
Secure and Lightweight Acknowledgment for Peer-to-Peer Overlay Networks

Lim Chee Liang∗ and Ooi Wei Tsang†

Department of Computer Science,
School of Computing,

National University of Singapore

ABSTRACT

We propose a cryptographic protocol for the secure and efficient acknowledgment of peer-to-peer multicast
messages. Every node is capable of verifying the acknowledgments upon receiving them, without waiting
for and relying on the server. Our protocol is efficient as it is bounded by the maximum depth of the tree,
and is resistant to denial-of-service attacks.

1. INTRODUCTION

1.1. Background and Problem
With the rising popularity and importance of peer-to-peer (P2P) networks and multicast, there has been
much research into P2P security. However, they mostly focus on authentication and confidentiality of
data. Since routing in P2P is performed by untrusted nodes, it can be easily subverted. Furthermore P2P
applications typically use unreliable transport such as UDP and thus lack any form of feedback. As a result,
it is non-trivial to determine when messages have been received by everyone.

A naive acknowledgment whereby every node replies to the server will easily overwhelm the server with
an implosion of messages. The goal is to design an efficient and secure acknowledgment scheme in the
context of P2P multicast (or many-to-one transmission protocols in general), which is scalable as the tree
grows, and does not require exceptionally high processing power from each node.

1.2. Paper Organization
In Section 1, we give an introduction to the background and problem behind this paper. Section 2 looks
at prior work and possible uses of the proposed solution. Section 3 discusses our model and assumptions,
followed by a list of notations and definitions in Section 4. Section 5 list the basic concepts behind the
solution, followed by discussion of our solution in abstract form in Section 6, and concrete form in Section 7.
We then analyze the theoretical performance in Section 8 and simulation results in Section 9. We conclude
in Section 10.

2. RELATED WORK AND POTENTIAL USES

Nicolosi and Mazières (2004) proposed an acknowledgment compression scheme for secure and compact
acknowledgment of multicast messages. Their protocol relies on a relatively new cryptographic assumption:
Gap-Diffie-Hellman (GDH), and is based on the multisignature scheme by Boldyreva (2003). Castelluccia,
Jarecki, Kim, and Tsudik (2006) proposed a separate protocol which works on long standing cryptographic
assumptions such as discrete logarithm. Their protocols extends existing multisignature schemes (the au-
thors focused on the Schnorr multisignature (Ohta & Okamoto, 1999)), and adds limited robustness using
a Merkle’s tree.

Proposed for a slightly different purpose, the scheme by Domingo-Ferrer, Mart́ınez-Ballesté, and Sebé
(2004) focuses on delivering distinct symbols from every node back to the server, without overloading it
with an implosion of incoming connections. They make use of super-increasing sequences in the knapsack
problem. However, the final message received by the server is linear to the number of nodes. Thus their
scheme does not fit the context of our problem.

Numerous multisignature schemes (Boneh, Gentry, Lynn, & Shacham, 2003; Boldyreva, 2003; Ohta &
Okamoto, 1999) exist, which will make acknowledgment aggregation and compression possible. However,
robustness in the face of uncooperative nodes is an issue, and these cryptographic schemes typically rely
on bilinear maps or other complex cryptographic primitives. Bilinear maps (Dutta, Barua, & Sarkar, 2004)
are computationally expensive functions performed over elliptic curve groups.

∗Student
†Supervisor



In the area of IP and P2P multicast, particularly media/video streaming, an acknowledgment scheme
can be used to aid streaming authentication schemes which require periodic revealing of secrets. Examples
include broadcast MAC protocols like TESLA (Perrig, Canetti, Song, & Tygar, 2001), or one-time-signature
schemes like BiBa (Perrig, 2001) and HORS (Reyzin & Reyzin, 2002). Nicolosi and Mazières (2004) mentions
other uses such as in confirming the receipt of invalidation messages for cached contents in a content
distribution network, or to ensure that security updates are received by every user.

3. MODEL AND ASSUMPTIONS

We assume that the network and P2P multicast overlay may contain an unbounded number of malicious
peers, with no bounds on the size of collusion groups. We assume the network to be open to packet sniffing
and spoofing. No assumptions are made on the reliability of the underlying routing mechanism (e.g. IP,
TCP or UDP). Our scheme’s main goal is to be an extension which can be plugged into any existing P2P
multicast protocols, hence the acronym Slapon . Thus the protocol assumes the existence of a proper
multicast tree.

