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Abstract

Pevzner et al., 2001 introduced a new DNA fragment assembly algorithm based on Eulerian Su-
perpath transformations. This approach is sensitive to sequencing errors. We examine existing
error correction algorithms in their paper, and propose a novel scheme based on spectral align-
ment which utilizes transformed de Buijn graph to redo error correction. The first-time error
correction uses local coverages estimated with reads shared by neighboring tuples. Additional
techniques are used to speed up spectral alignment. Results show that with simulated data the
new scheme leaves significantly fewer mistakes than that used in EULER, and with real data
from TARSIUS SYRICHTA Euler is now able to produce fewer contigs. In addition, the new
scheme is fast enough for genome with 106 bases sampled at coverage 10.

Subject Descriptors:
F.2.2 Nonnumerical Algorithms and Problems
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G.1.6 Optimization
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Chapter 1

Introduction

1.1 Background

Since gel-electrophoretic procedures were developed (MaxamG77SangerNC77) in the mid 1970’s,

sequencing several hundred nucleotides of a DNA strand became possible. With present-day

technologies in the gene industry, 1000 or more nucleotides (bases) can be directly interpreted,

yet its length is still many orders of magnitude below that of many DNA sequences scientists

are now ambitious to know.

Ideally, we would want an automated process capable of sequencing genome several million

bases long. Fragment assembly (reconstruction from randomly sampled fragments) is arguably

the central solution to quests like this. It is sometimes synonymous to shotgun strategy, devised

by Sanger et al(SangerCH82).

Typically, the genome under investigation is cloned multiple times, then broken down at

random positions. Part of each fragment, usually the initial portion, can be read (possibly with

error) for some hundred consecutive bases, depending on the technology. These are called reads.

Averagely each position would appear in X reads. X, or the coverage, is the redundancy that

makes assembly possible at all.

Still, insufficient coverage due to insufficient sampling, biological bias and various sequenc-

ing errors may make the already difficult computational problem impossible to solve; i.e.

computation-wise no good answer can be given. This problem became increasingly severe as
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Figure 1.1: Shotgun Strategy

the ratio of DNA length to read length increases. Scientists typically need to perform directed

(e.g. PCR experiments), rather than random (as in shotgun strategy), sampling to “fill the

gaps” left by assembly programs, something referred to as the finishing step. Such steps are

very labor-expensive and time-consuming.

Over the years, better sequencing techniques that alleviate the situation have appeared, the

simplest of which is to just increase length of the fragment read. Another technology provides

“double-barreled” data by reads both ends of a fragment whose length can be estimated. In a

sense it doubles the read length, and is often used in finishing steps to resolve ambiguities or

cover up gaps.

1.2 Fragment Assembly Definition

Like many other problems in computational biology, a mathematical definition that is biologi-

cally accurate and complete is difficult (Myers95). From the viewpoint of a student of computer

science, I prefer a clear, pure definition for the design of assembly algorithm. However, for the

algorithm to work on real data, a number of knotty biological complications must be tackled
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carefully. Let us then consider two versions of the fragment assembly problem: one that is pure

and clear, one that is biologically complete and accurate.

Below is a definition similar to that given by (Myers95), which considers the “pure” version

of fragment assembly.

Definition 1.2.1. Fragment Assembly Problem is to determine the sequence of bases in an

unknown target DNA duplex Q. Q is a string over alphabet {A,C,G, T}. The set S of input

reads are the output of the below (sequencing) machine

FOR i = 1 to some_number DO

f := a randomly chosen fragment of S (uniformly random for start and end positions)

r := a substring of f

FOR each position j of r DO

introduce error (insertion/deletion/mutation) to r at j, with probability e

END

output r or reverse-complete of r, with equal probability

END

Error rate e is a small number from 1% to 5%. Furthermore, the 3 types of changes have fixed

probability each.

If each position is covered by an expected X reads, we call X the input coverage.

The real-life version of the problem involves specializations or complications in at least these

ways.

1. Read length between 500 and 750 (with electrophoretic sequencing); with new technologies

it can range below 500 or above 750, possibly with different coverages

2. With electrophoretic sequencing, coverage is 8–10; newer technologies allow higher cover-

age (e.g. 30)

3. Q contains repeats. In some eukaryotic genome over 90% are repeats
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4. The (sequencing) machine also introduces contamination, vector and chimeric reads. Con-

taminated reads contain garbage information. Vectors are DNA introduced from unrelated

genome during experiments. A chimeric read refers to two (or more) reads glued together,

giving a bogus read s = s1s2

5. Some part of genome is not amenable to cloning or uncovered in any read.

So, our objective is perhaps more aptly put as to find several contiguous substrings of Q, or

“contigs”. In general, I believe, we should try to minimize the number of contigs rather than

make it match some expected number, since

1. there lacks reliable estimation of the expected number of clonable regions

2. contigs produced by assemblers are more likely to result from misassembly then real contigs

1.3 Fragment Assembly Formulations Review

In the early studies of computational biology, the layout stage was often formulated as the

Shortest Common Superstring problem:

Definition 1.3.1. Shortest Common Superstring (SCS) Given a set of strings S = {s1, . . . , sn},

find the shortest string s that includes each si as substring.

