
Programming Refresher Workshop

11, 12, 14 July 2017

Contents

 Objectives

 Staff

 Seniors

 Programme

 Website/Topics

 Useful software and documents

2 Intro: Contents

Objectives

 To provide a refresher on programming and problem-solving skills
covered in the first programming course (CS1010 or its equivalent)

 Targeted at incoming students holding polytechnic diploma who are
exempted from CS1010 (Programming Methodology) or its
equivalent.

 To allow students to better assess their preparedness for the follow-
up module(s) after CS1010

 IS/BZA students take CS1020 (Data Structures and Algorithms I)

 CS students take CS2040 (Data Structures and Algorithms) and CS2030
(Programming Methodology II)

 InfoSec/CEG students take CS2040C (Data Structures and Algorithms)

 If you decide to take CS1010 after this workshop, please request for
a form from us, fill it up and submit to our UG office.

3 Intro: Objectives

Staff

Mr Aaron Tan
tantc@comp.nus.edu.sg

4 Intro: Staff

A/P Tan Sun Teck
tanst@comp.nus.edu.sg

Dr Henry Chia
hchia@comp.nus.edu.sg

Seniors

5 Intro: Seniors

Chua Zhi Jie

Choo Wen Xin

Koh Min Xuan

Ng Tzer Bin

Puah Jia Hui

Sim Kwan Tiong,
Damien

Programme

 Three days with six sessions:

 11 July 2017, Tuesday: Session 1 (AM) and Session 2 (PM)

 12 July 2017, Wednesday: Session 3 (AM) and Session 4 (PM)

 14 July 2017, Friday: Session 5 (AM) and Session 6 (PM)

 Each session

 AM session: 9 am – 12 noon

 PM session: 1 – 4pm

 Venue: PL2 (COM1 basement)

6 Intro: Programme

Website/Topics

7

Day Session Lecturer Topics

Day 1 AM A/P Tan Sun Teck Intro; S/W development cycle;
Control structures; CodeCrunch

PM Mr Aaron Tan Subprograms; parameters; pre- and
post-conditions; program testing

Day 2 AM A/P Tan Sun Teck 1-dimensional arrays

PM Mr Aaron Tan 2-dimensional arrays

Day 3 AM Dr Henry Chia Recursion

PM Dr Henry Chia Number processing

 http://www.comp.nus.edu.sg/~tantc/refresher

Intro: Website/Topics

http://www.comp.nus.edu.sg/~tantc/refresher

Useful Software and Documents

8

 CodeCrunch

 A lab exercise portal.

 Can support C/C++ and Java.

 Download the exercise.

 Develop your solution in your computer.

 Submit your solution to CodeCrunch.

 Check the result.

Intro: Useful Software and Documents

Useful Software and Documents

9

 Cygwin

 A UNIX-like environment.

 Need to know UNIX commands

 ls, mkdir, cd, cp, mv, etc

 Commands to compile programs

 javac myProg.java for Java program

 gcc myProg.c for c program

 g++ myProg.cpp for C++ program

 You may add different compilation options as required. For example,
to highlight all warnings.

 You should try to learn a UNIX editor such as vim

Intro: Useful Software and Documents

Useful Software and Documents

10

 Cygwin/MinGW Installation Guide

 Introduction to Unix commands and Running Java
Programs

 CodeCrunch guide

Intro: Useful Software and Documents

http://www.comp.nus.edu.sg/~tantc/refresher/cygwin_guide.pdf
http://www.comp.nus.edu.sg/~tantc/refresher/unix.pdf
http://www.comp.nus.edu.sg/~tantc/refresher/CodeCrunch.pdf

Programming Refresher Workshop

A/P Tan Sun TeckSession 1

11

Contents

 Problem Solving Life Cycle

 Different view of programming

12 Session 1: Contents

13

What is Algorithmic Problem Solving?

 The entire process of taking the statement of a problem
and developing a computer program to solve the problem

 Example: To solve a quadratic equation

Program = algorithm + data structure

 Algorithm: a step-by-step specification of a method to solve a
problem within a finite amount of time

 Data structure: ways to store information

Session 1: Algorithmic Problem Solving

14

The Life Cycle of Software as a Water Wheel

 We’ll cover only aspects that
play a crucial role in data
structures

 Specification

 Design

 Verification

 Coding

 Testing

 The other parts will be
covered in later semesters,
especially in
Software Engineering

Session 1: Software Life Cycle

15

Phase 1: Specification

Make the problem statement precise and detailed

For example:
 What is the input data?

 What data is valid and what data is not valid?

 Who will use the software, what user interface should be
used?