4. NOTATIONS AND DEFINITIONS

We define subtree of node d as the largest subtree in the multicast tree, which is rooted at node d. Child
subtree refers the subtree of a child node. A node i which has evidence of node d implies that i’s
collection of public keys includes the public key of d. The term faulty nodes will be used to encompass
both nodes that are not functioning correctly, as well as malicious nodes seeking to disrupt the operations
of the multicast tree. A node i is said to dominate over another node j, iff i is an ancestor of j in the
multicast tree.

For a node i, Ti is the subtree of node i. The secret and public keys of i are si and pi respectively.
Si and Pi are the subtree equivalents of si and pi, and represents the secret and public keys of Ti. For
convenience, we also refer to subtree public keys as subkeys. We denote the ancestor d-levels above i as
id, and for a node i with n children, we represent the child nodes as i1, . . . , in. ic(j) denotes the child of i
which is dominant over j. ack(Ti) denotes he acknowledgment of subtree Ti.

5. BASIC CONCEPTS

The following list of long-standing cryptographic problems and assumptions widely used in cryptographic
constructions are employed in the construction of our protocol as well as in proving its security. A more
detailed discussion can be found in our full paper (Lim & Ooi, 2007).

• Computational Diffie-Hellman problem.
• Discrete Logarithm problem.
• RSA Problem.
• Hidden Order Modulus Group problem.
All the above problems are assumed to admit no polynomial running-time algorithm capable of solving

them, and thus are considered computationally difficult.

6. ABSTRACT MODEL

Rather than relying on the server and waiting for it to check all acknowledgments for errant nodes, we in-
troduce the concept of incrementally verifiable acknowledgments. Each node is able to independently
verify the acknowledgments from its child subtrees. Consequently, each node is able to deal with faulty child
nodes immediately. However, note that our solution is not a replacement for multisignatures. A proper
discussion on the reasons is given in our full paper. Proofs of the security of these constructions are also
deferred to the full paper.

6.1. Secret and Public Keys
Each node i has a secret key si, and the public key is given by f(g, si), for some g in the group. Similarly,
subtree Ti possesses secret key Si and public key f(g, Si). We can combine secret keys through Si =
G(s1, . . . , sn), where si, . . . sn are all the nodes in Si. It is difficult to invert f(g, x) to obtain x.



6.2. Acknowledgments and Verifications
To request for acknowledgment, the server generates for each acknowledgment round a unique pair of values
kv and kb, and issues (f(g, kv), kb) as the challenge. Node i acknowledge with its own acknowledgment
f(f(g, kv), si), combined with the acknowledgments from its child subtrees using an accumulator/aggregator
C(): ack(Ti) = f(f(g, kv), Si) = C(ack(i),ack(i1), . . . ,ack(in)).

To verify acknowledgment from child subtree Tc, the parent verifies that E(f(f(g, kv), Sc), kb) = f(g, Sc)
= Pc, using an extractor function E(). In essence, E() compute E(f(x, kv), kb) = x. To allow this, f() is
quasi-commutative: f(f(g, kv), Sd) = f(f(g, Sd), kv).

6.3. Joining and Leaving
As noted above, child acknowledgments are computed and verified against the child subkey. Thus every node
needs to keep track of their child nodes’ subkey. When nodes join or leave, their public keys are accumulated
or de-accumulated into ancestor nodes’ collection of child subkeys using a function A(): A(Pi, pc) = P ′

i ,
where P ′

i now contains pc.

6.4. Efficiency in Size
The individual inputs and final outputs of C(), G() and A() are of equal sizes, effectively compressing
acknowledgments and keys. Thus our protocol messages are of constant sizes, independent of the multicast
tree size.

6.5. Construction Based on Exponentiation and Multiplication
We propose one construction using modular integer arithmetic in an RSA modulus group. Let the keys be
elements in ZN , N = pq. We can then model f(g, si) as gsi . Let kvkb ≡ 1 (mod φ(N)), where φ(N) =
(p − 1)(q − 1). Acknowledgments are then computed as f(f(g, kv), si) = gkvsi . Since f() is now quasi-
commutative, i.e. (gkv )si = (gsi)kv , let E(f(x, y), z) = f(x, y)z. Verification can then be performed as
E(f(f(g, kv), si), kb) = (gkvsi)kb = (gsi)kvkb = gsi , fulfilling the requirements of the abstract model above.

