
Programming Refresher Workshop

A/P Tan Sun TeckSession 3

Contents

 One-dimensional arrays

 Searching

 Sorting

2 Session 3: Contents

Algorithm:

input: amt (in cents); output: coins

coins 0

coins += amt/100; amt %= 100;

coins += amt/50; amt %= 50;

coins += amt/20; amt %= 20;

coins += amt/10; amt %= 10;

coins += amt/5; amt %= 5;

coins += amt/1; amt %= 1;

print coins

 Some of the programs we have written are “long-

winded”, because we have not learned enough C

constructs to make it simpler.

 Consider the Coin Change problem with 6

denominations 1¢, 5¢, 10¢, 20¢, 50¢, and $1:

1. Motivation #1: Coin Change (1/2)

Session 3: Motivation3

int minimumCoins(int amt)

{

int coins = 0;

coins += amt/100;

amt %= 100;

coins += amt/50;

amt %= 50;

coins += amt/20;

amt %= 20;

coins += amt/10;

amt %= 10;

coins += amt/5;

amt %= 5;

coins += amt/1; // retained for regularity

amt %= 1; // retained for regularity

return coins;

}

Week7_CoinChange.c

1. Motivation #1: Coin Change (2/2)

Q: Can we do better?

Session 3: Motivation4

2. Motivation #2: Vote Counting (1/2)

 A student election has just completed with 1000

votes casted for the three candidates: Tom, Dick and

Harry.

 Write a program VoteCount.c to read in all the votes

and display the total number of votes received by

each candidate. Each vote has one of three possible

values:

 1 for Tom

 2 for Dick

 3 for Harry

Session 3: Motivation5

#include <stdio.h>

#define NUM_VOTES 1000 // number of votes

int main(void)

{

int i, vote, tom = 0, dick = 0, harry = 0;

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote);

switch (vote)

{

case 1: tom++; break;

case 2: dick++; break;

case 3: harry++; break;

}

}

printf("Tom: %d; Dick: %d; Harry: %d\n", tom, dick, harry);

return 0;

}

Week7_VoteCount.c

2. Motivation #2: Vote Counting (2/2)

Q: What if there are 30
instead of 3 candidates?

Session 3: Motivation6

#include <stdio.h>

#define NUM_VOTES 1000 // number of votes

int main(void)

{

int i, vote, c1 = 0, c2 = 0, ..., c30 = 0;

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote);

switch (vote)

{

case 1: c1++; break;

case 2: c2++; break;

. . .

case 30: c30++; break;

}

}

. . .

}

!

!

2. Motivation #2: With 30 Candidates

Q: Can we do better?

Session 3: Motivation7

c[0] c[1] c[2] c[3] … c[29]

…

int c[30];

Array name
Element type Array size

3. Introducing Array (1/2)

 It’s inconvenient to define and use a set of variables c1,

c2, ..., c30 in the previous example.

 Let’s study a new language feature called ARRAY for

batch processing of information.

Session 3: Arrays8

3. Introducing Array (2/2)

c[0] c[1] c[2] c[3] … c[29]

…

int c[30];

 For the previous vote counting problem

 c[0] will hold the number of votes for 1st candidate

 c[1] holds the number of votes for 2nd candidate

 …

 c[29] for the 30th candidate.

 If we read in one more vote for candidate 4, we should

increase c[3] by 1.
Q: Why increase c[3] by 1?

Session 3: Arrays9

3.1 Array Declaration: Syntax

T arr [E]

#define M 5

#define N 10

double foo[M*N+8]; // size of array foo is 58

char arr[10]; // this is good

int i;

float bar[i]; // DISCOURAGED!

Variable-length array is not

supported by ISO C90 standard.

gcc –pedantic gives warning.

 arr is the name of array

 E is an integer constant expression with a positive value

 T is a type (e.g., int, double, float, char…)

 All array elements will be of the same type T

 Examples:

Session 3: Array Declaration10

int a[3] = {54, 9, 10}; // a[0]=54, a[1]=9, a[2]=10

int b[] = {1, 2, 3};

// size of b is 3 with b[0]=1, b[1]=2, b[2]=3

int c[5] = {17, 3, 10}; // partial initialization

// c[0]=17, c[1]=3, c[2]=10, c[3]=0, c[4]=0

int e[2] = {1, 2, 3}; // warning issued: excess elements

int f[5];

f[5] = {8, 23, 12, -3, 6}; // too late to do this;

// compilation error

3.2 Array Declarations w/ Initializers

 Array can be initialized at the same time of declaration.