Let alone the NP-complete nature of this computational problem, the formulation has several

deadly drawbacks even assuming error-free reads. For example, reads in exact repeats are

always considered redundancy (cloning) of the same region as it favors only parsimony. Over-

compression makes it infeasible even for small-sized genome.

(Myers95) contains a formulation on solid theoretical ground, in which the objective is to find

maximal likelihood reconstruction with respect to the 2-sided Kolmogorov-Smirnov distribution.

However there lacks an efficient algorithm for this formulation.

For the last two decades of 20th century, fragment assembly in DNA sequencing followed the

“overlap-layout-consensus” paradigm (PevznerTW01). In the overlap step, reads are checked

pair-wise for overlap (i.e. the longest prefix that matches a suffix of the other, allowing some
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error). The layout stage, arguably the hardest, attempts to put each read back to the original,

unknown sequence, while satisfying the overlaps. Finally, since overlaps are “approximate” due

to errors in reads, a consensus is needed among conflicting bases.

The classical approach culminated in some excellent fragment assembly tools (Phrap, CAP3,

TIGR, Celera)(?HuangM99SuttonWAK95?). They work well with non-repetitive sequences, but

fail for even eukaryotic genome containing repeats. Repeats are notoriously hard to deal with

in fragments assembly, especially when they are long. To avoid the mistake of SCS, popular

assemblers mask repeats. This, however, results in too many contigs or misassembly.

1.4 Eulerian Superpath Formulation

In 2001 Pevzner, Tang, Waterman (PevznerTW01) proposed a new approach based on find-

ing Eulerian superpath, one that abandons the traditional overlap-layout-consensus paradigm.

They developed the EULER assembly package, with components including EULER-EC (error

correction), EULER-DB (catering to double-barreled data), EULER-SF (scaffolding). Their

work can be viewed as continuation of Idury and Waterman’s idea (IduryW95) in 1995, which

in turn drew inspiration from the SBH (Sequencing By Hybridization) algorithm proposed by

Pevzner. (Pevzner89)

Definition 1.4.1. Sequencing By Hybridization Given a set of l-tuples S = {s1, . . . , sn}, find

the shortest string s such that every l-tuple from s is in Q, and every l-tuple from Q is in s.

Initially it was modeled as a shortest Hamiltonian path problem following the overlap-layout-

consensus paradigm. Despite apparent similarity to SCS, the complexity of SBH is dramatically

different. If we make each (l − 1)-tuple as a vertex, each l-tuple as an edge, the Eulerian path

solution reduce the running time to polynomial.

Idury and Waterman suggested mimicking fragment assembly as SBH, cutting each read of

length n into a collection of n− l+1 l-tuples. The loss of information that which l-tuples belong

to the same read can be recovered later. However, this approach does not answer two important

questions: (a) errors in reads transform the de-Bruijn graph into a mess of erroneous edges (b)
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repeats, which make the graph much tangled, are not dealt with. That motivated EULER.

Defines a read path to be the path in G that corresponds to the read, and P = {read paths}.

The Eulerian superpath algorithm make a series of equivalent transformations (i.e. there exists

one-to-one correspondence between superpaths in (G,P ) and (G1, P1)). It tries to match every

read to what (subset of reads) follows it in the target DNA.

(G,P ) → (G1, P1) → . . . → (Gk, Pk)

Unlike other assemblers, no heuristic guesses or assumptions are made about the genome.

Repeats are implicit in the graph, and any unresolvable repeat is only due to insufficient infor-

mation instead of pitfall of the computation model. Details of superpath transformations used

is discussed in next chapter, where Bruijn graph transformations is used for error correction.

Due to sensitivity to errors, error correction must be done beforehand with a greedy proce-

dure, unlike traditional assemblers which do so at the consensus step.

1.5 Problem and Solution

The Eulerian Superpath approach is sensitive to errors, but the current error correction algo-

rithm, although efficient, does not work well. EULER produces significantly more contigs than

Phrap with low coverage data (PevznerTT04).

Pevzner et al. introduced a Spectral Alignment approach to model error correction. In

another paper (ChaissonPT04) Chaisson and Tang gave a dynamic programming formulation

for the Spectral Alignment Problem. However it suffers from both inefficiency and over-rigid

thresholding.

This study introduces a novel error correction scheme, which (i) finds similar reads to es-

timate coverage in the initial error correction, (ii) uses output from EULER to re-do error

correction, (iii) is based on Spectral Alignment. Hence a scheme for EULER fragment assembly

that performs error correction twice is proposed.
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Chapter 2

Error Correction

Error correction replaces each read with a possibly error-free read. It can be formulated in

various ways. The idea of cover set and coverage, however, is central in all formulations.

Definition 2.0.1. Cover Set and Coverage. Let the substring s[i . . . j] of s, s ∈ S, be mapped

to Q[i′ . . . j′] in the correct assembly.

Cover set of (s, i, j) is the set of reads including s that, in the correct assembly, cover

Q[i′ . . . j′].

Coverage of (s, i, j) is the cardinality of the cover set, or intuitively, how many reads cover

a given region. Define also the coverage at k of s to be coverage of (s, k, k)

First, for each read s, both s or s̄ (reverse complement) can be in the actual fragment. Let’s

augment the set of reads S to include all reverse complements of input.