Another possible construction uses elliptic curves to obtain smaller key sizes. Details of this as well as
proofs of security for the constructs in this section can be found in the full paper.

7. PROTOCOL

Next we describe the actual protocol as applied to a P2P multicast application.

7.1. Initial Setup
The server creates a new session by generating parameters of the group to operate in. For a group ZN , the
parameter are N, p, q in N = pq.

7.2. Joins
A nodes i joining the tree obtains the group parameters, secret and public keys from the server. It attached
to a parent node j, obtains the parent’s public key pj and notifies the server. i also agrees on a shared
secret key with j. The server notifies every ancestor node of i of its entrance, and provides the new node’s
public key for accumulation.

To authenticate the join messages, the server provides join message of new node i to ancestor node a in
the form (pi, hsa+pc

(pi)), where c is the child node of a which is dominant over i, and hk is a keyed hash
with input key k. Ancestor nodes can thus determine which child subkey to accumulate into by calculating
the hash for every child node, and can be assured that the join message is indeed intended for it, without
using expensive digital signatures.

7.3. Drops and Departures
The parent node informs server of the drop or departure of a child node. The server sends all ancestor
nodes a drop message which instructs them to de-accumulate the dropped node’s public key. The format of
drop messages is similar to that of join messages, where a hash/digest component provides authenticity at a
low cost. As a stop-gap measure to allow acknowledgment to carry on without waiting for ancestors to de-
accumulate the public key, the server may issue the parent node with the dropped subtree’s acknowledgment,
allowing it to forward a valid acknowledgment up the multicast tree.



Node
Each ancestor node Server Node (including server)

HashComp BigNumOp HashComp BigNumOp SymmCiph BigNumOp
Joins O(1) O(c) O(1) O(d) O(d)

Verifications &
acknowledgments

O(c) O(c)Drops &
O(1) O(c2) O(c) O(dc) O(dc)

departures

Table 1: Computation overhead for protocol. d is the maximum depth of the multicast tree, and c is the maximum out-
degree. HashComp refers to hash operations, BigNumOp refers to large number arithmetic and SymmCiph refers to symmetric
encryption and/or decryption.

7.4. Handling Faulty Nodes
Nodes which fail to forward acknowledgments or forward invalid acknowledgments are considered faulty and
dropped immediately by the parent. Proof: if child c of node i is not faulty, then a node below it is faulty.
If this is true, the parent of the faulty node would have dropped it and the server would have issued the
drop messages or stop-gap acknowledgments. Thus i should not receive invalid acknowledgments.

7.5. Rejoins
When a node d is dropped, all the nodes below it are affected. To prevent an implosion of rejoins from all
these nodes, the server will immediately rejoin the child nodes of d. Rejoin messages are sent to the new
ancestors of the rejoined nodes to update them of the rejoined nodes’ subtree keys, in a manner similar to
join messages.

7.6. Acknowledgments
Nodes issue acknowledgment in response to an acknowledgment challenge from the server. They acknowl-
edge only if they have successfully received the multicast data for the current round. The acknowledgment
is a combination of their own acknowledgment, computed with f(f(g, kv), si), and their child nodes’ ac-
knowledgments, using the accumulating/aggregating function C().

7.7. Preventing Replay and Denial-of-service Attacks
All join, drop and rejoin messages should contain increasing sequence numbers to guard against replay
attacks. To guard nodes against spoofed acknowledgment messages and a flood of such messages, which will
trigger expensive exponentiation operations, we propose the use of symmetric encryption. Acknowledgment
messages are encrypted using the shared key between a child and parent node, together with a unique
identifier of the child. Thus messages which do not decrypt to obtain the child’s identifier can be discarded.

8. PERFORMANCE ANALYSIS

Performance bounds. In terms of computational power and communication bandwidth required, our
protocol has an upper bound of the maximum depth of the multicast tree, which in a well distributed
multicast tree is typically close to log n, where n is the number of nodes in the tree. Tables 1 and 2
summarizes the computational complexity and communications overhead for the protocol components. A
detailed analysis can be found in our full paper.

