B ®

NUS | Computin
95 e P g

aaaaaaa | University
of Singapore

Programming Refresher Workshop

Session 3 A/P Tan Sun Teck

Contents

» One-dimensional arrays
» Searching
» Sorting

b 2 Session 3: Contents

1. Motivation #1: Coin Change (1/2)

» Some of the programs we have written are “long-
winded”, because we have not learned enough C
constructs to make it simpler.

» Consider the Coin Change problem with 6

denominations 1¢, 5¢, 10¢, 20¢, 50¢, and $1:

Algorithm:
input: amt (in cents); output: coins
coins € 0
coins += amt/100; amt %= 100;
coins += amt/50; amt %= 50;
coins += amt/20; amt %= 20;
coins += amt/10; amt %= 10;
coins += amt/5; amt %= 5;
coins +=amt/l; amt %= |;
print coins

p 3 Session 3: Motivation

1. Motivation #1: Coin Change (2/2)

int minimumCoins (int amt) —
{
int coins = 0;
coins += amt/100; Q: Can we do better?
amt %= 100;
coins += amt/50;
amt %= 50;
coins += amt/20;
amt %= 20;
coins += amt/10;
amt %= 10;
coins += amt/5;
amt %= 5;
coins += amt/1l; // retained for regularity
amt %= 1; // retained for regularity

return coins;

p 4 Session 3: Motivation

2. Motivation #2: Vote Counting (1/2)

» A student election has just completed with 1000

votes casted for the three candidates: Tom, Dick and
Harry.

» Write a program VoteCount.c to read in all the votes
and display the total number of votes received by
each candidate. Each vote has one of three possible
values:

a | for Tom
a 2 for Dick
a 3 for Harry

b 5 Session 3: Motivation

2. Motivation #2: Vote Counting (2/2)

#include <stdio.h> Week7_VoteCount.c
#define NUM VOTES 1000 // number of votes

int main (void)
{
int i, vote, tom = 0, dick = 0, harry = 0;
printf ("Enter votes:\n");
for (i = 0; i < NUM VOTES; i++)
{ , .
scanf ("3d", svote) : Q: What if there are 30
switch (vote) instead of 3 candidates?
{
case 1l: tom++; break;
case 2: dick++; break;
case 3: harry++; break;
}
}
printf ("Tom: %d; Dick: %d; Harry: %d\n", tom, dick, harry);
return O;

b 6 Session 3: Motivation

2. Motivation #2: With 30 Candidates

#include <stdio.h>

#define NUM VOTES 1000 // number of votes

int main(void)

{ [
int i, vote, ¢1 =0, c2 =0, ..., c¢30 = 0; }'
printf ("Enter votes:\n") ; ¢
for (i = 0; i < NUM VOTES; i++)

{
scanf ("%d", &vote);
switch (vote)
{ ~
case 1: cl++; break;
case 2: c2++; break; .
case 30: c30++; break; g Q: Can we do better?
} v
}
}

b 7 Session 3: Motivation

» It’s inconvenient to define and use a set of variables cl,
c2, ..., c30 in the previous example.

» Let’s study a new language feature called ARRAY for
batch processing of information.

int c[30];

= \ \ Array size

Element type Array name

c[0] c[1] c[2] Cc[3] c[29]

b 8 Session 3: Arrays

3. Introducing Array (2/2)

int c[30];

c[0] c[1] c[2] c[3] c[29]

» For the previous vote counting problem
a c[0] will hold the number of votes for |st candidate
a c[l] holds the number of votes for 2nd candidate
Q...
Q c[29] for the 30th candidate.

» If we read in one more vote for candidate 4, we should

increase c[3] by |I.
Q: Why increase c[3] by 17

b 9 Session 3: Arrays

3.1 Array Declaration: Syntax

Tarr[E]
» arr is the name of array

» E is an integer constant expression with a positive value

» Tis atype (e.g., int, double, float, char...)
O All array elements will be of the same type T
» Examples:

#define M 5
#define N 10

double foo[M*N+8]; // size of array foo is 58

char arr[10]; // this is good

. . . Variable-length array is not
int 1; _ supported by ISO €90 standard.
float bar[i]; // DISCOURAGED! gcc —pedantic gives warning.

b 10 Session 3: Array Declaration

3.2 Array Declarations w/ Initializers

» Array can be initialized at the same time of declaration.

