B ®

NUS | Computin
95 e P g

aaaaaaa | University
of Singapore

Programming Refresher Workshop

Session 2 Mr Aaron Tan

Contents

» Learning journal

» Greatest Common Divisor
» Subprogram

» Parameters

» Pre- and post-conditions

» Address Parameters

» Testing

b 2 Session 2: Contents

Sthool of Computing

Le arning J Ourn al RETr:fI:-Ier in Programming Workshop 2017

www.comp.nus.edu.sgftantc/refresher

My name:

} FO r yo u r Own Se If This journal is for you to fill in the grades you've obtained for the exercises. This is to allow

you to gauge your programming proficiency, and to provide more information for you to
decide if you would like to take the CS51010 module notwithstanding your exemption, in

e al ati n order to better prepare yourself for the follow-up module (CS1020 for IS/BZA,
v u O C52040+C52030 for CS, or C52040C for InfoSec/CEG). This is only for your own record; you

do not need to submit it.

As a rough guide, if you have ocbtained, on average, a grade ‘B' or better for the exercises
given out, you are quite ready to tackle the follow-up module(s) of C51010. Otherwise, we
would advise you to give due consideration on taking C51010.

Mote that CodeCrunch awards grades based 100% on the correctness of your programs. In
C51010, correctness constitutes only 60%, with style (such as proper variable names,
indentation, appropriate comments, etc.) and design (such as neat logic, appropriate
algorithm and data structures, etc.) occupying the remaining 40%:, and these are graded by
the tutors. Hence, the actual grade you obtain for your program might be worse that what
you have got from CodeCrunch in this workshop.

If you are nmot using CodeCrunch, the input files and output files for all exercises are
available at http://www.comp.nus.edu.sg/~tantc/refresher/ for your checking. You may use
the following grading scheme:

Grade | Description
A If you get right answers for at least 90% of test cases
B If you get right answers for at least 75% but less than 90% of test cases
C If you get right answers for at least 60%: but less than 75%: of test cases

My My strengths

Sessions 1 and 2
grades

Ex1: Mind Reading

Ex2: Body Mass Index

Ex3: Perfect Square

My weaknesses

Ex4: Up-slopes

Ex5: Candles

Exb: Bisection Method

p 3 Session 2: Learning Journal

Greatest Common Divisor (GCD) (1/3)

» GCD(q, b) = largest integer that divides both a and b
» Eg: GCD(20,15) = 5;GCD(16,21) = I; GCD(7,7) = 7; GCD(0,
123) = 123
» Conditions:
» Both a and b are non-negative

» a and b cannot be both zero

p 4 Session 2: GCD

Greatest Common Divisor (GCD) (2/3)

» Algorithm

ocd(a, b):
1. If (b = 0) then the answer is a. Stop.
2. r € remainder ofa / b
a< b
b&r
3. Go to step 1.

b 5 Session 2: GCD

Greatest Common Divisor (GCD) (3/3)

» Pseudo-code » C program (gcd_v1l.c)

int a, b, r; #include <stdio.h>
// Read input values a and b s it 4
int a, b, r;
while (b > 0) {
r=a%b: printf("Enter a and b: ");
’ scanf("%d %d", &a, &b);

a = b;
b=r; while (b > 0) {
) r=a%b;
a = b;
b =r;
/I print a }

printf("Answer = %d\n", a);
return O;

p 6 Session 2: GCD

Subprogram (1/3)

» A subprogram (or subroutine)
» is a (usually small) code that does a specific task;
» can be called many times — reusability;

» Promotes top-down design;

» eases maintenance and debugging

» Named differently in different languages

» procedure (in Pascal), function (in C), method (in Java), etc.

b 7 Session 2: Subprogram

Subprogram (2/3)

4

Non-modular (gcd_v1l.c)

» Modular (gcd_v2.c)

#include <stdio.h>

int main(void) {

int a, b, r;

printf("Enter a and b: ");
scanf("%d %d", &a, &b);

while (b > 0) {

r=a%b;
a = b;
b =r;

}

printf("Answer = %d\n", a);
return O;

#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("Gcb(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0
int gcd(int a, int b) {

int r;

while (b > 0) {
r=a%b;
a = b;
b =r;

}

return a;

Session 2: Subprogram

Subprogram (3/3)

