
Programming Refresher Workshop

11, 12, 14 July 2017

Contents

 Objectives

 Staff

 Seniors

 Programme

 Website/Topics

 Useful software and documents

2 Intro: Contents

Objectives

 To provide a refresher on programming and problem-solving skills
covered in the first programming course (CS1010 or its equivalent)

 Targeted at incoming students holding polytechnic diploma who are
exempted from CS1010 (Programming Methodology) or its
equivalent.

 To allow students to better assess their preparedness for the follow-
up module(s) after CS1010

 IS/BZA students take CS1020 (Data Structures and Algorithms I)

 CS students take CS2040 (Data Structures and Algorithms) and CS2030
(Programming Methodology II)

 InfoSec/CEG students take CS2040C (Data Structures and Algorithms)

 If you decide to take CS1010 after this workshop, please request for
a form from us, fill it up and submit to our UG office.

3 Intro: Objectives

Staff

Mr Aaron Tan
tantc@comp.nus.edu.sg

4 Intro: Staff

A/P Tan Sun Teck
tanst@comp.nus.edu.sg

Dr Henry Chia
hchia@comp.nus.edu.sg

Seniors

5 Intro: Seniors

Chua Zhi Jie

Choo Wen Xin

Koh Min Xuan

Ng Tzer Bin

Puah Jia Hui

Sim Kwan Tiong,
Damien

Programme

 Three days with six sessions:

 11 July 2017, Tuesday: Session 1 (AM) and Session 2 (PM)

 12 July 2017, Wednesday: Session 3 (AM) and Session 4 (PM)

 14 July 2017, Friday: Session 5 (AM) and Session 6 (PM)

 Each session

 AM session: 9 am – 12 noon

 PM session: 1 – 4pm

 Venue: PL2 (COM1 basement)

6 Intro: Programme

Website/Topics

7

Day Session Lecturer Topics

Day 1 AM A/P Tan Sun Teck Intro; S/W development cycle;
Control structures; CodeCrunch

PM Mr Aaron Tan Subprograms; parameters; pre- and
post-conditions; program testing

Day 2 AM A/P Tan Sun Teck 1-dimensional arrays

PM Mr Aaron Tan 2-dimensional arrays

Day 3 AM Dr Henry Chia Recursion

PM Dr Henry Chia Number processing

 http://www.comp.nus.edu.sg/~tantc/refresher

Intro: Website/Topics

http://www.comp.nus.edu.sg/~tantc/refresher

Useful Software and Documents

8

 CodeCrunch

 A lab exercise portal.

 Can support C/C++ and Java.

 Download the exercise.

 Develop your solution in your computer.

 Submit your solution to CodeCrunch.

 Check the result.

Intro: Useful Software and Documents

Useful Software and Documents

9

 Cygwin

 A UNIX-like environment.

 Need to know UNIX commands

 ls, mkdir, cd, cp, mv, etc

 Commands to compile programs

 javac myProg.java for Java program

 gcc myProg.c for c program

 g++ myProg.cpp for C++ program

 You may add different compilation options as required. For example,
to highlight all warnings.

 You should try to learn a UNIX editor such as vim

Intro: Useful Software and Documents

Useful Software and Documents

10

 Cygwin/MinGW Installation Guide

 Introduction to Unix commands and Running Java
Programs

 CodeCrunch guide

Intro: Useful Software and Documents

http://www.comp.nus.edu.sg/~tantc/refresher/cygwin_guide.pdf
http://www.comp.nus.edu.sg/~tantc/refresher/unix.pdf
http://www.comp.nus.edu.sg/~tantc/refresher/CodeCrunch.pdf

Programming Refresher Workshop

A/P Tan Sun TeckSession 1

11

Contents

 Problem Solving Life Cycle

 Different view of programming

12 Session 1: Contents

13

What is Algorithmic Problem Solving?

 The entire process of taking the statement of a problem
and developing a computer program to solve the problem

 Example: To solve a quadratic equation

Program = algorithm + data structure

 Algorithm: a step-by-step specification of a method to solve a
problem within a finite amount of time

 Data structure: ways to store information

Session 1: Algorithmic Problem Solving

14

The Life Cycle of Software as a Water Wheel

 We’ll cover only aspects that
play a crucial role in data
structures

 Specification

 Design

 Verification

 Coding

 Testing

 The other parts will be
covered in later semesters,
especially in
Software Engineering

Session 1: Software Life Cycle

15

Phase 1: Specification

Make the problem statement precise and detailed

For example:
 What is the input data?

 What data is valid and what data is not valid?

 Who will use the software, what user interface should be
used?

