
Programming Refresher Workshop

Mr Aaron TanSession 2



Contents

 Learning journal

 Greatest Common Divisor

 Subprogram

 Parameters

 Pre- and post-conditions

 Address Parameters

 Testing

2 Session 2: Contents



Learning Journal

3 Session 2: Learning Journal

 For your own self 

evaluation 



Greatest Common Divisor (GCD) (1/3)

 GCD(a, b) = largest integer that divides both a and b

 Eg: GCD(20,15) = 5; GCD(16, 21) = 1; GCD(7, 7) = 7; GCD(0, 

123) = 123

 Conditions:

 Both a and b are non-negative

 a and b cannot be both zero

4 Session 2: GCD



Greatest Common Divisor (GCD) (2/3)

 Algorithm 

5 Session 2: GCD

gcd(a, b):
1. If (b = 0) then the answer is a. Stop.
2. r  remainder of a / b

a  b
b  r

3. Go to step 1.



Greatest Common Divisor (GCD) (3/3)

 Pseudo-code 

6 Session 2: GCD

int a, b, r;

// Read input values a and b

while (b > 0) {

r = a % b;

a = b;

b = r;

}

// print a

#include <stdio.h>

int main(void) {
int a, b, r;

printf("Enter a and b: ");
scanf("%d %d", &a, &b);

while (b > 0) {
r = a % b;
a = b;
b = r;

}

printf("Answer = %d\n", a);
return 0;

}

 C program (gcd_v1.c)



Subprogram (1/3)

 A subprogram (or subroutine)

 is a (usually small) code that does a specific task;

 can be called many times – reusability;

 Promotes top-down design;

 eases maintenance and debugging

 Named differently in different languages

 procedure (in Pascal), function (in C), method (in Java), etc.

7 Session 2: Subprogram



Subprogram (2/3)

8 Session 2: Subprogram

#include <stdio.h>

int main(void) {
int a, b, r;

printf("Enter a and b: ");
scanf("%d %d", &a, &b);

while (b > 0) {
r = a % b;
a = b;
b = r;

}

printf("Answer = %d\n", a);
return 0;

}

 Non-modular (gcd_v1.c)
#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("GCD(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0
int gcd(int a, int b) {

int r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
return a;

}

 Modular (gcd_v2.c)



Subprogram (3/3)

9 Session 2: Subprogram

#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("GCD(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0

int gcd(int a, int b) {
int r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
return a;

}

 Modular (gcd_v2.c)

Function 

definition

Local variable

int gcd(int a, int b)
Call

Function header defines 

contract with caller

return type

value returned to caller

parameters



Parameters (1/2)

 Parameters 

 local to the function

 pass-by-value

 may (usually) have names 
different from variables in 
caller 

 Function header specifies 
what the function does, and 
interface with caller

 Function body shows how
it is done

 could be replaced by a 
better/alternative 
code/algorithm

10 Session 2: Parameters

#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("GCD(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of x and y
// Pre-cond: x and y non-negative, and not both 0

int gcd(int x, int y) {
int r;
while (y > 0) {

r = x % y;
x = y;
y = r;

}
return x;

}



Parameters (2/2)

 Parameters are data the subprogram needs from caller 

to perform its work

 Only include the necessary

11 Session 2: Parameters

int main(void) {
int a, b, rem;
. . .
printf("GCD(%d,%d) = %d\n", a, b, 

gcd(a,b,rem));
}

int gcd(int x, int y, int r) {
while (y > 0) {

r = x % y;
x = y;
y = r;

}
return x;

}





Pre-conditions

 To indicate the conditions that must be satisfied for the subprogram to be 

effective

 In our GCD function, a and b must be non-negative, and not both 0 for the 

function to work correctly

 It is the responsibility of the caller to ensure that the pre-conditions of the 

subprogram are met before calling the subprogram

12 Session 2: Parameters

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0
int gcd(int a, int b) {

int r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
return a;

}



Post-conditions

 A post-condition is a condition that must always be true just after the 

execution of that section of code

 Sometimes tested using assertions within the code

 Often, post-conditions are simply included in the documentation of that section 

of code

 In our GCD function, a and b must be non-negative, and not both 0 for the 

function to work correctly

13 Session 2: Parameters



Address Parameters (1/2)

 With pass-by-value, no change in values of variables in caller 

14 Session 2: Address Parameters

int main(void) {
int a = 2, b = 3;
f(a, b);
printf("%d %d\n", a, b);
return 0;

}

void f(int a, int b) {
a = b + 10;
b = a + 20;

}

a
2

b
3

a
2

b
313 33

Output:
2 3



Address Parameters (2/2)

 To change values of variables in caller, pass in addresses of variables

15 Session 2: Address Parameters

int main(void) {
int a = 2, b = 3;
g(&a, &b);
printf("%d %d\n", a, b);
return 0;

}

void g(int *p, int *q) {
*p = *q + 10;
*q = *p + 20;

}

a
2

b
3

p q

13 33 Output:
13 33

 For Java, C, C++
 &a: address of variable a

 *p: variable pointed to by p



Testing

 It is your responsibility to test your program thoroughly 

before submission.

 Do not use CodeCrunch to test your program.

 Test different cases

 For GCD, these could be some cases to test:

 Cases where a < b. Eg: gcd(12, 21), gcd(20, 30)

 Cases where a = b. Eg: gcd(71, 71), gcd (6, 6)

 Cases where a and b have common factor larger than 1. 

Eg: gcd(14, 8), gcd(35, 77)

 Cases where a and b have no common factor larger than 1. 

Eg: gcd(10,27), gcd(123, 35)

 Cases where a or b is 0. Eg: gcd(0, 7), gcd(8, 0)

16 Session 2: Testing



Day 1 Exercise 4: Up-slopes

 Count the number of up-slopes

17 Session 2: Testing



Up-slopes: Test Cases

18 Session 2: Testing

Examples will be given during lecture.



The End

19