» Modular (gcd v2.c)

Function header defines winclude <stdio. hs

contract with caller int gcd(int, int);

- - - int main(void) { Call

int gcd(int a, int b) int a, b;
printf("Enter a and b: "); ¢/

N scanf("%d %d", &a, &b);
printf("Gccp(%d,%d) = %d\n", a, b, gcd(a,b));
return 0O;
parameters }

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0

int gcd(int a, int b) {)
in'_c r; <€——— |ocal variable
return type Wh119=(g ’ 8)_ {
1=b: Function
value returned to caller b = r; definition
}
return a;
} $ »

b 9 Session 2: Subprogram

Parameters (1/2)

» Parameters

» local to the function #include <stdio.h>
int gcd(int, int);
» pass-by-value
int main(void) {

» may (usually) have names int a, b;
different from variables in printf("Enter a and b: ");
scanf("%d %d", &a, &b);
caller printf("Gep(%d,%d) = %d\n", a, b, gcd(a,b));

return 0O;

» Function header specifies |;
m the funCtion does, and // Returns the greatest common divisor of x and y

interface Wlth Ca”er 1/_{]tPrgec—§E)?:1:: >)<(’ar1idm§/ ;S)n?{negative, and not both 0
» Function body shows how ahile Cy > 0) 1
it is done RS
» could be replaced by a , YT
better/alternative } return x;

code/algorithm

b 10 Session 2: Parameters

Parameters (2/2)

» Parameters are data the subprogram needs from caller
to perform its work

» Only include the necessary

int main(void) {
int a, b, rem;

printf("GcD(%d,%d) = %d\n", a, b,
gcd(a,b,rem));
}

int gcd(int x, int y, int r) {
while (y > 0) {

X % Y;

Y;

r;

X 3
1

b Il Session 2: Parameters

Pre-conditions

» To indicate the conditions that must be satisfied for the subprogram to be
effective

» In our GCD function, a and b must be non-negative, and not both 0 for the
function to work correctly

» It is the responsibility of the caller to ensure that the pre-conditions of the
subprogram are met before calling the subprogram

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0
int gcd(int a, int b) {

int r;

while (b > 0) {

r a%b;
b;

r;

a
b
}

return a;

b 12 Session 2: Parameters

Post-conditions

» A post-condition is a condition that must always be true just after the
execution of that section of code

» Sometimes tested using assertions within the code

» Often, post-conditions are simply included in the documentation of that section
of code

» In our GCD function, a and b must be non-negative, and not both 0 for the
function to work correctly

p I3 Session 2: Parameters

Address Parameters (1/2)

» With pass-by-value, no change in values of variables in caller

int main(void) {

. _ . a b
3| e b :] (3] [oup
—_—> printf("%d %d\n", a, b);
return 0O;
}
—> void f@int a, int b) { a — b Y
—>/ a=b + 10; 13 33
—> b =a + 20;
}

b 14 Session 2:Address Parameters

Address Parameters (2/2)

» To change values of variables in caller, pass in addresses of variables

int main(void) {

—> inta =2, b= 3; a b :
S g(&, &b): 13 33 T35
—> printf("%d %d\n", a, b); A 1
return 0O;

}
—> void g(int *p, int *q) { p q
N 7':p — 7':q + 10,
—_ :':q — 7':p + 20,

}

» For Java, C, C++
» &a:address of variable a
» *p:variable pointed to by p

p I5 Session 2:Address Parameters

Testing

» It is your responsibility to test your program thoroughly
before submission.

» Do not use CodeCrunch to test your program.
» Test different cases

» For GCD, these could be some cases to test:
Cases where a < b. Eg: gcd(12, 21), gcd(20, 30)
Cases where a = b. Eg: gcd(71,71), gcd (6, 6)
Cases where a and b have common factor larger than |I.
Eg: gcd(14, 8), gcd(35, 77)
Cases where a and b have nho common factor larger than |.
Eg: gcd(10,27), gcd(123, 35)
Cases where a or b is 0. Eg: gcd(0, 7), gcd(8, 0)

b 16 Session 2:Testing

Day 1 Exercise 4: Up-slopes

» Count the number of up-slopes

b 17 Session 2:Testing

Up-slopes: Test Cases

Examples will be given during lecture.

p I8 Session 2:Testing