A prototype program can clarify the problem: a simple
program that simulates the behavior and illustrates
the user interface

Session 1: Software Life Cycle

16

Phase 2: Design

Divide a large problem into small modules:

 Loosely coupled modules are independent

 Each module should perform one well-defined task
(highly cohesive)

 Specify data flow among modules

 E.g., purpose, assumptions, input, and output

 It is NOT a description of what methods to use to solve the
problem; just a decomposition into smaller tasks

Session 1: Software Life Cycle

17

 View Specifications as a contract

Example: To design a method for a shape object that
moves it to a new location on the screen. Possible
specifications:
 The method will receive an (x, y) coordinate.

 The method will move the shape to the new location on the
screen

(x, y) (x, y)

Phase 2: Design (cont.)

Session 1: Software Life Cycle

18

 A module’s specification should not describe a method of
solution.

 Method specifications include precise pre-conditions and
post-conditions ; identify the method’s formal parameter,
etc.

 Incorporate existing software components in your design.

Phase 2: Design (cont.)

Session 1: Software Life Cycle

19

First-draft specifications

move (x, y)

// Move a shape to a new location on the screen

// Pre-condition: The calling program provides an

// (x, y) pair, both integers.

// Post-condition: The shape is moved to the new location

// (x, y)

Phase 2: Design (cont.)

Session 1: Software Life Cycle

20

Revised specifications

move (x, y)

// Move a shape to a new location on the screen

// Pre-condition: The calling program provides an

// (x, y) pair, both integers, where

// 0 <= x <= MAX_XCOOR, 0 <= y <= MAX_YCOOR,

// where MAX_XCOOR and MAX_YCOOR are class

// constants that specify the maximum coordinate values.

// Post-condition: The shape is moved to the new location

// (x, y)

Phase 2: Design (cont.)

Session 1: Software Life Cycle

Algorithm

 Similar to a recipe for cooking

 You must know how to cook a dish before you can write the
recipe.

 It is a step by step instruction for solving a problem.

 You must know how to solve the problem before you can write
the program.

 An algorithm is commonly presented in pseudo-code.

Session 1: Software Life Cycle21

22

Phase 4: Verification

 Formal theoretical methods are available for proving the
correctness of an algorithm

 still a research subject

 Some aspects of the verification process

 Assertion

 Invariant

An assertion is a statement about
a particular condition at a certain

point in an algorithm

An invariant is a condition that is
always true at a particular point of

the algorithm

Session 1: Software Life Cycle

23

Phase 4: Verification - Assertion

 An assertion is a statement about a particular condition
at a certain point in an algorithm.

 special case: pre/post-conditions

method

Pre-Condition
condition that is

assumed to hold prior
to method invocation

Post-Condition
condition that is

guaranteed to hold
after method

invocation

Session 1: Software Life Cycle

24

Phase 4: Verification - Example

Revised specifications

move (x, y)

// Move a shape to a new location on the screen

// Pre-condition: The calling program provides an

// (x, y) pair, both integers, where

// 0 <= x <= MAX_XCOOR, 0 <= y <= MAX_YCOOR,

// where MAX_XCOOR and MAX_YOOR are class

// constants that specify the maximum coordinate values.

// Post-condition: The shape is moved to the new location

// (x, y)

Session 1: Software Life Cycle

25

Phase 5: Coding

 Translating the design into a particular programming
language

 Coding is a relatively minor phase in the software life
cycle.

Session 1: Software Life Cycle

26

Phase 6: Testing

 Design a set of test data to test the program

 Testing is both a science and an art

Session 1: Software Life Cycle

27

What is a good solution?

 When the total cost incurred over all phases of the
life cycle is minimal

 Programs must be well structured and documented

 Efficiency is important
 Using the proper algorithms and data structures can lead to

significant differences in efficiency

 In many instances, the specific style of coding matters less
than the choice of data structures

Session 1: Software Life Cycle

28

Top-Down Design

Use it:

 When designing an algorithm for a method

 When the emphasis is on algorithms and not on the data.

 A structure chart shows the relationship among modules.

 A solution consisting of independent tasks.

Session 1: Top-Down Design

29

Example: Find the Median Score

Session 1: Top-Down Design

30

Six Key Programming Issues

1. Modularity

2. Modifiability

3. Ease of use

4. Fail-safe programming

5. Style

6. Debugging

Session 1: Programming Issues

31

Modularity

 Facilitates programming

 Isolates errors

 Programs are easy to read

 Isolates modifications

 Eliminates redundancies

Session 1: Programming Issues

32

Modifiability

 Methods make a program easier to modify

 Named constants make a program easier to modify

Session 1: Programming Issues

33

Ease of Use

 A good user interface, for example, prompt user for input

 A good manual

Session 1: Programming Issues

34

Fail-Safe Programming

A fail-safe program is one that will perform reasonably no
matter how anyone use it:

 Check for errors in input

 Check for errors in logic

 Methods should check their invariants

 Methods should enforce their preconditions

 Methods should check the values of their arguments

Session 1: Programming Issues

35

Debugging

 Use either watches, assertions or temporary
System.out.println/printf/cout statements to find logic
errors

