
Programming Refresher Workshop

Mr Aaron TanSession 2

Contents

 Learning journal

 Greatest Common Divisor

 Subprogram

 Parameters

 Pre- and post-conditions

 Address Parameters

 Testing

2 Session 2: Contents

Learning Journal

3 Session 2: Learning Journal

 For your own self

evaluation

Greatest Common Divisor (GCD) (1/3)

 GCD(a, b) = largest integer that divides both a and b

 Eg: GCD(20,15) = 5; GCD(16, 21) = 1; GCD(7, 7) = 7; GCD(0,

123) = 123

 Conditions:

 Both a and b are non-negative

 a and b cannot be both zero

4 Session 2: GCD

Greatest Common Divisor (GCD) (2/3)

 Algorithm

5 Session 2: GCD

gcd(a, b):
1. If (b = 0) then the answer is a. Stop.
2. r remainder of a / b

a b
b r

3. Go to step 1.

Greatest Common Divisor (GCD) (3/3)

 Pseudo-code

6 Session 2: GCD

int a, b, r;

// Read input values a and b

while (b > 0) {

r = a % b;

a = b;

b = r;

}

// print a

#include <stdio.h>

int main(void) {
int a, b, r;

printf("Enter a and b: ");
scanf("%d %d", &a, &b);

while (b > 0) {
r = a % b;
a = b;
b = r;

}

printf("Answer = %d\n", a);
return 0;

}

 C program (gcd_v1.c)

Subprogram (1/3)

 A subprogram (or subroutine)

 is a (usually small) code that does a specific task;

 can be called many times – reusability;

 Promotes top-down design;

 eases maintenance and debugging

 Named differently in different languages

 procedure (in Pascal), function (in C), method (in Java), etc.

7 Session 2: Subprogram

Subprogram (2/3)

8 Session 2: Subprogram

#include <stdio.h>

int main(void) {
int a, b, r;

printf("Enter a and b: ");
scanf("%d %d", &a, &b);

while (b > 0) {
r = a % b;
a = b;
b = r;

}

printf("Answer = %d\n", a);
return 0;

}

 Non-modular (gcd_v1.c)
#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("GCD(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0
int gcd(int a, int b) {

int r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
return a;

}

 Modular (gcd_v2.c)

Subprogram (3/3)

9 Session 2: Subprogram

#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("GCD(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0

int gcd(int a, int b) {
int r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
return a;

}

 Modular (gcd_v2.c)

Function

definition

Local variable

int gcd(int a, int b)
Call

Function header defines

contract with caller

return type

value returned to caller

parameters

Parameters (1/2)

 Parameters

 local to the function

 pass-by-value

 may (usually) have names
different from variables in
caller

 Function header specifies
what the function does, and
interface with caller

 Function body shows how
it is done

 could be replaced by a
better/alternative
code/algorithm

10 Session 2: Parameters

#include <stdio.h>
int gcd(int, int);

int main(void) {
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
printf("GCD(%d,%d) = %d\n", a, b, gcd(a,b));
return 0;

}

// Returns the greatest common divisor of x and y
// Pre-cond: x and y non-negative, and not both 0

int gcd(int x, int y) {
int r;
while (y > 0) {

r = x % y;
x = y;
y = r;

}
return x;

}

Parameters (2/2)

 Parameters are data the subprogram needs from caller

to perform its work

 Only include the necessary

11 Session 2: Parameters

int main(void) {
int a, b, rem;
. . .
printf("GCD(%d,%d) = %d\n", a, b,

gcd(a,b,rem));
}

int gcd(int x, int y, int r) {
while (y > 0) {

r = x % y;
x = y;
y = r;

}
return x;

}

Pre-conditions

 To indicate the conditions that must be satisfied for the subprogram to be

effective

 In our GCD function, a and b must be non-negative, and not both 0 for the

function to work correctly

 It is the responsibility of the caller to ensure that the pre-conditions of the

subprogram are met before calling the subprogram

12 Session 2: Parameters

// Returns the greatest common divisor of a and b
// Pre-cond: a and b non-negative, and not both 0
int gcd(int a, int b) {

int r;
while (b > 0) {

r = a % b;
a = b;
b = r;

}
return a;

}

Post-conditions

 A post-condition is a condition that must always be true just after the

execution of that section of code

 Sometimes tested using assertions within the code

 Often, post-conditions are simply included in the documentation of that section

of code

 In our GCD function, a and b must be non-negative, and not both 0 for the

function to work correctly

13 Session 2: Parameters

Address Parameters (1/2)

 With pass-by-value, no change in values of variables in caller

14 Session 2: Address Parameters

int main(void) {
int a = 2, b = 3;
f(a, b);
printf("%d %d\n", a, b);
return 0;

}

void f(int a, int b) {
a = b + 10;
b = a + 20;

}

a
2

b
3

a
2

b
313 33

Output:
2 3

Address Parameters (2/2)

 To change values of variables in caller, pass in addresses of variables

15 Session 2: Address Parameters

int main(void) {
int a = 2, b = 3;
g(&a, &b);
printf("%d %d\n", a, b);
return 0;

}

void g(int *p, int *q) {
*p = *q + 10;
*q = *p + 20;

}

a
2

b
3

p q

13 33 Output:
13 33

 For Java, C, C++
 &a: address of variable a

 *p: variable pointed to by p

Testing

 It is your responsibility to test your program thoroughly

before submission.

 Do not use CodeCrunch to test your program.

 Test different cases

 For GCD, these could be some cases to test:

 Cases where a < b. Eg: gcd(12, 21), gcd(20, 30)

 Cases where a = b. Eg: gcd(71, 71), gcd (6, 6)

 Cases where a and b have common factor larger than 1.

Eg: gcd(14, 8), gcd(35, 77)

 Cases where a and b have no common factor larger than 1.

Eg: gcd(10,27), gcd(123, 35)

 Cases where a or b is 0. Eg: gcd(0, 7), gcd(8, 0)

16 Session 2: Testing

Day 1 Exercise 4: Up-slopes

 Count the number of up-slopes

17 Session 2: Testing

Up-slopes: Test Cases

18 Session 2: Testing

Examples will be given during lecture.

The End

19