Below is one formulation based on multiple alignment at each read.

Definition 2.0.2. Error Correction as Multiple Alignments For each read s, do multiple align-

ment of the cover set of (s, 1, s.length). If s is changed to s′ after alignment, replace s with

s′.

In this formulation, two reads which are neighbors in the correct assembly are likely to be

aligned in a compatible way, since their cover sets do not differ much. We favor parsimony

(fewest corrections) by the same argument as we favor fewest contigs.
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Ignoring complexity of multiple alignment, this error correction scheme seems ideal, if we

can find the cover set of each (s, 1, s.length). It makes none of the types of mistakes of the

existing algorithms. In fact, I would like to use this as a reference formulation, and propose

one which makes just as few mistakes (or fewer), with lower time complexity feasible for real

projects.

2.1 Existing Algorithms

2.1.1 Spectral Alignment Formulation

(PevznerTW01) introduced the Spectral Alignment formulation for error correction in fragment

assembly. (ChaissonPT04) contains a DP formulation.

Let us assume that Q (the genome) is known, hence all its l-tuples, T . Error correction can

be done by aligning each read s ∈ S to T , such that every l-tuple of s is in T . Call such strings

T -strings. We favor parsimony by the same argument as minimizing number of contigs; that is,

with fewest changes to s.

Definition 2.1.1. Spectral Alignment Problem Given a string s and a spectrum T , find the

minimum number of corrections (insertion,deletion,mutation) that transform s into a T -string.

If a string cannot be fixed in ∆ corrections, or multiple solutions exist (ambiguity), the string

is discarded.

Of course, the assumption that Q is known is a catch-22: to obtain it we need error correction

first. Nonetheless, estimation of T is possible. Let frequency freq(t) of the l-tuple t be the

number of reads in which it appears. Pevzner suggests using a threshould frequency M , and let

T be just those with frequency at least M (“strong” tuples; otherwise “weak” tuple).

Intuitively, a high frequency tuple is likely error-free. For an exception to occur, we need

roughly M l-tuples to contain a same error at a same position. An erroneous l-tuple, unless

the mutation makes it coincide with a correct l-tuple, is likely to be a low frequency one. On

the other hand, a low frequency tuple may not contain error at all – coverages differ over the

genome.
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To find fewest corrections for each read s, the DP formulation defines function score(i, a),

which represents the sub-problem on (s[1 . . . i], a), with a being the last l-tuple of what s[1 . . . i]

should be aligned to. That is, score(1, a) is the least number of corrections to s[1 . . . i] to make

it a T -string whose last l-tuple is a. Now use the recurrence relations

score(i, a) = min(X ∈ {A,C,G,T})



















































score(i − 1,X ◦ −→a ) +















1, if al 6= sl

0, otherwise

score(i − 1, a) + 1

score(i,X ◦ −→a ) + 1

where X ◦ −→a denotes the l-tuple formed using X and first l − 1 symbols of a. The first case

corresponds to matching or mismatching, second for deletion, and the third for insertion.

This DP formulation is perhaps a little misnomer – if we build the graph where vertices

are (i, a) pairs and edges represent dependency, it is cyclic due to insertion. (ChaissonPT04)

suggests using shortest path algorithm such as Bellman-Ford. Since the edge costs are small

integers (0 and 1 in this particular scoring function), a simple breadth-first search with at most

some basic transformation will reduce it to O(n) where n is the number of vertices, i.e. possible

(i, a) pairs.

Although not explicitly mentioned in their paper, choice of M at least depends on (i) average

coverage X (ii) e.

Due to inefficiency of Spectral Alignment, it has never been implemented for EULER. How-

ever, we have implementated the algorithm for comparison against our scheme.

2.1.2 Greedy Error Correction

(PevznerTW01) gives a different formulation suitable for a greedy heuristic, which is adopted

in EULER. Define Sl to be the set of all l-tuples in the set of reads S.

Definition 2.1.2. Error Correction Problem Given S,∆, l, introduce up to ∆ corrections in

each read in S in such a way that ‖Sl‖ is minimized.
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Figure 2.1: Graph Representing Recurrence Dependency. Dashed edges have score 0 and solid

edge 1. (a) Vertices used to compute the score of CG. (b) Vertices that depend on CG. (c) A

cycle (always positive). Copied from [ChaissonPT04]
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error

l tuples are affected

Figure 2.2: One mutation brings error to l consecutive tuples (2l including their reverse com-

plements)

Their greedy heuristic relies on assumption that, if an l-tuple contains an error, it brings

error to the l − 1 tuples adjacent to it and the reverse complement of each, in the read. That

could hopefully be detected. To describe this method, call l-tuples t1 and t2 neighbors if they

are a single mutation apart. Call an l-tuple i orphan if (i) freq(i) < M (ii) it has exactly one

neighbor which is not orphan.

The greedy approach first corrects the orphan with a single mutation such that number of

orphans will be reduced by 2l (or 2d if the tuple starts at offset d and d < l). Since 2l is too

restrictive (imagine that one of the 2l tuples happens to coincide with a non-orphan tuple even

though there is an error in it), decrease 2l after each scan until it drops to 2l − δ.

2.2 Tuple Length

Choice of l impacts the scheme enormously. Let us first use symmetric Bernoulli model with

multiple outcomes for generation of Q. In the symmetric Bernoulli process, outcomes of different

trials have the same probability distribution.

