Contents

- What is recursion?
- Characteristics of recursion
- Tracing recursive calls
- Identifying the sub-problem
- General recursive problems
- Gist of recursion
- Testing a recursive function
What is Recursion? (1/2)

- Other forms of recursion

Droste effect

Sierpinski triangle

Recursive tree

Garfield dreaming recursively.
What is Recursion? (2/2)

- A method of problem solving where the solution of a problem depends on solutions to smaller instances of the **SAME** problem.

 - **Base/Degenerated case**
 - \(\text{Factorial}(0) = 1 \)
 - \(\text{Factorial}(1) = 1 \)
 - \(\text{Factorial}(2) = 2 \times 1 = 2 \)
 - \(\ldots \)
 - \(\text{Factorial}(n) = n \times (n-1) \times \ldots \times 2 \times 1 \)
 - \(= n \times \text{Factorial}(n-1) \)

 - **Recursive case**
Example

- Given two integers a and b, with $a \leq b$, find the sum of the square of the numbers between a and b, both inclusive.

\[
\text{sumSq}(5,5) = 5^2
\]

\[
\text{sumSq}(5,6) = 5^2 + 6^2 = \text{sumSq}(5,5) + 6^2
\]

\[
\text{sumSq}(5,7) = 5^2 + 6^2 + 7^2 = \text{sumSq}(5,6) + 7^2
\]

\[
\text{...}
\]

\[
\text{sumSq}(5,15) = 5^2 + 6^2 + \ldots + 14^2 + 15^2
\]

\[
= \text{sumSq}(5,14) + 15^2
\]

\[
\text{sumSq}(a,b) = \text{sumSq}(a, b-1) + b^2
\]
Characteristics of Recursion

- Does base cases exist?
- Are the recursive argument(s) getting “smaller”?
- Does the recursion ever reach the base case?

\[
\text{sumSq}(a,b) =
\begin{align*}
\text{pre: } a & \leq b \\
\text{If } (a < b) \text{ then} & \\
\quad \text{return } \text{sumSq}(a,b-1) + b*b \\
\text{else} & \\
\quad \text{return } a*a
\end{align*}
\]
Tracing the Recursive calls

\[\text{sumSq}(a,b) = \]
\[\text{pre: } a \leq b\]
\[\text{If } (a < b) \text{ then}\]
\[\text{return } \text{sumSq}(a,b-1) + b^2\]
\[\text{else}\]
\[\text{return } a^2\]

\[\text{sumSq}(5,7)\]
\[\rightarrow \text{sumSq}(5,6) + 7^2\]
\[\rightarrow \text{sumSq}(5,5) + 6^2\]
\[\leftarrow \text{return } 5^2 = 25 \text{ from sumSq}(5,5)\]
\[\leftarrow \text{return } 25 + 6^2 = 61 \text{ from sumSq}(5,6)\]
\[\leftarrow \text{return } 61 + 7^2 = 110 \text{ from sumSq}(5,7)\]
Other ways to perform the sum of squares?

- \(\text{sumSq}(5,5) \to 5^2 \)
- \(\text{sumSq}(5,7) \to 5^2 + 6^2 + 7^2 \)
 - \(\to \text{sumSq}(5,6) + 7^2 \) ?
 - \(\to 5^2 + \text{sumSq}(6,7) \) ?
 - \(\to 5^2 + \text{sumSq}(6,6) + 7^2 \) ?
 - \(\to \text{sumSq}(5,6) + \text{sumSq}(7,7) \) ?
 - \(\to \ldots \)
Identifying the sub-problem (2/2)

- ‘Combining two half-solutions’ recursion:

\[
\text{sumSq}(a,b) =
\]

pre: \(a \leq b \)

If \(a < b \) then

\[
m = (a + b)/2
\]

return \(\text{sumSq}(a,m) + \text{sumSq}(m+1,b) \)

else

return \(a^2 \)
Example: Define a recursive function to print the first n elements of an array arr in reverse

Print the last element, then call the function recursively to print arr from the start till just before the last element.

What is the base case?

```
printArray (arr, n) =
    If (n > 0) then
        print arr[n-1]
        printArray(arr, n-1)
    return
```
Gist of Recursion (1/2)

Iteration vs Recursion: How to compute factorial(3)?

Iterative thinker

I do f(3) all by myself…return 6 to my boss.

Recursive thinker

You, do f(2) for me. I’ll return 3 * your answer to my boss.
You, do f(1) for me. I’ll return 2 * your answer to my boss.
You, do f(0) for me. I’ll return 1 * your answer to my boss.
I will do f(0) all by myself, and return 1 to my boss.
The One-Layer Thinking Maxim

Don’t try to think recursively about a recursive process

Illustration: *Compute n^2 recursively.*

Moment of inspiration:

$$(n-1)^2 = n^2 - 2n + 1$$

Thus,

$$n^2 = \begin{cases}
0 & \text{if } n = 0 \\
(n - 1)^2 + 2n - 1 & \text{otherwise}
\end{cases}$$

There is no need to think about how $(n-1)^2$ computes
Testing a Recursive Function/Method

- Check that it runs on base cases
- Check that it runs on slightly more complicated (than base) recursive cases
- Check the correctness of recursive cases via tracing
The End