int a[3] = {54, 9, 10}; // a[0]=54, a[l]=9, a[2]=10

int b[] = {1, 2, 3};
// size of b is 3 with b[0]=1, b[1]=2, b[2]=3

int c[5] = {17, 3, 10}; // partial initialization
// c[0]1=17, c[1l]=3, c[2]=10,c[3]=0, c[4]=0

The following initializations are incorrect:

int e[2] = {1, 2, 3}; // warning issued: excess elements

int £[5];
£[5] = {8, 23, 12, -3, 6}; // too late to do this;
// compilation error

b Il Session 3: Array Initialization

3.3 Demo #1: Using Array Variables

#include <stdio.h> Fuller code two
#define NUM VOTES 1000 // number of votes slides later.
#define NUM CANDIDATES 30 // number of candidates
int main(void)
{
int i, vote;
int cand[NUM_CANDIDATES];
for (i = 0; i < NUM CANDIDATES; i++) // init array
cand[i] = O0;
printf ("Enter votes:\n");
for (i = 0; i < NUM VOTES; i++)
{
scanf ("%d", &vote) ;
cand[vote-1]++;
} AN
} Note

b 12 Session 3: Array Example

3.4 Vote Counting using Array

#define NUM VOTES 1000 // number of votes Week7_VoteCountArray.c
#define NUM CANDIDATES 30 // number of candidates
int main (void)
{
int i, vote, cand[NUM CANDIDATES] ;
for (i = 0; i < NUM CANDIDATES; i++) { cand[i] = 0; }
printf ("Enter votes:\n");
for (i = 0; i < NUM VOTES; i++)
{
scanf ("%d", &vote); // assume user enters valid data
cand[vote-1]++; // add one more vote to candidate
} : is 227
for (i = 0; i < NUM CANDIDATES; i++) Q: What is %%:
printf ("candidate %d: total %d, %.2f%%\n",
i+l, cand[i], (cand[i] * 100.0)/NUM VOTES) ;
return 0; (data input skipped ...)
} candidate 1: total 4, 4.01%
candidate 2: total 12, 12.03%
p I3 Session 3: Array Example

3.5 Demo #2: Using Array Initializer

» Modify the program to use array initializer.

#define NUM VOTES 1000 // number of votes | Week7 VoteCountArrayVer2.c
#define NUM CANDIDATES 30 // number of candidates
int main(void) {

int i, vote;—ecand{NUM-CANBIBATEST;

for—(F—=0—1t< NUMCANDIPDATES—+H—{camdfit—0—F

int cand[NUM CANDIDATES] = { 0 };

printf ("Enter votes:\n");
for (i = 0; 1 < NUM VOTES; i++) {

scanf ("%$d", &vote);

cand[vote-1]++;
}
for (i = 0; i < NUM CANDIDATES; i++)

printf ("candidate %d: total %d, %.2£%%\n",

i+l, cand[i], (cand[i] * 100.0)/NUM VOTES) ;

return 0O;

b 14 Session 3: Array Example

3.6 Demo #3: Coin Change Revisit (1/2)

Algorithm |:]
input: amt (in cents); output: coins Algorlthm 2 _ _
coins < 0 input: amt (in cents); output: coins
coins += amt/100; amt %=100; coins € 0
coins += amt/50; amt %= 50; From the largest denomination to the smallest:
coins += amt/20; amt %= 20; coins += amt/denomination
coins +=amt/|0; amt %= 10; amt %= denomination
H _ . Of — .
coins += amt/5; amt %= 5; go to next denomination
coins += amt/l; amt %= |[; . .
) , print coins
print coins |
Q: how can we easily Algorithm 3:
switch from one input: amt (in cents); output: coins
denomination to cons <0 o
another? forifrom 0 to 5 // there are 6 denominations
' - coins += amt/D, /I Dy, D,, D,, D, D,, D;
amt %= D,
print coins

p I5 Session 3: Array Example

3.6 Demo #3: Coin Change Revisit (2/2)

int minimumCoins (int amt) int minimumCoins (int amt)
{ {
int coins = 0; int denoms[] = {100,50,20,10,5,1};
coins += amt/100; int i, coins = 0;
amt %= 100;
coins += amt/50; for (i=0; i<6; i++)
amt %= 50; {
coins += amt/20; coins += amt/denoms[i];
amt %= 20; amt %= denoms|[i];
coins += amt/10; }
amt %= 10;
coins += amt/5; return coins;
amt %= 5; } Week7_CoinChangeArray.c
coins += amt/1;
amt %= 1;
return coins: Q: which version
} Week7_CoinChange.c IS better?

p 16 Session 3: Array Example

4. Array Assignment (1/2)

» The following is illegal in C:

#define N 10

int source[N] = { 10, 20, 30, 40, 50 };
int dest[N];

dest = source; // illegal!

