
A repetition-based framework for lyric alignment in popular songs

LUONG Minh Thang∗and KAN Min Yen†

Department of Computer Science,
School of Computing,

National University of Singapore

ABSTRACT

We examine the problem of automatically aligning acoustic musical audio and textual lyric
in popular songs. Existing works have tackled the problem using computationally-expensive
audio processing techniques, resulting in solutions unsuitable for any real-time application.
In contrast, our work features only lightweight signal processing and is capable of real-
time alignment. We investigate in repetition-based techniques and alignment algorithms to
obtain a baseline alignment. A key extension of our work is to derive and utilize additional
segmentation knowledge on both modalities to significantly enhance alignment performance
by 34.85% and 8.18% in start and duration time errors. We conclude by suggesting a new
repetition-based framework for lyric alignment together with a modular system design, where
each module is independent and feasibly-extendable to improve the overall performance.

1. INTRODUCTION

In this project, we tackle the task of aligning lyric and audio automatically in popular
songs. Specifically, given the textual transcription of lyrics and the acoustic musical signal
of a song, we seek to find the time stamps corresponding to the beginning and ending
points of each line in that song. Solutions to the problem have been proposed by two
groups of works: one deal with synthesized music (MIDI files, or no-background music)
such as (Hu, Dannenberg, & Tzanetakis, 2003) and (Turetsky & Ellis, 2003); the other,
close to ours in dealing with real-world music, employs audio processing techniques. In the
latter group, LyricAlly (Wang, Kan, Nwe, Shenoy, & Yin, 2004) is the first system that
performs automatic alignment in popular songs, and followed by subsequent works such
as (Iskandar, Wang, Kan, & Li, 2006), or (Wong, Chi, Szeto, Wai, Wong, & Kin, 2007).
These works, however, are inefficient in two aspects: either dealing with restricted audio
and/or employing intense audio processing techniques. Realizing that inefficiency, we look
at a different approach in handling real-world audio using repetition-based techniques such
as self-similarity matrix (Foote, 1999), repetitive pattern, and alignment algorithms. We
follow the use of chroma vector to represent music segment as in (Wang et al., 2004), and
only employs audio processing under the form of chroma computation.

The structure of this report is organized as follows. Section 2 gives an overview of
the system, and describes our methodology. Section 3 evaluates our techniques against
a standard dataset and discusses the outcomes of the experiments at both a macro- and
micro-level. We offer some concluding remarks in section 4.

2. METHODOLOGY

Figure 1 displays an overview of our system consisting of six modules: feature extractor,
self-similarity matrix (SSM) generator, repetition pattern generator, automatic aligner, and

∗Student
†Supervisor

segment generator. Feature extractor module decomposes the acoustic and textual input
of stream form into sequences of chroma vectors and words. Chroma-vector extraction is
obtained by employing the two components in LyricAlly (beat detection, and chroma-based
feature extraction); where as, for textual input, words are obtained using simple tokenization
operation. Detailed discussions on other modules are presented in later sections.

Figure 1. System overview

2.1. Self-Similarity matrix (SSM) construction

50 100 150 200 250

50

100

150

200

250

Figure 2. Chroma self-similarity matrix

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Figure 3. Lyric self-similarity matrix

We compute the similarity between two normalized chroma vectors using the Euclidean
distance. For lyric, we decompose each word into a phoneme sequence, and allow partial
similarity among words by compute the longest common subsequence. Figures 2 and 3 give
an example of chroma and lyric SSMs for the same song “Paint my love”. The lyric similarity
exhibits clear pattern of diagonal lines of repeated sections, while that of chroma is richer
in capturing the similarity information of audio. For example, six separate squares lie on
the main diagonal line of the matrix indicates six different sections intro, chorus, verse,
chorus, verse, and coda, and many small white squares within the same section show the
intra-repetition. The four highlighted squares on both figures indicate the repetition of four
chorus sections, and show the good correspondence between lyric and chroma SSMs.