The probability that t occurs in Q depends on the auto-correlation of t, which measures

how much it overlaps itself. Define the auto-correlation of t to be the binary string ct:

ct[i] = 1(if t[1 . . . i] = t[t.length + 1 − i . . . t.length]), or 0 otherwise

(Mansson02) shows that tuple t′ has a higher chance to occur than t if and only if ct′ > ct

lexicographically, as long as length of Q is at least 2l − 1.

(Guibas81) contains a formula for number of strings of a fixed length that contain a given

pattern. The probability that an l-tuple t occurs in Q r times is better answered in (RegSzp98b),
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in which overlapping occurrences are counted separately. The author gives the moment gener-

ating function for the number of strings of a given length which contains a given pattern.

The expected number of t in Q is the sum of expectations of individual l-tuples: 1/4l ×

Q.length. With Q being 106, a suitable value for l would be at least 15. With l = 14, the

expectation is roughly 1/44, implying a duplicate for about each 256 unique l-tuples, way too

many for Q = 106.

Errors may turn distinct l-tuples into duplicates. The chance also decreases with larger l.

The probability that two l-tuples with k different symbols turn into duplicates due to errors is

(1 − e)kek((1 − e)2 + e2)l−k

Given these two observations, a larger l implies exponentially fewer duplicates. Since dupli-

cate l-tuples in Q lead to mistakes in error correction, a larger l has the benefit of much fewer

such mistakes. A main drawback is the reduced number of l-tuples that cover the same position

in Q in the correct assembly (consider the extreme case when l is the length of a read). Another

is the larger search space for l-tuples. In spectral alignment for example, that implies increased

time and space complexity.

In practice, l = 20 for Q = 106 is reasonable, since the expected number of duplicates is

now at most 1.

In actual genome, Q is never generated with a Bernoulli process. Exact and non-exact

repeats both contribute to much more duplicate l-tuples over Q. This is what makes error

correction difficult, and is the purpose of the following sections.

2.3 First Time Error Correction

Both the SAP and the greedy solution have problems of false positives and false negatives.

Coverage in different parts of the genome can vary between 0 and kX for some k > 1. A

low coverage region will very unlikely contain tuples with frequency above M . Using a fixed

threshold is unfair in this sense, as frequencies of l-tuples are not compared on the same ground.

Repeats make things even worse. Consider a repeat R which appears at 3 different positions

12



Figure 2.3: With fixed threshold 2. Red dots are error tuples.

R R R

Figure 2.4: A repeat R which appears at 3 different positions in the genome

in the genome. Each l-tuple in R will have frequency roughly 3 times higher than l-tuples in

non-repeat regions.

Thus it is unwise to use the same threshold M . Knowing coverage at all positions on the

target DNA is important for a “fair” error correction algorithm. Ideally, the ratio between

coverage and local frequency should be used to measure the likelihood whether a tuple needs

correction. For tuple t, define local frequency of t to be the number of times t occurs in its

cover set.

Computing local frequency is computational costly. We approximate it with (global) fre-

quency. This is based on the observation that, most often, (global) frequency is higher than

local frequency only if t is correct (that is, due to repeats), in which case over-estimation does

not matter anyway.

Having identified the tuple t that needs correction, we must decide which set of tuples t can

be corrected into. Our algorithm uses all (global) strong tuples (with “strong” defined later),

similar to Spectral Alignment. It is tempting to use local strong tuples, those strong tuples in

the cover set of t. This is again computationally costly, as one must recompute the tuple pool

for different cover sets. On the other hand, choosing all (global) strong tuples will not in general
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Figure 2.5: Repeats of different lengths containing the same l-tuple

give worse alignments, since only local strong tuples will minimize the number of corrections.

Finding coverage will be dealt with in the sub-sections. Assuming that coverage information

is available, First Time Error Correction uses the frequency–coverage ratio to decide whether a

tuple needs correction. This ratio is compared against some parameter γ ≤ 1/2.

Tuples with same content can occur at multiple places, giving different frequency–converage

ratios. Thus the set of “strong tuples”, T , is defined to contain any tuple that has ratio ≥ γ for

at least one occurrence.

A few other optimization techniques are discussed in later sections.

2.3.1 Approximating Coverage from Similar Reads

Taken literally, a “repeat” can be long or short. In this notion, we can view any substring in

a read as a repeat. To find the true coverage, we should filter out as many repeats as possible.

Since each long repeat contains a short repeat (see figure below), we try to filter out as many

shorter repeats as possible as it is easier. Not being able to filter long repeats, which is often

the case, is not that disastrous, as we shall see later this section.

Let copy(s[i . . . j]) be the repeat count for substring s[i . . . j] in read s: the number of times

the substring (after error correction) appears in Q. Let similar(s[i . . . j]) be the number of reads

“similar” to s[i . . . j], with “similar” defined in terms of edit distance (but ignoring penalties for

start and end spaces for the two sequences respectively). For each position k of s, if we take

a substring ss of s with a suitable length and is centered at k, then similar(ss)/copy(ss) will

give an approximation for the coverage at k, assuming no errors exist in all reads that actually

cover k.