 The following initializations are incorrect:

Session 3: Array Initialization11

#include <stdio.h>

#define NUM_VOTES 1000 // number of votes

#define NUM_CANDIDATES 30 // number of candidates

int main(void)

{

int i, vote;

int cand[NUM_CANDIDATES];

for (i = 0; i < NUM_CANDIDATES; i++) // init array

cand[i] = 0;

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote);

cand[vote-1]++;

}

. . .

}

3.3 Demo #1: Using Array Variables

Note

Fuller code two

slides later.

Session 3: Array Example12

#define NUM_VOTES 1000 // number of votes

#define NUM_CANDIDATES 30 // number of candidates

int main(void)

{

int i, vote, cand[NUM_CANDIDATES];

for (i = 0; i < NUM_CANDIDATES; i++) { cand[i] = 0; }

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote); // assume user enters valid data

cand[vote-1]++; // add one more vote to candidate

}

for (i = 0; i < NUM_CANDIDATES; i++)

printf("candidate %d: total %d, %.2f%%\n",

i+1, cand[i], (cand[i] * 100.0)/NUM_VOTES);

return 0;

}

Week7_VoteCountArray.c

Q: What is %%?

(data input skipped ...)

candidate 1: total 4, 4.01%

candidate 2: total 12, 12.03%

...

3.4 Vote Counting using Array

Session 3: Array Example13

#define NUM_VOTES 1000 // number of votes

#define NUM_CANDIDATES 30 // number of candidates

int main(void) {

int i, vote, cand[NUM_CANDIDATES];

for (i = 0; i < NUM_CANDIDATES; i++) { cand[i] = 0; }

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++) {

scanf("%d", &vote);

cand[vote-1]++;

}

for (i = 0; i < NUM_CANDIDATES; i++)

printf("candidate %d: total %d, %.2f%%\n",

i+1, cand[i], (cand[i] * 100.0)/NUM_VOTES);

return 0;

}

Week7_VoteCountArrayVer2.c

3.5 Demo #2: Using Array Initializer

int cand[NUM_CANDIDATES] = { 0 };

 Modify the program to use array initializer.

Session 3: Array Example14

Algorithm 1:

input: amt (in cents); output: coins

coins 0

coins += amt/100; amt %=100;

coins += amt/50; amt %= 50;

coins += amt/20; amt %= 20;

coins += amt/10; amt %= 10;

coins += amt/5; amt %= 5;

coins += amt/1; amt %= 1;

print coins

Algorithm 2:

input: amt (in cents); output: coins

coins 0

From the largest denomination to the smallest:

coins += amt/denomination

amt %= denomination

go to next denomination

print coins

Q: how can we easily
switch from one
denomination to
another?

Algorithm 3:

input: amt (in cents); output: coins

coins 0

for i from 0 to 5 // there are 6 denominations

coins += amt/Di // D0, D1, D2, D3, D4, D5

amt %= Di

print coins

3.6 Demo #3: Coin Change Revisit (1/2)

array!

Session 3: Array Example15

3.6 Demo #3: Coin Change Revisit (2/2)

int minimumCoins(int amt)

{

int denoms[] = {100,50,20,10,5,1};

int i, coins = 0;

for (i=0; i<6; i++)

{

coins += amt/denoms[i];

amt %= denoms[i];

}

return coins;

} Week7_CoinChangeArray.c

int minimumCoins(int amt)

{

int coins = 0;

coins += amt/100;

amt %= 100;

coins += amt/50;

amt %= 50;

coins += amt/20;

amt %= 20;

coins += amt/10;

amt %= 10;

coins += amt/5;

amt %= 5;

coins += amt/1;

amt %= 1;

return coins;

}
Week7_CoinChange.c

Q: which version
is better?

