to several representative training instances.
• For each negative incident that requires an action,

Write the appropriate {cause (EVENT), action (HANDLER), outcome (EVENT)} rule.
The success score and total execution of rules will be monitored by Rule-Base.

• Human can further diagnose (visually), add new rules, modify or delete existing rules.
C. Rules Selection Phase
• Turn off V-MDF’s Distance Radar.
• User can discard rules with low ANSS success score. (e.g. instance-specific rules).
• Surviving rules in Rule-Base form the elements of the final metaheuristic algorithm.

1. Leave the rules as search strategies, or
2. Merge the rules into the algorithm (i.e. the rules become native to the algorithm).

D. Testing Phase
• Test the metaheuristic algorithm with good rules to the whole test instances.

18 Chapter X

5.3 Putting It All Together

The workflow for implementing and tuning a metaheuristic to solve a
combinatorial optimization problem using V-MDF is outlined in Table X-4.

6. EXPERIMENTAL RESULTS

In this section, we report the experimental results. The real-life and
artificially generated test instances, plus several executables of V-MDF are
available at http://www.comp.nus.edu.sg/~stevenha/v-mdf.

6.1 Test Problem: Military Transport Planning (MTP)

We applied V-MDF to tune a Tabu Search implementation for solving an
NP-hard combinatorial optimization problem: Military Transport Planning
(MTP) which was defined in (Lau et al., 2004a):

Given service level q and a set of n requests from military units in tuple:
{number_of_vehicle_required, start_time, end_time}, choose q out of n
requests such that the total number of vehicles required to serve all q
requests is minimized. number_of_vehicle_required ≥ 1 and [start_time ..
end_time] lies within the range of a predetermined planning horizon.

Besides experimenting with several real life instances of this problem, we
artificially created larger test instances with known optimal values as
follows. First, create x random requests and then compute in polynomial
time, the minimum number of vehicles z that is required to satisfy all |x|
requests. Finally, insert y pairs of dummy requests such that q = |x| + |y| and
n = |x| + 2 * |y|. In this pair of dummy requests (y,y’), every attempt to
include y will not increase z while for y’, it will always increase the number
of vehicles required. The optimal solution is only one: first x requests plus
all y requests, ignoring the entire y’ requests. The value z will be the optimal
value for this artificial test instance.

6.2 Experimental Methodology

The purpose of our experiment is to demonstrate the capability of V-MDF in
dealing with the tuning problem that arises during the implementation of a
Tabu Search algorithm for MTP. All experiments are conducted using an
Athlon XP 2500+ machine with the following specifications: 1.8 GHz, 512
MB RAM, Windows XP. All codes are developed using VC++ .NET 2003.

X. Tuning Tabu Search Strategies via Visual Diagnosis 19

The experimental methodology is as follows:
1. Prepare a set of real-life and artificially generated test instances.
2. Start with a quick-and-dirty implementation (see Table X-5).
3. Record the results for all test instances. Tabu Search runs for 1000

iterations for each test instance (see Table X-7, column ‘Before’).
4. Tune Tabu Search algorithm with V-MDF using two training instances

(T4 and T7). The tuning time taken for the first author to conduct the
tuning for the first attempt is approximately 10 man hours.

5. Verify rules in Rule-Base (see Table X-6) in terms of their effectiveness.
6. Record the results of the tuned algorithm for all test instances again,

using the same 1000 iterations limit (see Table X-7, column ‘After’).
7. Compare the results.

6.3 Initial Results

Without proper insights on what happens within the search itself, one can
only guess which part of the algorithm that needs to be tuned. The only
observable fact without using the tool like V-MDF is the trend that the
performance of this Tabu Search implementation deteriorates when problem
size gets larger (See Table X-7, column ‘Before’). With V-MDF and its
Distance Radar, one can detect the possible problems and tune the Tabu
Search accordingly.

Table X-5. Quick-and-dirty TS implementation for MTP using MDF software framework
Component Remark

Solution The solution representation is simply a bit string b of size n.
b[i] = 0 when request i is not satisfied and 1 otherwise.