A prototype program can clarify the problem: a simple
program that simulates the behavior and illustrates
the user interface

Session 1: Software Life Cycle

16

Phase 2: Design

Divide a large problem into small modules:

 Loosely coupled modules are independent

 Each module should perform one well-defined task
(highly cohesive)

 Specify data flow among modules

 E.g., purpose, assumptions, input, and output

 It is NOT a description of what methods to use to solve the
problem; just a decomposition into smaller tasks

Session 1: Software Life Cycle

17

 View Specifications as a contract

Example: To design a method for a shape object that
moves it to a new location on the screen. Possible
specifications:
 The method will receive an (x, y) coordinate.

 The method will move the shape to the new location on the
screen

(x, y) (x, y)

Phase 2: Design (cont.)

Session 1: Software Life Cycle

18

 A module’s specification should not describe a method of
solution.

 Method specifications include precise pre-conditions and
post-conditions ; identify the method’s formal parameter,
etc.

 Incorporate existing software components in your design.

Phase 2: Design (cont.)

Session 1: Software Life Cycle

19

First-draft specifications

move (x, y)

// Move a shape to a new location on the screen

// Pre-condition: The calling program provides an

// (x, y) pair, both integers.

// Post-condition: The shape is moved to the new location

// (x, y)

Phase 2: Design (cont.)

Session 1: Software Life Cycle

20

Revised specifications

move (x, y)

// Move a shape to a new location on the screen

// Pre-condition: The calling program provides an

// (x, y) pair, both integers, where

// 0 <= x <= MAX_XCOOR, 0 <= y <= MAX_YCOOR,

// where MAX_XCOOR and MAX_YCOOR are class

// constants that specify the maximum coordinate values.

// Post-condition: The shape is moved to the new location

// (x, y)

Phase 2: Design (cont.)

Session 1: Software Life Cycle

Algorithm

 Similar to a recipe for cooking

 You must know how to cook a dish before you can write the
recipe.

 It is a step by step instruction for solving a problem.

 You must know how to solve the problem before you can write
the program.

 An algorithm is commonly presented in pseudo-code.

Session 1: Software Life Cycle21

22

Phase 4: Verification

 Formal theoretical methods are available for proving the
correctness of an algorithm

 still a research subject

 Some aspects of the verification process

 Assertion

 Invariant

An assertion is a statement about
a particular condition at a certain

point in an algorithm

An invariant is a condition that is
always true at a particular point of

the algorithm

Session 1: Software Life Cycle

23

Phase 4: Verification - Assertion

 An assertion is a statement about a particular condition
at a certain point in an algorithm.

 special case: pre/post-conditions

method

Pre-Condition
condition that is

assumed to hold prior
to method invocation

Post-Condition
condition that is

guaranteed to hold
after method

invocation

Session 1: Software Life Cycle

24

Phase 4: Verification - Example

Revised specifications

move (x, y)

// Move a shape to a new location on the screen

// Pre-condition: The calling program provides an

// (x, y) pair, both integers, where

// 0 <= x <= MAX_XCOOR, 0 <= y <= MAX_YCOOR,

// where MAX_XCOOR and MAX_YOOR are class

// constants that specify the maximum coordinate values.

// Post-condition: The shape is moved to the new location

// (x, y)

Session 1: Software Life Cycle

25

Phase 5: Coding

 Translating the design into a particular programming
language

 Coding is a relatively minor phase in the software life
cycle.

Session 1: Software Life Cycle

26

Phase 6: Testing

 Design a set of test data to test the program

 Testing is both a science and an art

Session 1: Software Life Cycle

27

What is a good solution?

 When the total cost incurred over all phases of the
life cycle is minimal

 Programs must be well structured and documented

 Efficiency is important
 Using the proper algorithms and data structures can lead to

significant differences in efficiency

 In many instances, the specific style of coding matters less
than the choice of data structures

Session 1: Software Life Cycle

28

Top-Down Design

Use it:

 When designing an algorithm for a method

 When the emphasis is on algorithms and not on the data.

 A structure chart shows the relationship among modules.

 A solution consisting of independent tasks.

Session 1: Top-Down Design

29

Example: Find the Median Score

Session 1: Top-Down Design

30

Six Key Programming Issues

1. Modularity

2. Modifiability

3. Ease of use

4. Fail-safe programming

5. Style

6. Debugging

Session 1: Programming Issues

31

Modularity

 Facilitates programming

 Isolates errors

 Programs are easy to read

 Isolates modifications

 Eliminates redundancies

Session 1: Programming Issues

32

Modifiability

 Methods make a program easier to modify

 Named constants make a program easier to modify

Session 1: Programming Issues

33

Ease of Use

 A good user interface, for example, prompt user for input

 A good manual

Session 1: Programming Issues

34

Fail-Safe Programming

A fail-safe program is one that will perform reasonably no
matter how anyone use it:

 Check for errors in input

 Check for errors in logic

 Methods should check their invariants

 Methods should enforce their preconditions

 Methods should check the values of their arguments

Session 1: Programming Issues

35

Debugging

 Use either watches, assertions or temporary
System.out.println/printf/cout statements to find logic
errors