Session 3: Array Example16

4. Array Assignment (1/2)

#define N 10

int source[N] = { 10, 20, 30, 40, 50 };

int dest[N];

dest = source; // illegal!

source[0] source[9]

10 20 30 40 50 0 0 0 0 0

dest[0] dest[9]

? ? ? ? ? ? ? ? ? ?

A: array name refers to the address of the first element.

 The following is illegal in C:

Q: Why?

Session 3: Array Assignment17

int i;

for (i = 0; i < 10; i++)

dest[i] = source[i];

source[0] source[9]

10 20 30 40 50 0 0 0 0 0

dest[0] dest[9]

10 20 30 40 50 0 0 0 0 0

 Method 1: Use a loop

 Method 2: Use C library function memcpy()

 #include <string.h>

 Out of the scope of CS1010

4. Array Assignment (2/2)

Session 3: Array Assignment18

#include <stdio.h>

int sumArray(int [], int); // function prototype

int main(void) {

int foo[8] = {5, 3, 7, 1, -4, 2};

int bar[] = {2, 4, 6};

printf("sum is %d\n", sumArray(foo, 8));

printf("sum is %d\n", sumArray(foo, 3));

printf("sum is %d\n", sumArray(bar, 3));

return 0;

}

// need an array size parameter separately

int sumArray(int arr[], int size) {
int i, total=0;

for (i=0; i<size; i++)

total += arr[i];

return total;

}

Week7_SumArray.c

sum is 14

sum is 15

sum is 12

Q: How about this function
call?
sumArray(bar, 5)

5. Use Array in Function Calls

Q: What is the output?

Session 3: Array in Functions19

 Caution!

 When passing a value representing the number of array

elements to be processed, that value must not exceed the

actual array size.

 There is NO boundary checking done by the compiler.

printf("sum is %d\n", sumArray(foo, 10));

Compiler won’t detect this “error”.

6. Passing Array Arguments (1/4)

Session 3: Array in Functions20

int main(void) {

...

printf("sum is %d\n", sumArray(foo, 8));

...

}

int sumArray(int arr[], int size) {

...

}

6. Passing Array Arguments (2/4)

sumArray(foo[], 8)

Wrong!

foo[0] foo[1] foo[7]

44 9 17 1 -4 22 0 0

In main():

In sumArray(): arr size

8

 Recall that array name is the address of its first element.

Session 3: Array in Functions21

 Alternative syntax

 The following shows the alternative syntax for array parameter

in function prototype and function header

6. Passing Array Arguments (3/4)

 However, we recommend the [] notation

int sumArray(int *, int); // function prototype

int sumArray(int *arr, int size) { ... }

int sumArray(int [], int); // function prototype

int sumArray(int arr[], int size) { ... }

Session 3: Array in Functions22

 Function prototype
 As mentioned, name of parameters are optional. Hence, both of the followings

are acceptable and equivalent:

6. Passing Array Arguments (4/4)

int sumArray(int [], int);

int sumArray(int arr[], int size);

 Function header
 No need to put array size inside []; even if array size is present, compiler just

ignores it.

 Instead, provide the array size through another parameter.

int sumArray(int arr[], int size) { ... }

int sumArray(int arr[8], int size) { ... }

Ignored by compiler Actual number of elements you
want to process

Session 3: Array in Functions23

7. Modifying Array Arguments (1/2)
// preprocessor directives and

// function prototypes omitted

int main(void) {

int foo[8] = {44, 9, 17, 1, -4, 22};

doubleArray(foo, 4);

printArray(foo, 8);

return 0;

}

// double the values of array elements

void doubleArray(int arr[], int size) {

int i;

for (i=0; i<size; i++)

arr[i] *= 2;

}

// print arr

void printArray(int arr[], int size) {

int i;

for (i=0; i<size; i++)

printf("%d ", arr[i]);

printf("\n");

}

Week7_ModifyArrayArg.c

88 18 34 2 -4 22 0 0

Q: What is the output?

Session 3: Array in Functions24

int main(void) {

int foo[8] = {44, 9, 17, 1, -4, 22};

doubleArray(foo, 4);

. . .

}

// double the values of array elements

void doubleArray(int arr[], int size) {

int i;

for (i=0; i<size; i++)

arr[i] *= 2;

}

foo[0] foo[1] foo[7]

44 9 17 1 -4 22 0 0

In main():

In doubleArray(): arr size

4

i

?