Initial Solution Randomly select q requests (the seed is fixed for all the experiments)
Local Move and
Neighborhood

Bit-flip move that will transform solution b to b’ with 1 bit changed.
(dhamming_distance(b,b’) = 1). Thus we have a maximum of O(n) possible
neighbors per iteration. Infeasible neighbors are penalized by adding a
constant penalty of 1000.

Objective Function For each satisfied request, add its vehicle requirement to the histogram.
The objective value is the maximum value in the resulting histogram.

Tabu List Same bit flip move can’t be applied for the next tabu_tenure iterations.
Tabu Tenure tabu_tenure is initially set as 0.1 * n.
Search Strategies None.

6.4 Tuning Phase

The first problem visually observed is the so-called ‘Plateau_Effect’. This
phenomenon can be easily explained: The objective values of MTP solutions
are discrete and their range is small, thus logically, there will be many MTP
solutions that have similar objective value. ‘Plateau_Effect’ can severely

20 Chapter X

reduce the effectiveness of neighborhood based search. We try several
methods and arrive with a penalty function that penalizes very infeasible
solutions more than slightly infeasible solutions and also penalizes solutions
that are too far from good solutions found so far. These two modifications
help reducing the plateau effect.

The second visual observation reveals ‘Solution_Cycling’ incidents. We
apply V-MDF to observe the behavior of the algorithm while we adjust the
tabu tenure, emulating Reactive-TS strategy. We then add a greedy random
restart strategy where we perturb the best found solution by randomly pick
requests with small number_of_vehicle_required. This acts as a diversifier to
enhance the search when it encounters ‘Non_Improving’ incidents.

All the rules found during the tuning process and their success rates
against the training instance are listed in Rule-Base (see Table X-6). Based
on the statistical data, we discard the ineffective rules; merge some of the
effective rules into the final algorithm; while the remaining rules are left as
search strategies. The results of the algorithm are recorded in Table X-7.

6.5 Results after Tuning

We observe in Table X-7 that the result improves substantially compared to
the initial results after a relatively short tuning phase. We like to point out
that the result per se does not matter much, but rather it is the manner that V-
MDF has helped the algorithm designer to identify negative incidents in a
timely fashion that is essentially helpful to the tuning of the algorithm. This
simple experiment has shown that by understanding the problems
encountered by the search algorithm on-the-fly, albeit imperfectly, one can
provide better remedies for such problems much faster, compared to blind
trial-and-error.

7. CONCLUSIONS AND FUTURE WORKS

In this paper, we studied the issue of tuning metaheuristics through
visualization. An extensive review of the existing tuning methods reveals
that works in the literature are scarce in handling the type-3 tuning problem.
We proposed a new visual diagnosis tuning methodology to address this
tuning problem. We presented a generic visualizer tool V-MDF to support
this methodology. V-MDF is currently designed for tuning Tabu Search
strategies.

X. Tuning Tabu Search Strategies via Visual Diagnosis 21

Table X-6. This is the content of the Rule-Base after conducting visual
diagnosis tuning using T4 and T7. Observe the column ANSS of a rule over
multiple (two) training instances. The closer the value to 1.0, the better that
rule is. Statistically inferior rules are discarded; good rules are either merged
into the final metaheuristic algorithm or left as search strategies.

NSS ANSS
Cause Action Desired Outcome

Over T4 Over T7

Effective rules, merged into the original algorithm
Plateau_Effect Apply_Penalty_Function No_Plateau_Effect - - -

Effective rules, left as search strategies
Solution_Cycling Increase_Tabu_Tenure No_Solution_Cycling 4.4/5: 0.87 8.1/10: 0.81 0.84
Passive_Search Decrease_Tabu_Tenure Aggressive_Search 2.6/4: 0.66 3.9/6: 0.66 0.66
Non_Improving Greedy_Random_Restart At_Good_Region 2.9/4: 0.71 5.9/7: 0.84 0.77
Discarded rules (purposely listed here as illustration)
Solution_Cycling Decrease_Tabu_Tenure No_Solution_Cycling 0.76/2: 0.38 6.6/11: 0.60 0.49

Table X-7. Table of experimental results: before and after tuning. Test instances are divided
into two categories and ordered by problem size. T4 and T7 are used as the training instance
(shaded) and should not be considered for the evaluation of the final algorithm performance.
Observe the improvement of the tuned over the non-tuned algorithm as well as the gap to
optimal (for artificially generated test instances).