Q: Why? —————

sourcel0] source[9]

1020304050 | 0| 0| 0| 0O

dest[0] dest[9]
20?2?21 ?2 | ?2 0?2?21 ?2| 7?7

b 17 Session 3: Array Assignment

4. Array Assignment (2/2)

» Method I: Use a loop

int 1i;
for (1 = 0; i < 10; i++)
dest[i] = source[i];

sourcel0] source[9]

1020304050 0| 00|00

dest[0] dest[9]
10/ 20{30(40|50] O | O O] 0] O

Method 2: Use C library function memcpy ()
O #include <string.h>
O Out of the scope of CSI010

p 18 Session 3: Array Assignment

5. Use Array in Function Calls

#include <stdio.h> Week7_SumArray.c
int sumArray(int [], int); // function prototype

int main(void) {

int foo[8] = {5, 3, 7, 1, -4, 2}; Q: What is the output?
int bar[] = {2, 4, 6};

printf("sum is %d\n", sumArray(foo, 8)); sum is 14
printf ("sum is %d\n", sumArray(foo, 3)); sum is 15
printf("sum is %d\n", sumArray(bar, 3)); sum is 12
return O;

}

// need an array size parameter separately

int sumArray(int arr[], int size) ({
int i, total=0;

for (i=0; i<size; i++) Q: How about this function
total += arr[i]; call?
return total; sumArray (bar, 5)

b 9 Session 3: Array in Functions

0. Passing Array Arguments (1/4)

» Caution!

d When passing a value representing the number of array
elements to be processed, that value must not exceed the
actual array size.

printf ("sum is %d\n", sumArray (foo, @)) ;

/

Compiler won't detect this “error”.

a There is NO boundary checking done by the compiler.

20 Session 3: Array in Functions
Y

6. Passing Array Arguments (2/4)

int main(void) {

o sumArray (fo 8)

| Wirrong!

int sumArray(int arr[], int size) ({

}

» Recall that array name is the address of its first element.

In main(): foo[0] foo[1] foo[7]

p 2I Session 3: Array in Functions

6. Passing Array Arguments (3/4)

» Alternative syntax

QO The following shows the alternative syntax for array parameter
in function prototype and function header

int sumArray(int *, int); // function prototype

int sumArray(int *arr, int size) { ... }

However, we recommend the [] notation

int sumArray(int [], int); // function prototype

int sumArray(int arr[], int size) { ... }

22 Session 3: Array in Functions
Y

0. Passing Array Arguments (4/4)

» Function prototype

O As mentioned, name of parameters are optional. Hence, both of the followings

are acceptable and equivalent:

int sumArray(int [], int);

int sumArray(int arr[], int size);

Function header

O No need to put array size inside []; even if array size is present, compiler just

ignores it.

O Instead, provide the array size through another parameter.

int sumArray (int arr[], int size) { ... }
int sumArray (int arr(é), int size) { ... }
i ™~

Ignored by compiler

Actual number of elements you
want to process

Session 3: Array in Functions

7.

Modifying Array Arguments |

1/2)

// preprocessor directives and Week7_ModifyArrayArg.c

// function prototypes omitted
int main(void) {
int foo[8] = {44,
doubleArray (foo,
printArray (foo,
return O;

9,
4) ;
8)

17, 1, -4, 22};

}

// double the values of array elements

void doubleArray(int arr[], int size) {
int i;

for (i=0; i<size;

arr[i] *= 2;

i++)

}

// print arr
void printArray(int arr[], int size) ({
int 1i;

Q: What is the output?

for (i=0; i<size; i++)

printf("3d ", arr[i]); 88 18 34

2 -42200

printf ("\n") ;

Session 3: Array in Functions

7. Modifying Array Arguments (2/2)

int main(void) {
int foo[8] = {44, 9, 17, 1, -4, 22};
doubleArray (foo, 4);

}
// double the values of array elements
void doubleArray(int arr[], int size) {
int i;
for (i=0; i<size; i++)
arr[i] *= 2;

}

Inrnawa foo[0] foo[1] foo[7]

88| 18| 34| 2 | -4 22| 0| O

In doubleArray(): ar size i

p 25 Session 3: Array in Functions

xercise #2: Set Containment

0
ey

» Consider two arrays arrA and arrB of distinct /n¢ values, where their
sizes are sizeA and sizeB respectively (less than 10).