88 18 34 2

01234

7. Modifying Array Arguments (2/2)

Session 3: Array in Functions25

 Consider two arrays arrA and arrB of distinct int values, where their

sizes are sizeA and sizeB respectively (less than 10).

 Write a function

int isSubset(int arrA[], int sizeA, int arrB[], int sizeB)

to check if numbers in arrA is a subset of numbers in arrB.

This function returns 1 if so, 0 otherwise.

 Skeleton:

 Sample run:

8. Exercise #2: Set Containment

cp ~cs1010/lecture/Week7_SetContainment.c .

Size of 1st array? 4

Enter 4 values: 14 5 1 9

Size of 2nd array? 7

Enter 7 values: 2 9 3 14 5 6 1

1st array is a subset of 2nd array

Algorithm
!

Session 3: Array in Functions26

Searching and Sorting

 We will study some simple yet useful classical algorithms

which find their place in many CS applications.

 Searching for some data amid very large collection of data

 Sorting very large collection of data according to some order

 We will begin with an algorithm (idea), then show how

the algorithm is transformed into a C program

(implementation).

 This brings back (reminds you):

the importance of beginning with an algorithm

Session 3: Searching and Sorting27

 Searching is a common task that we carry out without much

thought everyday.

 Searching for a location in a map.

 Searching for the contact of a particular person.

 Searching for a nice picture for your project report.

 Searching for a research paper required in your course.

 etc.

 In this lecture, you will learn how to search for an item

(sometimes called a search key) in an array.

1. Searching (1/2)

Session 3: Searching28

1. Searching (2/2)

 Problem statement:

Given a list (collection of data) and a search key X, return the

position of X in the list if it exists.

For simplicity, we shall assume there are no duplicate values in the

list.

 We will count the number of comparisons the algorithms

make to analyze their performance.

 The ideal searching algorithm will make the least possible number of

comparisons to locate the desired data.

 We will introduce worst-case scenario.

 (This topic is called analysis of algorithms, which will be formally

introduced in CS1020. Here, we will give an informal introduction just for

an appreciation.)

Session 3: Searching29

// Search for key in list A with n items
linear_search (A, n, key)
{

for i = 0 to n-1
if Ai is key then report i

}

87 12 51 9 24 63

Example: Search for 24
in this list

no no no no yes!

2. Linear Search (1/3): Algorithm

 Also known as Sequential Search

 Idea: Search the list from one end to the other end in linear

progression.

 Algorithm:

Q: What to report if key is not found? (aim for a clean design)

Session 3: Searching30

// To search for key in arr using linear search

// Return index if found; otherwise return -1

int linearSearch(int arr[], int size, int key)

{

int i;

for (i=0; i<size; i++)

if (key == arr[i])

return i;

return -1; // not found

}

2. Linear Search (2/3): Code

 If the list is an array, how would you implement the Linear

Search algorithm?

Q: What would be returned if array contains duplicated values of the key?

Session 3: Searching31

2. Linear Search (3/3): Performance

 We use the number of comparisons here as a rough

measurement.

 Analysis can be done for best case, average case, and worst case. We

will focus on the worst case.

 Given an array with n elements, in the worst case,

int linearSearch(int arr[], int n, int key)

{

int i;

for (i=0; i<n; i++)

if (key == arr[i])

return i;

return -1;

}

(a) Key not found

(b) Found at last position

Q: What is the maximum number of
comparisons in this algorithm?

Q: Under what circumstances do we
encounter the worst case?

n comparisons

Session 3: Searching32

3. Binary Search (1/6)

 The idea is simple and fantastic, but applied on the
searching problem, it has this pre-condition that the list
must be sorted before-hand.

 How the data is organized (in this case, sorted) usually
affects how we choose/design an algorithm to access
them.

 In other words, sometimes (actually, very often) we seek
out new way to organize the data so that we can process
them more efficiency.

Session 3: Searching33

3. Binary Search (2/6): Algorithm

(Pre-condition: list is sorted in ascending order)

 Algorithm

 Look for the key in the middle position of the list.