Vehicles Required Gap to Optimal MTP Test Instances Before After Optimal Before After
Real-life test instances
T1 n: 39 q: 31 (80%) 6 5 - - -
T2 n: 249 q: 186 (75%) 61 35 - - -
T3 n: 283 q: 240 (85%) 84 84 - - -
T4 n: 302 q: 250 (83%) 277 140 - - -
Randomly generated test instances with known optimal
T5 n: 50 q: 40 (80%) 33 18 16 17 (106%) 2 (13%)
T6 n: 100 q: 85 (85%) 37 37 35 2 (06%) 2 (06%)
T7 n: 200 q: 180 (90%) 54 33 31 23 (74%) 2 (07%)
T8 n: 300 q: 250 (83%) 45 32 24 21 (88%) 8 (33%)
T9 n: 400 q: 300 (75%) 147 87 75 72 (96%) 12 (16%)

Our experience shows that V-MDF is effective in helping the user discover
and rectifying negative incidents through proper remedial actions. We
believe it is possible to develop a better way for visualizing Tabu Search or
other metaheuristic search strategies via statistical methods such as fitness
distance correlation plots. We hope to enhance V-MDF by providing
decision support for the user to detect negative incidents, to choose better
remedial actions, and to measure the performance of the rules. Collaboration
between V-MDF and automated methods is also another possible future
work. Finally, we see the prospect of using V-MDF as a research tool to
invent search strategies not yet known at present.

22 Chapter X

The progress in metaheuristics research is rapid, but the end-users still
require down-to-earth, ready-to-use tools for tuning their metaheuristic
algorithms. Currently, research involving metaheuristics tuning problem is
still preliminary and there are not many good tools available for public
usage. However, we anticipate that several of the tuning methods that are
theoretical concepts today will become widely used tools for metaheuristic
algorithm design in the near future.

POSTSCRIPT

We have since expanded Distance Radar into a more generic, off-line
visualization tool called Viz (see Halim et al., 2006).

ACKNOWLEDGEMENTS

The authors acknowledge inputs from Wan Wee Chong for the earlier
version of this work, Roland Yap, Mauro Birattari (IRIDIA, Belgium)
especially for the discussion of tuning problem, and the anonymous referees.

REFERENCES

Adenso-Diaz, B., and Laguna, M., 2006, Fine-tuning of Algorithms Using Fractional
Experimental Designs and Local Search, Operations Research 54(1): 99-114.

Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G., and Stewart, W.R., 1995, Designing and
Reporting on Computational Experiments with Heuristic Methods, Journal of Heuristics
1:9-32.

Battiti, R., and Tecchiolli, G., 1994, The Reactive Tabu Search, ORSA Journal on Computing
6(2): 126-140.

Birattari, M., 2004, The Problem of Tuning Metaheuristics as seen from a machine learning
perspective, PhD Thesis. University Libre de Bruxelles.

Charon, I., and Hudry, O., 1995, Mixing Different Components of Metaheuristics, In Meta-
Heuristics: Theory and Applications, Osman, I.H. and Kelly, J.P., ed.: Kluwer Academic
Press: 589-603.

Endsley, M.R., 2000, Theoretical Underpinnings of Situation Awareness: A Critical Review,
in: Situation Awareness Analysis and Measurement, Endsley and Garland, ed: Lawrence
Erlbaum Associates, Mahwah, NJ.

Fonlupt, C., Robilliard, D., Preux, P., and Talbi, E., 1999, Fitness Landscapes and
Performance of Meta-heuristics, in: Meta-Heuristics - Advances and Trends in Local
Search Paradigms for Optimization, Voss, S., Martello, S., Osman, I.H., Roucairol, C.,
ed.: Kluwer Academic Press, 18: 255-266.

Glover, F. and Kochenberger, G., 2003, Handbook of Metaheuristics, Kluwer Academic
Publishers.

X. Tuning Tabu Search Strategies via Visual Diagnosis 23

Halim, S., Yap, R., and Lau, H.C., 2006, Viz: A Visual Analysis Suite for Explaining Local

Search Behavior, To appear in 19th Annual ACM Symposium on User Interface Software
and Technology (UIST’06).