 Systematically check a program’s logic to determine
where an error occurs

Session 1: Programming Issues

Problem Solving Life Cycle

 Understand the problem

 Specification

 Analysis

 Algorithm design

 Implementation

 Testing

 Maintenance

70%

30%

Session 1: Problem Solving36

Example:

37

 Given 3 integer values, write a program to output the
maximum.

int a, b, c;
scanf(“%d %d %d”, &a, &b, &c);
if (a > b && a > c)

printf(“max is %d\n”, a);
if (b > a && b > c)

printf(“max is %d\n”, b);
if (c > a && c > b)

printf(“max is %d\n”, c);

Session 1: Problem Solving

Problem Solving

 The animal is formed by 10 sticks.

 Move 2 sticks so that the animal can avoid being hit by
the bullet.

Session 1: Problem Solving38

Different View of Programming

39

 Program = Data Structure + Algorithm

 How to store information in computer?

 How to process the information to produce the required
result?

Session 1: Programming

Programming Languages

 C/C++, Java, C#

 Syntax (Grammar of the language)

 Semantic (Meaning of the language)

Session 1: Programming Languages40

Syntax

41

 Identifier

 Must begin with a alphabet or a _

 Must not have any special character

 Each statement must be terminated by a semi-colon.

 Etc.

Session 1: Syntax

Semantics

42

 Consider programming to be putting values into boxes.

 Input statements, assignment statement

 Taking the values out of the boxes and perform some
operations on them

 Using operators such as *, /, +, -, %, ==, <, >, <=, >=, !=, ||, &&

 Output the final results

 Output statements

Session 1: Semantics

Variables: Creating the boxes

 Give an identity to each box.

 Specify what type of value can be put into the box.

 Put an initial value into the box.

int number = 0;

float decimal = 1.0;

char check;
number decimal check

0 1.0 ?

Session 1: Variables43

Variables: Put values into the boxes

 Assignment statements

 Input statements

number = 20;

decimal = 4.0;

scanf(“%c”, &check);
number decimal check

20 4.0 ‘a’

Session 1: Variables44

Variables: Get values out of the boxes

 To do calculations

 To make decisions

 To output the results

number = number + 1;

if (sqrt(decimal) == 2.0);

printf(“perfect square”);

scanf(“%c”, &check);

number decimal check

20 4.0 ‘a’21

Beware of errors that
are difficult to discover

Session 1: Variables45

Arithmetic: Different from normal Math

46

 number = number + 1;

 number = number / 10;

 number = number % 10;

 Be careful about the difference between

number = 1

and

number == 1

Session 1: Arithmetic

Sequential Construct

 Statements are executed sequentially one after another.

 When a function is called, the function must be executed
entirely before the statement after the function is
executed.

 Compound statement.

 Compound statement are created by putting many single
statements into a pair of braces, ‘{‘ and ‘}’

Session 1: Control Flow Constructs47

Conditional Construct

48

 Making decision

 Each of the conditional construct is considered as one
statement.

 You may nest any other valid statements within the
construct.

 Simple if statement

 if-else statement

if (a == b)
printf(“%d and %d are equal\n”, a, b);

if (a > b && a > c)
max = a;

else
if (b > a && b > c)

max = b;
else

max = c;

Is this correct?

Session 1: Control Flow Constructs

Conditional Construct

49

if (a > b && a > c)
max = a;
if (b > a && b > c)

max = b;
else

max = c;

• Be careful with the pairing
of if-else, the following has
a totally different meaning
as what is intended.

• Indentation does not
mean the else statement is
paired with the first if
statement.

• When in doubt, use braces
to ensure the pairing

if (a > b && a > c) {
max = a;
if (b > a && b > c)

max = b;
}
else

max = c;

Session 1: Control Flow Constructs

switch Statement

50

 Nested if statements are difficult to write and difficult to
understand.

 The switch statement are normally used if there are only
a limited discrete values for the control variables.

Session 1: Control Flow Constructs

Iterative Constructs

51

 for loop

for (initialisation; condition; modification) {

}

 Initialisation: to set an initial value for loop control
variable(s). Eg. j = 0;

 Condition: The termination condition to terminate the
loop when it becomes false. Eg. j < 10;

 Modification: modify the control variable so that the
termination condition will eventually become true. Eg.
j++;

Session 1: Control Flow Constructs

Iterative Constructs

52

 while loop
while (condition) {

<loop body>

}

• do-while loop
do

<loop body>
while (condition)

• Initialisation of the variables in the conditions are normally
done outside the loop.

• Modification of the values for the variables are done in the
loop.

• Loop will terminate when condition becomes false.

• While loop may not be executed at all but the do while
loop will execute at least one time.

Session 1: Control Flow Constructs

The End

53