Either of the following 2 cases happens:

 If the key is smaller than the middle element, then “discard” the right

half of the list and repeat the process.

 If the key is greater than the middle element, then “discard” the left

half of the list and repeat the process.

 Terminating condition: either the key is found, or when all

elements have been “discarded”.

Session 3: Searching34

5 12 17 23 38 44 77 84 90

[0] [1] [2] [3] [4] [5] [6] [7] [8]array

1. low = 0, high = 8, mid = (0+8)/2 = 4

2. low = 0, high = 3, mid = (0+3)/2 = 1

3. low = 2, high = 3, mid = (2+3)/2 = 2

4. low = 3, high = 3, mid = (3+3)/2 = 3

Found!

Return 3

3. Binary Search (3/6): Illustration

 Example: Search for key = 23

Session 3: Searching35

3. Binary Search (4/6): Iterative Code

 Iterative version

// To search for key in sorted arr using binary search

// Return index if found; otherwise return -1

int binarySearch(int arr[], int size, int key)

{

int low=0, high=size–1, mid=(low + high)/2;

}
Week10_BinarySearch.c

while ((low <= high) && (arr[mid] != key))

{

if (key < arr[mid])

high = mid - 1;

else

low = mid + 1;

mid = (low + high)/2;

}

if (low > high) return -1;

else return mid;

Session 3: Searching36

3. Binary Search (5/6): Analysis

 In binary search, each step eliminates the problem size
(array size) by half.

 The problem size gets reduced to 1 very quickly (see next
slide)

 This is a simple yet powerful strategy, of halving the
solution space in each step

 Which exercise employs a similar strategy?

 Such strategy, a special case of divide-and-conquer
paradigm, can be naturally implemented using recursion.

 At the moment, we will stick to repetition (loop)

 You can write a recursion version after saturday’s lecture.

A: Bisection Method

Session 3: Searching37

Array size

n

Linear Search

(n comparisons)

Binary search

(log2 n comparisons)

100 100 7

1,000 1,000 10

10,000 10,000 14

100,000 100,000 ?

1,000,000 1,000,000 ?

109 109 ?

17

20

30

3. Binary Search (6/6): Performance

 In binary search, each step eliminates the problem size
(array size) by half.

 The problem size gets reduced to 1 very quickly.

 Worst-case analysis

Session 3: Searching38

4. Sorting (1/2)

 Sorting is any process of arranging items in some

sequence.

 Sorting is important because once a set of items is sorted,

many problems (such as searching) become easy.
 Searching can be speeded up.

 Determining whether the items in a set are all unique.

 Finding the median item in the set.

 etc.

Session 3: Sorting39

4. Sorting (2/2)

 Problem statement:

Given a list of n items, arrange all items into ascending order.

 We will implement the list as an integer array.

 We will introduce two basic sort algorithms.

 We will count the number of comparisons the algorithms

make to analyze their performance.

 The ideal sorting algorithm will make the least possible number

of comparisons to arrange data in a designated order.

 We will compare the algorithms by analyzing their worst-

case performance.

Session 3: Sorting40

5. Selection Sort (1/3)

 Algorithm

 Step 1: Find the smallest element in the list.

 Step 2: Swap this smallest element with the element in the
first position. (Now, the smallest element is in the right
place.)

 Step 3: Repeat steps 1 and 2 with the list having one fewer
element (i.e. the smallest element just found and placed is
“exempted” from further processing).

Session 3: Sorting41

5. Selection Sort (2/3)

n = 9

23 17 5 90 12 44 38 84 77

[0] [1] [2] [3] [4] [5] [6] [7] [8]array

1st pass:

first min

5 17 23 90 12 44 38 84 772nd pass:

first min

5 12 23 90 17 44 38 84 773rd pass:

first min

5 12 17 90 23 44 38 84 774th pass:

first min

Session 3: Sorting42

n = 9

5 12 17 23 90 44 38 84 775th pass:

first min

5 12 17 23 38 44 90 84 776th pass:

first min

5 12 17 23 38 44 90 84 777th pass:

first min

5 12 17 23 38 44 77 84 908th pass:

first min

5 12 17 23 38 44 77 84 90Final array:

5. Selection Sort (3/3) Q: How many passes for an
array with n elements?

n-1

Session 3: Sorting43

// To sort arr in increasing order

void selectionSort(int arr[], int size)

{

int i, start_index, min_index, temp;

for (start_index = 0; start_index < size-1; start_index++)

{

// each iteration of the for loop is one pass

// find the index of minimum element

min_index = start_index;

for (i = start_index+1; i < size; i++)

if (arr[i] < arr[min_index])

min_index = i;

// swap minimum element with element at start_index

temp = arr[start_index];

arr[start_index] = arr[min_index];

arr[min_index] = temp;

}

}

Week10_SelectionSort.c

5. Demo #2: Selection Sort

Session 3: Sorting44

Pass #comparisons

1 n – 1

2 n – 2

3 n – 3

… …

n – 1 1

5. Selection Sort: Performance

 We choose the number of comparisons as our basis of analysis.

 Comparisons of array elements occur in the inner loop, where the
minimum element is determined.

 Assuming an array with n elements. Table below shows the number of
comparisons for each pass.

 The total number of comparisons is calculated in the formula below.

 Such an algorithm is call an n2 algorithm, or quadratic algorithm, in terms of
running time complexity.

Session 3: Sorting45

6. Bubble Sort

 Selection sort makes one exchange at the end of each

pass.

 What if we make more than one exchange during each

pass?

 The key idea of the bubble sort is to make pairwise

comparisons and exchange the positions of the pair if

they are out of order.

Session 3: Sorting46

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

17 23 5 90 12 44 38 84 77

17 5 23 90 12 44 38 84 77

17 5 23 12 90 44 38 84 77

17 5 23 12 44 90 38 84 77

17 5 23 12 44 38 90 84 77

17 5 23 12 44 38 84 90 77

17 5 23 12 44 38 84 77 90

exchange

ok

exchange

exchange

exchange

exchange

exchange

exchange

Done!Q: Is the array sorted?
Q: What did we achieve?

6. One Pass of Bubble Sort

Session 3: Sorting47

// To sort arr in increasing order

void bubbleSort(int arr[], int size)

{

int i, limit, temp;

for (limit = size-2; limit >= 0; limit--)

{

// limit is where the inner loop variable i should end

for (i=0; i<=limit; i++) // one pass

{

if (arr[i] > arr[i+1]) // swap arr[i] with arr[i+1]

{

temp = arr[i];

arr[i] = arr[i+1];

arr[i+1] = temp;

}

}

}

}

Week10_BubbleSort.c

6. Demo #3: Bubble Sort

Session 3: Sorting48

Pass #comparisons

1 n – 1

2 n – 2

3 n – 3

… …

n – 1 1

6. Bubble Sort: Performance

 Bubble sort, like selection sort, requires n – 1 passes for an array with n
elements.

 The comparisons occur in the inner loop. The number of comparisons in

each pass is given in the table below.

 The total number of comparisons is calculated in the formula below.

 Like selection sort, bubble sort is also an n2 algorithm, or quadratic
algorithm, in terms of running time complexity.

Session 3: Sorting49

6. Bubble Sort: Enhanced Version

 It is possible to enhance bubble sort algorithm to reduce

the number of passes.

 Suppose that in a certain pass, no swap is needed. This implies

that the array is already sorted, and hence the algorithm may

terminate without going on to the next pass.

Session 3: Sorting50

7. More Sorting Algorithms

 What we have introduced are 2 basic sort algorithms.

Together with the Insertion Sort algorithm, these 3

algorithms are the simplest.

 However, they are very slow, as their running time

complexity is quadratic.

 Faster sorting algorithms exist and are topics in more

advanced programming modules.

 Merge sort (CS1020)

 Quick sort (CS1020)

 Heap sort (CS2010)

Session 3: Sorting51

8. Animated Sorting Algorithms

 There are a number of animated sorting algorithms on

the Internet.

 Here are two sites:

 http://www.sorting-algorithms.com/

 http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html

 YouTube video on Bubble sort:

 http://www.youtube.com/watch?v=lyZQPjUT5B4

Session 3: Sorting52

http://www.sorting-algorithms.com/
http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.youtube.com/watch?v=lyZQPjUT5B4

The End