2.2. Repetition pattern generation

The motivation in this module is to distinguish each unit in a sequence based on its occur-
rences together with other units around. For example, to differentiate the word ”you” in
the phrase “You should paint my love” with other “you”, we count how many times the fol-
lowing subsequences are repeated “you”, “you should”, ..., “you should paint my love”. The

counts are averaged to give a repetitive value for that “you”, and similarly for other words.
The repetitive value of each word is used to distinguish itself. A key step in this module is
to determine if two subsequences of the same length L[i . . . (i + k)], and L[j . . . (j + k)] are
repeated. To decide that, we compute the similarity of the two sequence by summing up all
values on the diagonal line of the SSM from (i, j) to (i +k, j+k). That sum divided by the
subsequence length is compared against a repetition threshold to decide if the subsequences
match. Experimentally, we use a threshold of 0.7 for chroma, and 0.9 for lyric. Figures 4
and 5 are examples of lyric and chroma repetition plots for the song “Paint my love”. We
could observe the corresponding four peaks on both figures, which corresponds to the four
repeats of the chorus sections in the song, and shows the evidence of a comparable basis
between lyric and chroma.

Figure 4. Chroma repetition plot Figure 5. Lyric repetition plot

2.3. Lyric alignment
We employ the global alignment algorithm mentioned in (Gusfield, 1997) to align lyric and
chroma repetition sequences, whose normalized values are denoted as L[1..n] and A[1..m].
The algorithm aligns the two sequences using dynamic programming technique (DP) by
gradually compute V(i, j), the optimal aligning value of L[1..i] and A[1..j]. As scoring
values and recurrence relations are indispensable in any alignment problem, we define the
matching score s(L[i], A[j]) to be 1 − |L(i) − A(j)|. We expect many skips on chroma side
while no skip on lyric because of non-vocal sections in audio, so we set a skip penalty of 0
for chroma s(, A[j]), and -1 for lyric s(L[i],). Recurrence formula is given in equation 1.
As each chroma vector is associated with a time stamp recorded during chroma extraction
process, the automatic annotation could be easily derived for each lyric line once alignment
is obtained, by taking the time stamps of the beginning and ending words in that line.

As gaps (non-vocal sections) are often present in audio, the alignment algorithm encoun-
ters a challenge in identifying gap segments to skip over chroma vectors. In order to tackle
that problem, we propose to use segmentation knowledge over lyric and chroma, which is
provided by our segmentation module describe later. Based on the information, lyric and
chroma sequences are divided into k segments each, and the alignment algorithm is used in
aligning k pairs of segments to derive the final alignment.

V (i, j) = max

V (i − 1, j − 1) + s(L[i], A[j]) if i > 0, j > 0
V (i − 1, j) + s(L[i],) if i > 0
V (i, j − 1) + s(, A[j]) if j > 0

(1)

2.4. Segmentation
In this section, we will be using local alignment as an extension from the global alignment to
find the two best aligned subsequences L[n1 . . . n2] and A[m1 . . .m2] instead of aligning the
two sequences entirely (Gusfield, 1997). Similar DP formula for local alignment is obtained
by adding a comparison to 0 into Eqn 1, which is the“heart” of the local alignment.

2.4.1. Segmentation using non-overlapping local alignment algorithm

We want to find the two most repeated segments in the sequence by self-aligning that
sequence using local alignment with a constraint on the starting row of an alignment. Par-
ticularly, we restrict the best alignment path ending at (i, j) to have starting row of k where
j ≤ k ≤ i. The modified DP formula is very similar to equation 1 except that another
dimension k is added to V(i, j) together with conditions on i, j, and k (Kannan & Myers,
1993). As always, the crucial step in an alignment problem is to decide matching score s(x,
y). In this problem, we decide s(S[i], S[j]) based on the SSM, and follow a general guideline
to discourage two less-similar elements from matching by assigning negative score. As such,
we have two choices of scoring formula for s(S[i], S[j])’s as below. Equation 2, “range shift”,
is to change the range of similarity value from [0, 1] to [-0.5, 0.5], while equation 3, “thresh-
olding”, is to filter low-similarity values with mismatch penalty θ. In our experiments, we
assign θ to -1, which performs reasonable.