Performance under denial-of-service. Both join and drop operations require only hash operations
to verify the messages before performing the more expensive large number exponentiation to accumulate/de-
accumulate the key. Thus a large number of invalid messages will not result in a denial-of-service. During
the verification phase, we must perform one exponentiation per acknowledgment from a child node, provided
the acknowledgment decrypts and verifies correctly via the shared symmetric cipher key between parent and
child node. Therefore a flood of malicious acknowledgment messages will only result in less costly symmetric
decryption and not large number exponentiation.

Optimization. Based on the performance analysis, we observe and propose an optimization: pre-
generation of public and secret keys for new nodes. Since the generation of keys is the only process other
than acknowledgments and verifications that requires exponentiation, we can generate keys and cache them
during periods of relatively lower CPU usage, providing some resistance against computation spikes when
the rate of joins and drops increases.

In conclusion, we expect our protocol to perform well even in large multicast trees and under the effect
of hostile nodes and external parties.



Node
Each child
node

Each ancestor
node

Server
Node
(incl. server)

Joins O(1) n/a O(1) O(d) Verifications &
acknowledgments

O(c)
Drops & departures n/a O(1) O(c) O(cd) acknowledgments

Table 2: Communication overhead for protocol. d is the maximum depth of the multicast tree, and c is the maximum out-degree.

512 bits key 1024 bits key
Injected events/s Delay (s) Total events/s Injected events/s Delay (s) Total events/s

(incl. rejoins) (incl. rejoins)
10 0.0722 16.2 10.4 0.0776 15.6

24.8 0.148 33.2 30.6 0.193 43.2
30.6 0.114 43.8 50.2 0.237 80
51.8 0.189 73.6 62.2 0.159 86.2
62.2 0.159 86.2 80.8 0.376 127.6
101.6 0.300 138 91.2 0.401 129.5
110 overflow 100 overflow

Table 3: Simulation results for 512 and 1024 bits keys. Total events per second includes rejoins, which results from drops.

9. SIMULATION

In order to provide a sense as to the practicality of our proposed protocol, we implemented a library to
provide the necessary functions of the protocol, and created a simulator to measure its performance.

9.1. Cost of Large Number Operations
Asymmetric cryptography often involve the use of large number arithmetic. However, due to their high
computational cost, multicast authentication often either shy away from them, or attempt to amortize the
cost over multiple packets. To give a rough sense of the state of things, we performed a simple measurement
of large number operations.

On a Pentium-M 1.86 GHz notebook computer, we measured 127020 multiplications per second versus
225 exponentiations per second, for 512 bits numbers. For 1024 bits numbers, observed 71334 multiplications
versus 42 exponentiations per second3. We observe that the bottleneck lies in exponentiation operations,
which are around 550 and 1700 times slower than multiplications for 512 bits and 1024 bits values respec-
tively.

9.2. Simulation of Protocol
Given the observation that the most variable component of the protocol, in terms of resources required, is
joins and drops at the server, particularly under high churn rate in the multicast tree, the simulation focuses
on server-side performance under varying number of joins, drops and the resulting rejoins.

New nodes are randomly attached to a parent to simulate a well distributed tree. The maximum out-
degree is 5. Events are injected when the tree reaches a size of 1000 nodes. The server simulator was ran
on a Pentium-4 3.0 GHz desktop computer, and the node tree simulator was ran on a Pentium-M 1.86 GHz
notebook computer. Table 3 document the results of the simulations. Delay values refer to the time elapsed
between receivers sending out a message and server processing it.

9.2.1. Analysis of Results
For the key size of 512 bits, we can observe that when the server receives more than 100 join and drop
messages per second, which results in more than 138 join, drop and rejoin events per second, the server
is no longer able to keep up. For the key sizes of 1024 bits, this maximum point occurs at 90 events per
second.

Of notable curiosity is that key sizes of 1024 bits did not double the computation workload, resulting
in the simulation reaching the maximum point at half the number of events as compared to key sizes of
512 bits. This highlights the importance of other factors such as large number multiplications, hashing and
operations in maintaining records for every node.