 Systematically check a program’s logic to determine
where an error occurs

Session 1: Programming Issues

Problem Solving Life Cycle

 Understand the problem

 Specification

 Analysis

 Algorithm design

 Implementation

 Testing

 Maintenance

70%

30%

Session 1: Problem Solving36

Example:

37

 Given 3 integer values, write a program to output the
maximum.

int a, b, c;
scanf(“%d %d %d”, &a, &b, &c);
if (a > b && a > c)

printf(“max is %d\n”, a);
if (b > a && b > c)

printf(“max is %d\n”, b);
if (c > a && c > b)

printf(“max is %d\n”, c);

Session 1: Problem Solving

Problem Solving

 The animal is formed by 10 sticks.

 Move 2 sticks so that the animal can avoid being hit by
the bullet.

Session 1: Problem Solving38

Different View of Programming

39

 Program = Data Structure + Algorithm

 How to store information in computer?

 How to process the information to produce the required
result?

Session 1: Programming

Programming Languages

 C/C++, Java, C#

 Syntax (Grammar of the language)

 Semantic (Meaning of the language)

Session 1: Programming Languages40

Syntax

41

 Identifier

 Must begin with a alphabet or a _

 Must not have any special character

 Each statement must be terminated by a semi-colon.

 Etc.

Session 1: Syntax

Semantics

42

 Consider programming to be putting values into boxes.

 Input statements, assignment statement

 Taking the values out of the boxes and perform some
operations on them

 Using operators such as *, /, +, -, %, ==, <, >, <=, >=, !=, ||, &&

 Output the final results

 Output statements

Session 1: Semantics

Variables: Creating the boxes

 Give an identity to each box.

 Specify what type of value can be put into the box.

 Put an initial value into the box.

int number = 0;

float decimal = 1.0;

char check;
number decimal check

0 1.0 ?

Session 1: Variables43

Variables: Put values into the boxes

 Assignment statements

 Input statements

number = 20;

decimal = 4.0;

scanf(“%c”, &check);
number decimal check

20 4.0 ‘a’

Session 1: Variables44

Variables: Get values out of the boxes

 To do calculations

 To make decisions

 To output the results

number = number + 1;

if (sqrt(decimal) == 2.0);

printf(“perfect square”);

scanf(“%c”, &check);

number decimal check

20 4.0 ‘a’21

Beware of errors that
are difficult to discover

Session 1: Variables45

Arithmetic: Different from normal Math

46

 number = number + 1;

 number = number / 10;

 number = number % 10;

 Be careful about the difference between

number = 1

and

number == 1

Session 1: Arithmetic

Sequential Construct

 Statements are executed sequentially one after another.

 When a function is called, the function must be executed
entirely before the statement after the function is
executed.

 Compound statement.

 Compound statement are created by putting many single
statements into a pair of braces, ‘{‘ and ‘}’

Session 1: Control Flow Constructs47

Conditional Construct

48

 Making decision

 Each of the conditional construct is considered as one
statement.

 You may nest any other valid statements within the
construct.

 Simple if statement

 if-else statement

if (a == b)
printf(“%d and %d are equal\n”, a, b);

if (a > b && a > c)
max = a;

else
if (b > a && b > c)

max = b;
else

max = c;

Is this correct?

Session 1: Control Flow Constructs

Conditional Construct

49

if (a > b && a > c)
max = a;
if (b > a && b > c)

max = b;
else

max = c;

• Be careful with the pairing
of if-else, the following has
a totally different meaning
as what is intended.

• Indentation does not
mean the else statement is
paired with the first if
statement.

• When in doubt, use braces
to ensure the pairing

if (a > b && a > c) {
max = a;
if (b > a && b > c)

max = b;
}
else

max = c;

Session 1: Control Flow Constructs

switch Statement

50

 Nested if statements are difficult to write and difficult to
understand.

 The switch statement are normally used if there are only
a limited discrete values for the control variables.

Session 1: Control Flow Constructs

Iterative Constructs

51

 for loop

for (initialisation; condition; modification) {

}

 Initialisation: to set an initial value for loop control
variable(s). Eg. j = 0;

 Condition: The termination condition to terminate the
loop when it becomes false. Eg. j < 10;

 Modification: modify the control variable so that the
termination condition will eventually become true. Eg.
j++;

Session 1: Control Flow Constructs

Iterative Constructs

52

 while loop
while (condition) {

<loop body>

}

• do-while loop
do

<loop body>
while (condition)

• Initialisation of the variables in the conditions are normally
done outside the loop.

• Modification of the values for the variables are done in the
loop.

• Loop will terminate when condition becomes false.

• While loop may not be executed at all but the do while
loop will execute at least one time.

Session 1: Control Flow Constructs

The End

53