Hoos, H.H. and Stuetzle, T., 2005, Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann.

Jones, T., and Forrest, S., 1995, Fitness Distance Correlation as a Measure of Problem
Difficulty for Genetic Algorithms, In Proceedings of 6th International Conference on
Genetic Algorithms (ICGA’95): 184-192.

Jones, C.V., 1996, Visualization and Optimization, Kluwer Academic Publishers.
Kadluczka, M., Nelson, P.C., and Tirpak, T.M., 2004, N-to-2-Space Mapping for

Visualization of Search Algorithm Performance, In Proceedings of 16th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’04): 508-513.

Klau, G.W., Lesh, N., Marks, J., and Mitzenmacher, M., 2002, Human-Guided Tabu Search,
In Proceedings of 18th National Conference on Artificial Intelligence (AAAI’02): 41-47.

Krolak, P., Felts, W., and Marble, G., 1971, A Man-Machine Approach Toward Solving The
Traveling Salesman Problem, Communications of the ACM 14(5): 327-334.

Lau, H.C., Ng, K.M., and Wu, X., 2004a, Transport Logistics Planning with Service-Level
Constraints, In Proceedings of 19th National Conference on Artificial Intelligence
(AAAI’04): 519-524.

Lau, H.C., Wan, W.C., Lim, M.K., and Halim, S., 2004b, A Development Framework for
Rapid Meta-Heuristics Hybridization, In Proceedings of International Computer Software
and Applications Conference (COMPSAC’04): 362-367.

Lau, H.C., Wan, W.C., Halim, S., and Toh, K. 2006, A Software Framework for Fast Proto-
typing of Meta-heuristics Hybridization, To appear in Special Issue of International
Transactions in Operational Research (ITOR).

Merz, P., 2000, Memetic Algorithms for Combinatorial Optimization Problems: Fitness
Landscapes and Effective Search Strategies, PhD Thesis. University of Siegen, Germany.

Michie, D., Fleming, J.G., and Oldfield, J.V., 1968, A Comparison or Heuristic, Interactive,
and Unaided Methods of Solving a Shortest-Route Problem. In Machine Intelligence,
Michie, D., ed: American Elsevier Publishing Co., New York: 245-255.

Monett-Diaz, D., 2004, Agent-Based Configuration of Metaheuristic Algorithms, PhD Thesis.
Humboldt University of Berlin.

Osman, I.H. and Kelly, J.P., 1996, Meta-heuristics – The Theory and Applications, Kluwer
Academic Publishers.

Pilat, M.L. and White, T., 2002, Using Genetic Algorithms to optimize ACS-TSP. In
Proceedings of the 3rd International Workshop on Ant Algorithms (ANTS 2002):282-287.

Ronald, S., 1997, Distance functions for order-based encodings, In Proceedings of 1997 IEEE
International Conference on Evolutionary Computation (ICEC’97): 43-48.

Ronald, S., 1998, More distance functions for order-based encodings, In Proceedings of the
1998 IEEE International Conference on Evolutionary Computation (ICEC’98): 558-563.

Scott, S.D., Lesh, N., and Klau, G.W., 2002, Investigating Human-Computer Optimization, In
Proceedings of Conference on Human Factors in Computing Systems (CHI’02): 155-162.

Sevaux, M., and Soerensen, K., 2005, Permutation distance measures for memetic algorithms
with population management, In Proceedings of 6th Metaheuristics International
Conference (MIC’05).

Syrjakow, M. and Szczerbicka, H., 1999, Java-based animation of probabilistic search
algorithms, In Proceedings of International Conference on Web-based Modeling and
Simulation: 182-187

Tufte, E., 1983, The Visual Display of Quantitative Information, Graphic Press.
Tufte, E., 1990, Envisioning Information, Graphic Press.

24 Chapter X

Tufte, E., 1997, Visual Explanations, Graphic Press.
Watson, J.P., 2005, On Metaheuristics "Failure Modes": A Case Study in Tabu Search for

Job-Shop Scheduling, In Proceedings of 6th Metaheuristics International Conference
(MIC’05).