» Write a function
int isSubset(int arrA[], int sizeA, int arrB[], int sizeB)
to check if numbers in arrA is a subset of numbers in arrB.

This function returns | if so, 0 otherwise.

» Skeleton: Algorlthm

cp ~csl010/lecture/Week7 SetContainment.c . !

» Sample run:
Size of 1st array? 4

Enter 4 values: 14 5 1 9

Size of 2nd array? 7
Enter 7 values: 2 9 3 14 5 6 1
lst array is a subset of 2nd array

P 26 Session 3: Array in Functions

Searching and Sorting

» We will study some simple yet useful classical algorithms
which find their place in many CS applications.
Q Searching for some data amid very large collection of data

0 Sorting very large collection of data according to some order

» We will begin with an algorithm (idea), then show how
the algorithm is transformed into a C program
(implementation).

Q This brings back (reminds you):

the importance of beginning with an algorithm

27 Session 3: Searching and Sortin
g g

1. Searching (1/2)

Searching is a common task that we carry out without much
thought everyday.

O Searching for a location in a map.

O Searching for the contact of a particular person.

O Searching for a nice picture for your project report.

O Searching for a research paper required in your course.

 etc.

In this lecture, you will learn how to search for an item
(sometimes called a search key) in an array.

28 Session 3: Searchin
g

1. Searching (2/2)

Problem statement;

Given a list (collection of data) and a search key X return the
position of Xin the list if it exists.

For simplicity, we shall assume there are no duplicate values in the
list.

We will count the number of comparisons the algorithms
make to analyze their performance.

O The ideal searching algorithm will make the least possible number of
comparisons to locate the desired data.

2 We will introduce worst-case scenario.

(This topic is called analysis of algorithms, which will be formally
introduced in CS1020. Here, we will give an informal introduction just for
an appreciation.)

29 Session 3: Searchin
g

2. Linear Search (1/3): Algorithm ¥

Also known as Sequential Search

Idea: Search the list from one end to the other end in linear

progression.

Algorithm: Example: Search for 24

'/ Search for key in list A with nitems | inthislist

| linear_search (A, n, key) 87 12 51 9 24 63
i fori=0ton-1 i

: if A, is key then report i :

:L} _____________________________ J: no no no no yesl

Q: What to report if key is not found? (aim for a clean design)

p 30 Session 3: Searching

2.

Q: What would be returned if array contains duplicated values of the key?

Linear Search (2/3): Code

If the list is an array, how would you implement the Linear

Search algorithm!?

// To search for key in arr using linear search
// Return index if found; otherwise return -1
int linearSearch(int arr[], int size, int key)
{

int 1i;

for (1i=0; i<size; i++)

if (key == arr[i])
return 1i;
return -1; // not found

Session 3: Searching

2. Linear Search (3/3): Performance

We use the number of comparisons here as a rough
measurement.

O Analysis can be done for best case, average case, and worst case. We
will focus on the worst case.

Given an array with n elements, in the worst case,

int linearSearch(int arr[], int n, int key)
{ int i; Q: What is the maximum number of
for (i=0; i<n; i++) comparisons in this algorithm?
if (key == arr[i]) ‘ n comparisons
return 1i;
return -1; Q: Under what circumstances do we
} encounter the worst case?

(@) Key not found
(b) Found at last position

32 Session 3: Searchin
g

3. Binary Search (1/6)

» The idea is simple and fantastic, but applied on the
searching problem, it has this pre-condition that the list
must be sorted before-hand.

» How the data is organized (in this case, sorted) usually
affects how we choose/design an algorithm to access
them.

» In other words, sometimes (actually, very often) we seek
out new way to organize the data so that we can process
them more efficiency.

p 33 Session 3: Searching

3. Binary Search (2/6): Algorithm

(Pre-condition: list is sorted in ascending order)

» Algorithm
3 Look for the key in the middle position of the list.

Either of the following 2 cases happens:

If the key is smaller than the middle element, then “discard” the right
half of the list and repeat the process.