However, at the error correction stage little can be done to figure out copy of a substring of

a read. The best one can do is perhaps to find excessively many similar reads (e.g. 80 when
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Figure 2.6: Non-exact repeats with different coverages cause problems

X = 10) and decide copy to be 80/X. It doesn’t help us here, since similar(ss)/copy(ss) will

now always give expected coverage at any position.

An important observation is that, if the substring ss we take falls in exact repeats (i.e.

exact copies of the same sequence), we can use similar(ss) instead of the actual coverage at

ss. This is true because the repeats are exact: whatever is the majority in all repeats should

be “strong”, and others “weak”.

The only problematic situation is when repeats are non-exact (due to mutations in evolu-

tion), and have different coverages at the symbols where they differ. This situation includes

repeat borders, if we view ATGTC and ATGTT as non-exact repeats. Since we cannot dis-

tinguish non-exact repeats when estimating coverage (we need error tolerance), the estimated

coverage will be the sum of coverages of the corresponding regions of two repeats. Assume two

non-exact copies R,R′ differ at offset k. Let t and t′ be l-tuples that contain position k. If

they have different coverages, the tuple with lower coverage will almost always be considered

“weak”, since the estimated coverage is the sum. This situation cannot be avoided without

knowing copy. However, as we will show, by using output from EULER after initial error

correction, such situations can be avoided.

Although similar can be found by pairwise sequence alignment, the complexity is probably

prohibitive. Below we look at ways to compute similar(ss), a problem similar to the repeat

finding problem.
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from Neighborhood Substring Frequencies

In this approach, we extend domain of freq to strings: freq(ss) is the number of reads that

contain as substring ss. similar(ss) (therefore coverage) can be estimated from freq.

We compute freq(ss′) for all substrings ss′ using suffix tree. Let T be the generalized suffix

tree for all reads. For every internal node v of T , freq(ss′) where v represents ss′ can be

computed as size of {s ∈ S : ∃ a leaf node from s in the subtree rooted at v}. Computing freq

over all internal nodes can be done in O(n) with O(n) − O(1) online LCA (Lowest Common

Ancestor) algorithm(Hui92).

To estimate coverage at position k, we check frequencies of all βD substrings of length D

whose total offset from k is minimal (i.e. centered around k). Among the frequencies, take the

maximum. The reasons to pick the maximum is (i) reads that cover k may have errors around

k (ii) they may cover k, but fail to cover k′ where distance between k, k′ is less than βD/2

(iii) with sufficiently large β, the chance for a substring to be contained in unrelated reads is

minimal.

With high coverage X and long (106) genome, it can be desirable to use suffix array to reduce

space requirement. Once the suffix array is built, with careful design, frequencies of all length

D substrings can be computed in O(n), based on a recent linear-time algorithm that computes

Longest Common Prefix for every two neighboring entries in the suffix array(KasaiLAAP01).

from Reads shared by Neighboring Tuples

When estimating coverage from neighborhood substring frequencies, we need to keep D to be

small, considering that we should not have a small (1 − e)D (chance to have no errors in the

substring). Then, with moderate e (1%), D cannot be larger than 40. This quite often fails to

filter most of the repeats.

In view of that, we consider the D l-tuples in the read which are closes to the l-tuple whose

coverage we wish to ascertain. Initially when hashing the tuples, for each l-tuple t we maintain

a linked list of reads, LL[t], that contain it. Then, among all the D neighboring l-tuples, the

algorithm finds the reads that are shared by βD such neighboring l-tuples.
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This can be done for all l-tuples in all reads, within time O(Xn), with n being the input

size, if we assume constant look-up time of the hash table. Basically, we keep a sliding window

of the D tuples. Associated with the window is a hash table HT of reads. When a new l-tuple

t shifts into the window, we increment the count in HT for each read in LL[t]. If a count

becomes greater than or equal to βD, increment a global counter. When an l-tuple shifts out of

the window, decrement the counts and decrement the global counter if some count drops below

βD. The global counter then contains the estimated coverage for all tuples as the window slides

over the read.

2.3.2 Spotting Low Coverage

It is arguably more important to know that a region has low coverage region than to know it has

high coverage, since such regions will always be error corrected even if it is perfectly error-free.

On the other hand, high coverage regions may or may not contain false positives. Fortunately

some simple observation enables us to identify low coverage: many of its l-tuples are weak.

With this heuristic equipped, we can leave such portions of a read as it is, since it is the only

information available for that region.

The probability of m errors in n consecutive symbols follows the binomial distribution with

mass function
(

n
m

)

em(1 − e)m; C(n,m). With m close to n the probability is negligible.

The algorithm we use masks portions of read s that have low coverage. It starts by looking

for intervals of length n + l (n is a program parameter) with ml weak tuples, such that the

probability above is smaller than some threshold. The reason for ml is that each error affects

l consecutive tuples. For each such interval, extend it in both directions until the probability

will go above the threshold.

The danger is that the low coverage may be due to contamination. By considering it correct,

later stages in fragment assembly may be misled. It is best to leave it an option whether to

enable this heuristic, depending on contamination rate of the sequencing technology.
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2.3.3 Approximating Coverage with de Buijn Graph: Read Paths

Let us look at some properties of de Buijn graph during Eulerian Superpath transformations.