In a practical context of a real multicast application of around 1000 peers, if we assume that the
server must devote 50% of its processing capacity to authentication, encoding, streaming and other system
functions, then it should be able to handle up to an average of 45 joins and drops per second. In a less

3The results were obtained using C++ code and the GNU Multiple Precision (GMP) arithmetic library.



optimistic setting where the server must devote 75% of its processing power to other functions, it can manage
around 20 joins and drops per second.

We conclude that the proposed protocol, despite requiring expensive large number operations, has ac-
ceptable performance even in large multicast trees. Chou, Padmanabhan, and Wang (2003) notes that for
a flash crowd accessing a live streaming news video on September 11, 2001, the average rate of joins and
drops was 180 per second. The peak rate was 1000 per second. This further validates the practicality of
our protocol in a typical, less hostile environment.

10. CONCLUSION

We have achieved, through the proposed protocol, a secure and lightweight method for performing ac-
knowledgments of messages in a peer-to-peer multicast network. Our protocol achieves efficiency, wherein
all components of the protocol have an asymptotic communication and computation upper bound of the
maximum depth of the multicast tree. This provides a very optimistic bound on our protocol, and provides
scalability even in huge P2P multicast trees.

Through the use of less costly symmetric cryptographic operations such as MAC and symmetric ciphers,
we are able to create resistance against denial-of-service attacks and spoofing of network packet source.
Compared to other protocols, our protocol has made the trade-off of requiring the server to maintain the
state of every node in the tree, and requiring every ancestor node to be notified of every joins and drops.
In return, we obtain the ability to perform incremental verification of acknowledgments.

11. REFERENCES

[1] Boldyreva, A. (2003). Efficient treshold signature, multisignature and blind signature schemes based on
the Gap-Diffie-Hellman-group signature scheme. Public Key Cryptography - 6th International Workshop
on Theory and Practice in Public Key Cryptography (PKC 2003), Miami, FL, January, 2003.

[2] Boneh, D., Gentry, C., Lynn, B., & Shacham, H. (2003). Aggregate and verifiably encrypted signatures
from bilinear maps. Eurocrypt 2003, Warsaw, Poland, May, 2003.

[3] Castelluccia, C., Jarecki, S., Kim, J., & Tsudik, G. (2006). Secure acknowledgment aggregation and
multisignatures with limited robustness. Computer Networks, 50 (10), July, 2006, 1639–1652.

[4] Chou, P., Padmanabhan, V., & Wang, H. (2003). Resilient peer-to-peer streaming. 11th IEEE Inter-
national Conference on Network Protocols (ICNP2003), Atlanta, GA, November, 2003.

[5] Domingo-Ferrer, J., Mart́ınez-Ballesté, A., & Sebé, F. (2004). Secure reverse communication in a
multicast tree. 3rd International IFIP-TC6 Networking Conference (Networking 2004), Athens, Greece,
May, 2004.

[6] Dutta, R., Barua, R., & Sarkar, P. (2004). Pairing-based cryptographic protocols : A survey. Available
at: http://eprint.iacr.org/2004/064.

[7] Lim, C. L., & Ooi, W. T. (2007). Secure and lightweight acknowledgments for peer-to-peer overlay
networks. UROP report.

[8] Nicolosi, A., & Mazières (2004). Secure acknowledgement of multicast messages in open peer-to-peer
networks. 3rd International Workshop on Peer-to-Peer Systems (IPTPS 2004), LA Jolla, CA, February,
2004.

[9] Ohta, K., & Okamoto, T. (1999). Multi-signature schemes secure against active insider attacks. In
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences,
Vol. E82-A (pp. 21–31).

[10] Perrig, A. (2001). The BiBa one-time signature and broadcast authentication protocol. 8th ACM
conference on Computer and Communications Security, Philadelphia, PA, November, 2001.

[11] Perrig, A., Canetti, R., Song, D., & Tygar, J. D. (2001). Efficient and secure source authentication for
multicast. Network and Distributed System Security Symposium 2001 (NDSS 01), San Diego, California,
February, 2001.

[12] Reyzin, L., & Reyzin, N. (2002). Better than BiBa: Short one-time signatures with fast signing and
verifying. Information Security and Privacy: 7th Australian Conference (ACISP 2002), Melbourne,
Australia, July, 2002.