s(S[i], S[j]) = SMM [i][j] − 0.5 (2) s(S[i], S[j]) =

{

SMM [i][j] if SMM[i][j] > δ

θ if SMM[i][j] ≤ δ
(3)

2.4.2. Refining segments using local alignment algorithm

From the two non-overlapped segments detected previously, we wish to detect other repeated
segments, and have an efficient way so that those segments could naturally refine their
boundaries. The idea is to use local alignment algorithm to compare between detected and
undetected segments to discover other repeated segment as well as refine the boundaries:

Let S be the initial set of segments. Iteratively:
Step 1: Take the current section set S = S1, .., Sk. These segments will result in unseg-

mented sections U1, .., Ut in the sequence.

Step 2: Pairwise locally align(Si, Uj) which gives two best locally-aligned segments S ′

1
, S ′

2
to

be added to S. If a new segment has a not-too-small size, and does not approximately
equal any segment in S, it is added into S.

Step 3: remove redundant segments by first computing average segment size across all
segments in S. Pairwise compare two segments in S. If they are overlapped, compare
their sizes with the averaged one. Which one closer is kept, the other is removed.

3. EVALUATION

Our data set consists of 34 popular songs,taken from the LyricAlly project (Wang et al.,
2004), which are in verse-chorus form and have 4/4 time. Each song is accompanied with a
rich manually annotated alignment at a per-line as well as per-section levels.

3.1. Segmentation analysis
We focus our analysis toward verse and chorus sections which are main sections in general
song structures. Observation reveals that verse section behaves differently in terms of repe-
tition on lyric and chroma sequences. Particularly, verse section on lyrics is not necessarily

repetitive. Some writers prefer to have their verses repeated with some minor variations,
while others like to have markedly different verses for more story-telling purposes. In con-
trast, verse section on chroma does exhibit repetitive pattern. Even though the actual
wordings are not the same, similar chord sequences are repeated at verse sections, and well-
captured by chroma vectors. The interesting behavior of verse section results in chorus and
compound verse-chorus sections being the longest repetitive sections on lyric and chroma
sequences respectively. We refer to chorus and compound verse-chorus as target sections in
our lyric and chroma analysis respectively.

C Recall
No iteration 27 39.71%
1 iteration 55 80.88%
2 iterations 59 86.76%

Table 1. Structural analysis on lyrics

C Recall
No conversion 35 51.47%
Range shift 48 70.56%
Threshold 50 73.53%

Table 2. Structural analysis on chroma

Tables 1 and 2 present our structural measure on lyric and chroma in which we evaluate
how many detected sections (C) match the ideal target sections with matching portion
greater than 70%. For lyric, non-overlapping alignment alone only obtain a recall of 39.71%.
However, when refinement algorithm is executed several times, the system obtain a maximal
significant recall of 86.76% after 2 iterations. For chroma, we present the analysis in another
aspect, the choice of scoring formula mentioned in section 2.4.1. Table 2 has shown that the
performance could be improved from 51.47% to 69.12% and 73.53% with “range shift” and
“thresholding” (at 0.7) formula. This analysis is to demonstrate the important of scoring
schemes in alignment.

3.2. Alignment analysis

Start (sec) Duration (sec) Start (bar) Duration (bar)
No segmentation N(12.045, 9.622) N(2.082, 0.912) N(17.545, 14.032) N(3.020, 1.332)

Automatic segmentation N(7.399, 4.182) N(1.897, 0.832) N(11.430, 8.892) N(2.773, 1.262)
Perfect segmentation N(1.863, 1.002) N(1.258, 0.432) N(2.675, 1.362) N(1.831, 0.702)

Table 3. Alignment analysis in normal distribution(sec and bar units)