There are two important properties

1. For each read there is a unique path (read path) p ∈ P , although p evolves during

transformation, the correspondence does not change

2. Each edge a dynamically represents a string of base pairs δ(e). In the initial de Bruijn

graph, each edge represents an l-tuple.

Two types of transformations are allowed: x−y detachment and cut. cut is relatively simple

(PevznerTW01). The paper defines x−y detachment with respect to a pair of consecutive edges.

For sake of discussion, below is an equivalent definition with respect to vertex.

Let {ai} be vertices connected to v, and {bi} be vertices v is connected to. The transforma-

tion equivalent to {(ai, v) − (v, bj) detachment} is as follows:

1. In each read path p ∈ P that contains some subpath (ai, v)(v, bj), replace the subpath

with a single edge (ai, bj)

2. In each read path p ∈ P whose start (or end) vertex is v, replace the first (or last) edge

(v, bj) (or (ai, v)) with (ai, bj) if

(a) any read path ∈ P consistent with p does not contain (ak, v) with k 6= i (or (v, bk)

with k 6= j), and

(b) there exists a read path ∈ P consistent with p that contains (ai, v) (or (v, bi))

Two read paths are consistent if their union is a path again. Such transformation covers many

situations, e.g. contraction of edges on a path without branches (similar to contraction used in

planarity testing).

When replacing edges, we update δ(a) for the new edge a. We make the following observa-

tions: (i) each unique l-tuple may appear multiple times, in δ(a) of several different edges a,

(ii) the start and end of a read path p ∈ P may contain some extra base pairs not in the read.

We can infer coverage for any (s, i, i + l − 1) from de Bruijn after transformations.
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Figure 2.7: A complex situation with 6 paths. p6 is consistent with both p2, p4, and can be

resolved; p5 is consistent with p1, p3, p4, but cannot be resolved.

Figure 2.8: Estimating coverage by counting read paths that cover an edge. Dashed lines are

read paths.
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Assume first that all tangles are resolved. If some read paths share edge a, those reads

will cover any l-tuple in a (with the exception from the second observation above, which can

be checked quickly). Thus for any l-tuple on edge a of a read path, by checking how many

read paths include a, we have now a more accurate estimate of coverage than First Time Error

Correction, even if the de Buijn graph is based on results of First Time Error Correction.

For example, let l = 6, two regions . . . ACTTGC and . . . ACTTGA have coverages 1 and 3

respectively, and some read s covers ACTTGC . . .. Although s is corrected into ACTTGA . . .,

it is with high likelihood that its read path in the de Buijn graph will be separate from those

that truly cover ACTTGC . . .. That is, the part of s several symbols to the right of ACTTGA

will not be error corrected, and hence different from those that truly cover ACTTGC . . .. The

new coverage estimate will be 1, making ACTTGA a strong tuple. This extra accuracy comes

from EULER’s capability to resolve repeats.

2.4 Re-doing Error Correction

2.4.1 Approximating Coverage with de Buijn Graph: Copy Number

Things are more complicated in the presence of unresolvable tangles, which usually correspond

to long repeats in target genome. If we find as above the set of reads whose read paths include

a, we are over-counting. Fortunately, structure of de Buijn graph gives us hint again.

(PevznerTW01) applies Eulerian Superpath to The Copy Number Problem, which gives us

a chance to estimate copy. The idea is to first build the de Buijn graph.

Definition 2.4.1. Copy Number Problem For an edge a in a graph G(V,E) find a flow

G(V,E, f) minimizing the multiplicity f(a) of the edge a. Every edge has capacity lower bound

1.

(PevznerTW01) gives a heuristic, but did not prove its correctness. The Copy Number

Problem can be solved by finding a minimal feasible flow, taking two ends of a as source and

sink.
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Figure 2.9: Non-exact repeat: estimated coverage reduced after de Buijn transformations. (Left)

The correct de Buijn graph (Right) Incorrect de Buijn graph, but by dividing number of read

paths by 2 (copy number), the new estimate becomes quite accurate. Dashed lines are read

paths

A more general formulation could be to minimize sum of all flows, rather than the flow on

the edge under investigation.

Definition 2.4.2. All-Repeat Copy Number Problem Given graph G(V,E), find a flow G(V,E, f)

minimizing the multiplicity sum of f(a) over each edge a. Every edge has capacity lower bound

1.

This can be solved as a Min-cost Circulation Problem in polynomial time. (AMO) contains

a comprehensive introduction to both Min Feasible Flow and Min-cost Circulation Problem.

If we have the copy numbers, we can divide the estimated coverage by copy for more accurate

coverage estimate. For the earlier example of non-exact repeat, now with the better coverage

estimate, the lower coverage l-tuple will now be deemed strong. The figure shows when an

non-exact repeat transforms the tuple with coverage 2 into the tuple with coverage 3, this false

negative can be removed with new coverage estimate (in the figure, (2+3)/2). Observe that

even if the lower coverage l-tuples in one repeat are changed into the strong l-tuples in the other

repeat, the copy number obtained from de Buijn graph will generally still be correct, since the

overall structure of A – R′ – B – R – C is usually preserved.