If the key is greater than the middle element, then “discard” the left
half of the list and repeat the process.

a Terminating condition: either the key is found, or when all
elements have been “discarded”.

p 34 Session 3: Searching

3. Binary Search (3/6): Illustration

» Example: Search for key = 23

array [0] [1] 2] [3] [4] [S] [6] [7] [8]

23 [38 [Az—=77+8a{ 0 |

]

1. low =0, high=8, mid =(0+8)/12=4 Found!
2. low =0, high = 3, mid = (0+3)/2 =1 Return 3
3. low =2, high =3, mid = (2+3)/2=2

4. low = 3, high =3, mid = (3+3)/2 =3

p 35 Session 3: Searching

3. Binary Search (4/6): Iterative Code

» |terative version

// To search for key in sorted arr using binary search
// Return index if found; otherwise return -1
int binarySearch(int arr[], int size, int key)
{
int low=0, high=size-1, mid=(low + high)/2;
'while ((low <= high) && (arr[mid] '= key)) '
|
A |
: if (key < arr[mid]) I
| high = mid - 1; :
I else :
: low = mid + 1; !
; mid = (low + high)/2; |
| } |
|
1if (low > high) return -1; :
:else return mid; :
} Week|0_BinarySearch.c

p 36 Session 3: Searching

3. Binary Search (5/6): Analysis

» In binary search, each step eliminates the problem size
(array size) by half.

0O The problem size gets reduced to | very quickly (see next
slide)

» This is a simple yet powerful strategy, of halving the
solution space in each step A: Bisection Method

0 Which exercise employs a similar strategy!?

» Such strategy, a special case of divide-and-conquer
paradigm, can be naturally implemented using recursion.

» At the moment, we will stick to repetition (loop)

O You can write a recursion version after saturday’s lecture.

37 Session 3: Searchin
g

3. Binary Search (6/6): Performance

» In binary search, each step eliminates the problem size
(array size) by half.

0O The problem size gets reduced to | very quickly.
» Worst-case analysis

Array size Linear Search Binary search
n (n comparisons) (log, n comparisons)

100 100 =7
1,000 1,000 ~10
10,000 10,000 ~14
100,000 100,000 =17
1,000,000 1,000,000 ~20
10° 10° ~30

p 38 Session 3: Searching

4. Sorting (1/2)

» Sorting is any process of arranging items in some
sequence.

» Sorting is important because once a set of items is sorted,

many problems (such as searching) become easy.
0 Searching can be speeded up.

0O Determining whether the items in a set are all unique.
0 Finding the median item in the set.

U etc.
II IlII IIIIIII

b 3 Session 3: Sorting

4. Sorting (2/2)

» Problem statement;

Given a list of nitems, arrange all items into ascending order.
» We will implement the list as an integer array.
» We will introduce two basic sort algorithms.

» We will count the number of comparisons the algorithms
make to analyze their performance.
O The ideal sorting algorithm will make the least possible number
of comparisons to arrange data in a designated order.

» We will compare the algorithms by analyzing their worst-
case performance.

p 40 Session 3: Sorting

5. Selection Sort (1/3)

» Algorithm

3 Step I: Find the smallest element in the list.

a Step 2: Swap this smallest element with the element in the
first position. (Now, the smallest element is in the right
place.)

3 Step 3: Repeat steps | and 2 with the list having one fewer
element (i.e. the smallest element just found and placed is
“exempted” from further processing).

b 4l Session 3: Sorting

5. Selection Sort (2/3)

nN=9 first min
b N

araylo] [2] 1381 (4 (5] [6] [7] [8

15 pass: 23 (17| 5 |90 |12 | 44 |38 |84 | 77

first min
N
17 | 23190 | 12

2" pass 5 44 | 38|84 | 77
first min
N
3" pass: 5 |12 | 23|90 | 17 | 44 | 38|84 | 77
first min
4™ pass: L
5 |12 |17 | 90 | 23 | 44 | 38 | 84 | 77

b 42 Session 3: Sorting

5. SeleCtion S()I‘t (3/3) Q: How many passes for an

--- array with n elements?

n-1/ _
n:9 first min
th l/\l
o™ pass: 5 | 12 | 17 | 23 | 90 | 44 | 38 | 84 | 77
first min
Y
6" pass: 5 |12 | 17 | 23 |38 | 44 | 90 | 84 | 77

first min
90 | 84 | 77

7" pass: 5 |12 | 17 | 23| 38 | 44
first min
A
8™ pass: 5 (121723138 |44 | 77 | 84 | 90
Final array: 5 |12 |17 23|38|44| 77|84 | 90

p 43 Session 3: Sorting

5. Demo #2: Selection Sort

// To sort arr in increasing order Week|0_SelectionSort.c
void selectionSort(int arr[], int size)

{

int i, start index, min index, temp;

for (start index = 0; start index < size-1; start index++)

{

// each iteration of the for loop is one pass

// find the index of minimum element
min index = start index;
for (i = start _index+l; i < size; i++)
if (arr[i] < arr[min_index])
min index = i;

// swap minimum element with element at start index
temp = arr[start_index];

arr[start _index] = arr[min_index];

arr[min_ index] = temp;

p 44 Session 3: Sorting

5. Selection Sort: Performance

» We choose the number of comparisons as our basis of analysis.