We test our alignment module under three schemes: no segmentation, automatic seg-
mentation, and perfect segmentation. The first scheme only invokes the alignment algo-
rithm, while the others incorporate segmentation knowledge. For the automatic segmenta-
tion scheme, we divide songs into simple segments based on the chorus segments detected
on lyric, as well as verse-chorus segments on chroma. As each song is in verse-chorus form,
which implies a general structure of −V1C1V2C2−, we divide them into three segments at
two anchor points, which are the end points of C1 and C2. Corresponding parts in lyric and
chroma are aligned to derive the final annotation. For the last scheme perfect segmentation,
we test our system performance using the perfect segmentation from our manual annotation,
consisting of verse, chorus, and coda segments. Table 3 presents a significant performance
improvement by 34.85% and 8.18% in start and duration time error when segmentation
knowledge is utilized, as compared to the baseline. Moreover, with perfect segmentation,
the system errors are kept effectively small at 2.675 and 1.831 bar for start and duration
time errors. This gives evidence that our repetition-based method is potentially capable of
accomplishing the alignment task.

4. CONCLUSION AND FUTURE EXTENSIONS

We have shown that our repetition-based approach is feasible to achieve the solution with
lightweight signal processing techniques. Even though not as accurate as the signal process-
ing approach, we have made a main contribution in proposing a potential direction for lyric
alignments with our well-defined system design. We end our paper by suggesting future
extensions at module level for our system, which we belief critical and feasible to extend.

For SSM construction, an approach for a newly-defined similarity matrix could be
adopted to extract more information from the SSM. A SSM of size 600 × 600 could be
reduced to size 75 × 75 by grouping each N = 8 chroma vectors, called a measure, and the
similarity between each pair of measures is computed as a sum of N cosine products. By
varying N, we could capture similarity patterns both among sections, and within section.
For repetition module, when comparing two subsequences L[i . . . (i+k)], and L[j . . . (j +k)],
instead of considering only diagonal elements, we could utilize our global alignment to find
the best path going from point (i, j) to (i+k, j+k) in the SSM, and decide matching based
on the alignment value. This suggestion will add more flexibility in allowing minor error to
be skipped for better alignment, and surely compute better repetition values. Lastly, for
the alignment module, currently, our system only constrains on the alignment at both ends
to account for non-vocal starting and ending sections in audio. However, more constraints
could be further imposed by providing upper and lower boundaries on the region where
the alignment path could go through, e.g. not allowing alignment path to cross the main
diagonal towards lyric and skips rarely occur on lyric side. Such constrains both globally
and locally are well-studied in (Iskandar et al., 2006) using musical knowledge.

5. ACKNOWLEDGEMENT

We would to extend our special appreciation to Dr. Kan Min Yen and Mr. Hendra Setiawan
for their indispensable guidance on this project and many valuable comments on the paper.

6. REFERENCES

[1] Foote, J. (1999). Visualizing music and audio using self-similarity. MULTIMEDIA ’99:
Proceedings of the seventh ACM international conference on Multimedia (Part 1), 1999.

[2] Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science and
computational biology. New York, NY, USA: Cambridge University Press.

[3] Hu, N., Dannenberg, R. B., & Tzanetakis, G. (2003). Polyphonic audio matching and
alignment for music retrieval.

[4] Iskandar, D., Wang, Y., Kan, M.-Y., & Li, H. (2006). Syllabic level automatic synchro-
nization of music signals and text lyrics. MULTIMEDIA ’06: Proceedings of the 14th
annual ACM international conference on Multimedia (pp. 659–662), New York, NY,
USA, 2006: ACM.

[5] Kannan, S. K., & Myers, E. W. (1993). An algorithm for locating non-overlapping
regions of maximum alignment score. Proceedings of the 4th Annual Symposium on
Combinatorial Pattern Matching, no. 684 (pp. 74–86), 1993.

[6] Turetsky, R., & Ellis, D. (2003). Ground-truth transcriptions of real music from force-
aligned midi syntheses.

[7] Wang, Y., Kan, M.-Y., Nwe, T. L., Shenoy, A., & Yin, J. (2004). Lyrically: automatic
synchronization of acoustic musical signals and textual lyrics. MULTIMEDIA ’04:
Proceedings of the 12th annual ACM international conference on Multimedia, 2004.

[8] Wong, Chi, Szeto, Wai, Wong, & Kin (2007). Automatic lyrics alignment for cantonese
popular music. Multimedia Systems, 12 (4-5), March, 2007, 307–323.