Non-exact repeats with unequal coverages and repeat borders are commonplace. The use of

transformed de Buijn graph applies also to non-exact repeats that occur more than 2 times in

Q, or that have more than 1 differences in an l-tuple. With new coverage estimated with copy
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number, we will have reduced most of the false negatives.

We compute copy depending on the way coverage was estimated. If we used D neighboring

l-tuples to compute in which reads they appear in common, we need to map the D l-tuples

in the read s to the path in de Buijn graph. This is done by finding the read path of s and

searching for the subpath that contains those tuples.

2.5 More Techniques

2.5.1 Masking High-confidence Portions

To reduce time complexity of spectral alignment, it makes sense to ignore parts of the read in

which we have high confidence. Do the following preprocessing on each read s

FOR i = 1 to s.length-l+1

t := l-tuple at position i

a[i] := 1 if t is strong; 0 if t is weak

END FOR

FOR each streak of consecutive 1’s

IF has length > K THEN mask this region

END FOR

with K being a user-supplied parameter representing the trade-off point between perfor-

mance and accuracy. Smaller K introduces more greediness into alignment.

2.5.2 Dealing with Chimeric Reads

A chimeric read refers to two (or more) reads glued together, giving a bogus read s = s1s2.

They may be detected and restored during spectral alignment, provided that neither of s1, s2

lies in a low coverage region. If from some position k, most of the l successive l-tuples all have

frequency 1, and more than σl corrections are needed to align it (to the spectrum), we consider

it a chimeric read and break it before position k + l. σ can be a number between 0.5 and 1,

depending on many factors (e.g. X, l, error rate, chance to have chimeric reads).
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transformed de Bruijn Graph
First Time Error CorrectionEulerian Superpath

transformations
Error Correction using

Figure 2.10: Proposed Error Correction Scheme

2.6 Proposed Error Correction Scheme

We propose first doing error correction with coverage estimated from reads shared by neighbor-

ing tuples; having obtained the transformed de Buijn graph, re-do error correction with more

information found by EULER.

When re-doing error correction, we use de Bruijn graph for 2 purposes (i) obtaining coverage

as number of covering read paths (ii) estimating copy. Coverages are estimated now directly

from de Buijn graph, eliminating the need to compute reads shared by neighboring tuples.

It may be even tempting to think that we could iteratively refine error correction by con-

tinuing the loop. However, as the coverage information recovered from de Buijn graph depends

on the coverage in the previous error correction, any l-tuple which was considered “strong” (i.e.

left unchanged) will continue to be so. In general, we believe that the gain is little to do error

correction iteratively.

2.7 Complexity

First look at complexity of First Time Error Correction. Finding reads shared by neighboring

tuples takes O(X2 × Q.length) (shown earlier) assuming constant time hash table look-up. To

apply the technique for spotting low coverage regions in each read, we need linear time to scan

for such regions once the coverages have been computed. Detecting chimeric reads is done in a

similar linear scanning fashion.

Spectral alignment is done based on the recurrence relations, which has a very loose upper

bound O(n‖T‖) for each read of length n. Since we assume at most ∆ changes, and high-
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confidence or low-coverage portions of each read are ignored, the running time is much faster.

In the test it is shown that it runs in empirically linear time.

Computations related to de Buijn graph depends on the representation of de Buijn graph

used in EULER. Studying the representation is still on-going.
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Chapter 3

Results

3.1 First-time Error Correction

In this section three error correction schemes are compared: Spectral Alignment from (Chais-

sonPT04) (SP), Greedy Error Correction (GD) (one that EULER uses), and the First-time

Error Correction (FT) (as part of the new scheme). SP is implemented for comparison pur-

poses, while GD is bundled in EULER.

Testing environment: FreeBSD 6.1 running on Intel P4 with 1024M memory.

For compatibility with GD all tests assume equal probability insertion/deletion/mutation.

For simulated data, reads are generated by picking a uniformly random starting offset, then

reading L characters, where L follows a given normal distribution N(mean, variance). The

sequence used is a random portion of the recently sequenced T.whipplei, obtained from website

of Sanger Institute.

Good parameters for FT are β = 0.4 for Test B and β = 1− 2le for Test A,C,D (which have

error rate 1%), γ = 0.5,D = average read length/5.

For all algorithms, ∆ (maximum number of corrections before discarding a read) is set to

(Read Length × Error Rate × 8), and it seems to give better results in all tests except Test F

TARSIUS SYRICHTA.

For simulated data, the number of errors after correction is computed as the edit distance

between the correct read and the corresponding read given by the program. For TARSIUS
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Table 3.1: Test A: with l = 10

SP GD FT

Corrections 1136 1330 913

Errors introduced 119 220 84

Errors after Correction 193 304 165

Unfixable Reads 13 10 0

Table 3.2: Test A: with l = 20

SP GD FT

Corrections 1132 1249 959

Errors introduced 52 113 54

Errors after Correction 112 202 87

Unfixable Reads 12 13 0

SYRICHTA, this information is not available.

Both GD and SP work best when M is set to 4, interestingly for both X = 10 and X = 20.

Only best results are shown.

In each test, the results are the average of 3 runs.