» Comparisons of array elements occur in the inner loop, where the
minimum element is determined.

» Assuming an array with n elements. Table below shows the number of
comparisons for each pass.

» The total number of comparisons is calculated in the formula below.

» Such an algorithm is call an 7? algorithm, or quadratic algorithm, in terms of
running time complexity.

Pass #comparisons

1 n—1 - (m—D@ nP-n _
Z’; 2 2 "

2 n—2 =1

3 n—3

n—1 1

p 45 Session 3: Sorting

6. Bubble Sort

» Selection sort makes one exchange at the end of each
pass.

» What if we make more than one exchange during each
pass/!

» The key idea of the bubble sort is to make pairwise
comparisons and exchange the positions of the pair if
they are out of order.

p 46 Session 3: Sorting

6. One Pass of Bubble Sort

23| 17| 5190|1244 38|84 |77 17|5 | 23|12 |44 |90| 38|84 |77
T_T exchange exchange u
17| 23| 5(90| 12|44 | 38|84 | 77 17|5 | 23|12 |44 38|90 |84 | 77
u exchange exchange T_T
17| 5 | 2390|1244 | 38|84 | 77 17|5 | 23|12 |44 38|84 |90 | 77
TO_kTT_T exchange exchange T_T
17| 5 | 2312|9044 | 38|84 | 77 17| 5 | 23|12 |44 |38|84|77]| 90
T_T exchange
Q: Is the array sorted? Done!

Q: What did we achieve?

p 47 Session 3: Sorting

6. Demo #3: Bubble Sort

// To sort arr in increasing order Week|0_BubbleSort.c
void bubbleSort (int arr[], int size)
{

int i1, limit, temp;

for (limit = size-2; limit >= 0; limit--)

{
// limit is where the inner loop variable i should end
for (i=0; i<=limit; i++) // one pass
{
if (arr[i] > arr[i+l]) // swap arr[i] with arr[i+1]
{
temp = arr[i];
arr[i] = arr[i+1];
arr[i+l] = temp;
}
}
}

p 48 Session 3: Sorting

6. Bubble Sort: Performance

» Bubble sort, like selection sort, requires n— | passes for an array with n
elements.

» The comparisons occur in the inner loop. The number of comparisons in
each pass is given in the table below.

» The total number of comparisons is calculated in the formula below.

» Like selection sort, bubble sort is also an 7 algorithm, or quadratic
algorithm, in terms of running time complexity.

Pass #comparisons

1 n-1 . (-Dm nP-n
2 n—2 Z_ 2 2 - "
3 n—3
n—1 1

b 49 Session 3: Sorting

9.

6. Bubble Sort: Enhanced Version

» It is possible to enhance bubble sort algorithm to reduce
the number of passes.
O Suppose that in a certain pass, no swap is needed. This implies

that the array is already sorted, and hence the algorithm may
terminate without going on to the next pass.

p 50 Session 3: Sorting

7. More Sorting Algorithms

» What we have introduced are 2 basic sort algorithms.
Together with the Insertion Sort algorithm, these 3
algorithms are the simplest.

» However, they are very slow, as their running time
complexity is quadratic.

» Faster sorting algorithms exist and are topics in more
advanced programming modules.

Q Merge sort (CS1020)
0 Quick sort (CS1020)
Q Heap sort (CS2010)

51 Session 3: Sortin
g

8. Animated Sorting Algorithms

» There are a number of animated sorting algorithms on
the Internet.

» Here are two sites:

0 http://www.sorting-algorithms.com/

O http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html

» YouTube video on Bubble sort:
0 http://www.youtube.com/watch?v=lyZOPjUT5B4

52 Session 3: Sortin
g

http://www.sorting-algorithms.com/
http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.youtube.com/watch?v=lyZQPjUT5B4