• Test A. With simulated reads generated using the following parameters: Error Rate =

1%, L ∼ N(600, 2500), Sequence Length = 100000, Number of Reads = 1600. Average

number of simulated errors = 1032

• Test B. With simulated reads generated using the following parameters: Error Rate =

5%, L ∼ N(600, 2500), Sequence Length = 100000, Number of Reads = 1600. Average

number of simulated errors = 5133

• Test C. With simulated reads generated using the following parameters: Error Rate =

1%, L ∼ N(600, 2500), Sequence Length = 100000, Number of Reads = 3200. Average

number of simulated errors = 979

• Test D. With simulated reads generated using the following parameters: Error Rate =
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Table 3.3: Test B: with l = 10

SP GD FT

Corrections 7499 5932 5012

Errors introduced 849 1553 544

Errors after Correction 1210 2130 1068

Unfixable Reads 61 89 7

Table 3.4: Test B: with l = 20

SP GD FT

Corrections 7109 5633 5243

Errors introduced 776 1297 682

Errors after Correction 1230 1842 934

Unfixable Reads 74 80 8

Table 3.5: Test C: with l = 10

SP GD FT

Corrections 945 1103 988

Errors introduced 59 124 48

Errors after Correction 132 175 121

Unfixable Reads 4 2 0

Table 3.6: Test C: with l = 20

SP GD FT

Corrections 913 1130 1042

Errors introduced 43 74 43

Errors after Correction 80 124 64

Unfixable Reads 4 2 0
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Table 3.7: Test D: with l = 10

SP GD FT

Corrections 864 1022 841

Error introduced 44 103 40

Errors after Correction 119 125 115

Unfixable Reads 3 3 0

Table 3.8: Test D: with l = 20

SP GD FT

Corrections 860 993 843

Errors introduced 38 79 29

Errors after Correction 71 110 59

Unfixable Reads 4 4 0

1%, L ∼ N(300, 900), Sequence Length = 100000, Number of Reads = 6400. Average

number of simulated errors = 1032

• Test E. Running time of FT. With simulated reads generated using the following param-

eters: Sequence Length = 1000000, Error Rate = 1%

• Test F. Real Reads from NCBI Trace Archive: TARSIUS SYRICHTA (Sequence length

932377, average coverage 8.9)

When run on simulated data, FT makes fewer corrections in general, but the number of

errors in the output is the fewest among all, especially when coverage is low (Test A and B). In

some cases the number of errors after error correction is higher, but considering the number of

Table 3.9: Test E: FT running times

Read Length Mean 300 600 1200

3200 reads 74s 166s 362s

6400 reads 154s 335s 730s

12800 reads 303s 674s 1467s
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Table 3.10: Test F: TARSIUS SYRICHTA with l = 10

SP GD FT

Corrections n.a. 14029 10012

Unfixable Reads n.a. 158 39

Contigs n.a. 73 52

Super tangles n. 168 179

Table 3.11: Test F: TARSIUS SYRICHTA with l = 20

SP GD FT

Corrections n.a. 13032 11133

Unfixable Reads n.a. 156 41

Contigs n.a. 85 54

Super tangles n.a 144 136

“unfixable” reads, it in fact still gives better results. This is likely due to accurate estimation

for coverage in low coverage regions. However the difference becomes small in Test C,D, which

have average coverage of 20. In the presence of higher error rate (Test B), the greedy algorithm

loses out quite drastically. This is expected, since it cannot make coordinated corrections. FT

produces very few unfixable reads, in contrast to GD and SP. We can attribute this to the

low-coverage detection heuristic.

FT has fewest number of errors introduced in all cases, but the difference is again small with

high coverage.

The running times of FT are acceptable, as shown in table for Test E. Due to time limitation

not much code optimization was done, and the hashing method used may not be the optimal.

Between two cells, the ratio of their running times is close to the size of input, giving the hint

that it runs mostly in linear time. With the largest input size, FT is able to finish in 24 minutes,

making it a realistic replacement for GD.

When run on real sequence data for TARSIUS SYRICHTA, output from FT led to much

fewer (by around 25% to GD) contigs after running EULER. This should be attributed to
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adjusted threshold for low coverage regions. The number of super tangles is close to that for

GD and SP. Our interpretation is that, like the other two, First Time Error Correction cannot

avoid false negatives when dealing with non-exact repeats and repeat borders, which introduces

tangles. We do not have data for SP in this test, since it took too long to complete.

3.2 Repeated Errors Correction

It is strongly expected that, with Second Time Error Correction, much better results will be

obtained for both number of errors after correction and super tangles. Being able to deal with

non-exact repeats and repeat borders, the number of errors introduced is expected to be close

to 0.

The implementation is still under progress, and will be reported once completed.
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Chapter 4

Conclusion and Extension

Error corrections using First Time Correction in the new scheme already decreases number of

errors by up to 24%, when compared with the better result of the 2 other schemes when run

on test data simulated from the known sequence T.whipplei. In the best scenario the number

of errors after correction is 15% of that before correction.

It’s expected that when integrated with the second part, which utilizes transformed de Buijn

graph, much better results will be given after error correction is redone. We hope to finish the

on-going implementation soon.

Very recently (ZhengZW06) proposed an alternative way, also making use of structure of

de Buijn graph for error correction. They transform the de Bruijn graph while doing error

correction, trying to remove erroneous edges dynamically. Future work may be to compare it

with our scheme, and possibly incorporate the idea of doing error correction on the de Buijn

graph.
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