
Programming Refresher Workshop

A/P Tan Sun TeckSession 3

Contents

 One-dimensional arrays

 Searching

 Sorting

2 Session 3: Contents

Algorithm:

input: amt (in cents); output: coins

coins  0

coins += amt/100; amt %= 100;

coins += amt/50; amt %= 50;

coins += amt/20; amt %= 20;

coins += amt/10; amt %= 10;

coins += amt/5; amt %= 5;

coins += amt/1; amt %= 1;

print coins

 Some of the programs we have written are “long-

winded”, because we have not learned enough C

constructs to make it simpler.

 Consider the Coin Change problem with 6

denominations 1¢, 5¢, 10¢, 20¢, 50¢, and $1:

1. Motivation #1: Coin Change (1/2)

Session 3: Motivation3

int minimumCoins(int amt)

{

int coins = 0;

coins += amt/100;

amt %= 100;

coins += amt/50;

amt %= 50;

coins += amt/20;

amt %= 20;

coins += amt/10;

amt %= 10;

coins += amt/5;

amt %= 5;

coins += amt/1; // retained for regularity

amt %= 1; // retained for regularity

return coins;

}

Week7_CoinChange.c

1. Motivation #1: Coin Change (2/2)

Q: Can we do better?

Session 3: Motivation4

2. Motivation #2: Vote Counting (1/2)

 A student election has just completed with 1000

votes casted for the three candidates: Tom, Dick and

Harry.

 Write a program VoteCount.c to read in all the votes

and display the total number of votes received by

each candidate. Each vote has one of three possible

values:

 1 for Tom

 2 for Dick

 3 for Harry

Session 3: Motivation5

#include <stdio.h>

#define NUM_VOTES 1000 // number of votes

int main(void)

{

int i, vote, tom = 0, dick = 0, harry = 0;

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote);

switch (vote)

{

case 1: tom++; break;

case 2: dick++; break;

case 3: harry++; break;

}

}

printf("Tom: %d; Dick: %d; Harry: %d\n", tom, dick, harry);

return 0;

}

Week7_VoteCount.c

2. Motivation #2: Vote Counting (2/2)

Q: What if there are 30
instead of 3 candidates?

Session 3: Motivation6

#include <stdio.h>

#define NUM_VOTES 1000 // number of votes

int main(void)

{

int i, vote, c1 = 0, c2 = 0, ..., c30 = 0;

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote);

switch (vote)

{

case 1: c1++; break;

case 2: c2++; break;

. . .

case 30: c30++; break;

}

}

. . .

}

!

!

2. Motivation #2: With 30 Candidates

Q: Can we do better?

Session 3: Motivation7

c[0] c[1] c[2] c[3] … c[29]

…

int c[30];

Array name
Element type Array size

3. Introducing Array (1/2)

 It’s inconvenient to define and use a set of variables c1,

c2, ..., c30 in the previous example.

 Let’s study a new language feature called ARRAY for

batch processing of information.

Session 3: Arrays8

3. Introducing Array (2/2)

c[0] c[1] c[2] c[3] … c[29]

…

int c[30];

 For the previous vote counting problem

 c[0] will hold the number of votes for 1st candidate

 c[1] holds the number of votes for 2nd candidate

 …

 c[29] for the 30th candidate.

 If we read in one more vote for candidate 4, we should

increase c[3] by 1.
Q: Why increase c[3] by 1?

Session 3: Arrays9

3.1 Array Declaration: Syntax

T arr [E]

#define M 5

#define N 10

double foo[M*N+8]; // size of array foo is 58

char arr[10]; // this is good

int i;

float bar[i]; // DISCOURAGED!

Variable-length array is not

supported by ISO C90 standard.

gcc –pedantic gives warning.

 arr is the name of array

 E is an integer constant expression with a positive value

 T is a type (e.g., int, double, float, char…)

 All array elements will be of the same type T

 Examples:

Session 3: Array Declaration10

int a[3] = {54, 9, 10}; // a[0]=54, a[1]=9, a[2]=10

int b[] = {1, 2, 3};

// size of b is 3 with b[0]=1, b[1]=2, b[2]=3

int c[5] = {17, 3, 10}; // partial initialization

// c[0]=17, c[1]=3, c[2]=10, c[3]=0, c[4]=0

int e[2] = {1, 2, 3}; // warning issued: excess elements

int f[5];

f[5] = {8, 23, 12, -3, 6}; // too late to do this;

// compilation error

3.2 Array Declarations w/ Initializers

 Array can be initialized at the same time of declaration.

 The following initializations are incorrect:

Session 3: Array Initialization11

#include <stdio.h>

#define NUM_VOTES 1000 // number of votes

#define NUM_CANDIDATES 30 // number of candidates

int main(void)

{

int i, vote;

int cand[NUM_CANDIDATES];

for (i = 0; i < NUM_CANDIDATES; i++) // init array

cand[i] = 0;

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote);

cand[vote-1]++;

}

. . .

}

3.3 Demo #1: Using Array Variables

Note

Fuller code two

slides later.

Session 3: Array Example12

#define NUM_VOTES 1000 // number of votes

#define NUM_CANDIDATES 30 // number of candidates

int main(void)

{

int i, vote, cand[NUM_CANDIDATES];

for (i = 0; i < NUM_CANDIDATES; i++) { cand[i] = 0; }

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++)

{

scanf("%d", &vote); // assume user enters valid data

cand[vote-1]++; // add one more vote to candidate

}

for (i = 0; i < NUM_CANDIDATES; i++)

printf("candidate %d: total %d, %.2f%%\n",

i+1, cand[i], (cand[i] * 100.0)/NUM_VOTES);

return 0;

}

Week7_VoteCountArray.c

Q: What is %%?

(data input skipped ...)

candidate 1: total 4, 4.01%

candidate 2: total 12, 12.03%

...

3.4 Vote Counting using Array

Session 3: Array Example13

#define NUM_VOTES 1000 // number of votes

#define NUM_CANDIDATES 30 // number of candidates

int main(void) {

int i, vote, cand[NUM_CANDIDATES];

for (i = 0; i < NUM_CANDIDATES; i++) { cand[i] = 0; }

printf("Enter votes:\n");

for (i = 0; i < NUM_VOTES; i++) {

scanf("%d", &vote);

cand[vote-1]++;

}

for (i = 0; i < NUM_CANDIDATES; i++)

printf("candidate %d: total %d, %.2f%%\n",

i+1, cand[i], (cand[i] * 100.0)/NUM_VOTES);

return 0;

}

Week7_VoteCountArrayVer2.c

3.5 Demo #2: Using Array Initializer

int cand[NUM_CANDIDATES] = { 0 };

 Modify the program to use array initializer.

Session 3: Array Example14

Algorithm 1:

input: amt (in cents); output: coins

coins  0

coins += amt/100; amt %=100;

coins += amt/50; amt %= 50;

coins += amt/20; amt %= 20;

coins += amt/10; amt %= 10;

coins += amt/5; amt %= 5;

coins += amt/1; amt %= 1;

print coins

Algorithm 2:

input: amt (in cents); output: coins

coins  0

From the largest denomination to the smallest:

coins += amt/denomination

amt %= denomination

go to next denomination

print coins

Q: how can we easily
switch from one
denomination to
another?

Algorithm 3:

input: amt (in cents); output: coins

coins  0

for i from 0 to 5 // there are 6 denominations

coins += amt/Di // D0, D1, D2, D3, D4, D5

amt %= Di

print coins

3.6 Demo #3: Coin Change Revisit (1/2)

array!

Session 3: Array Example15

3.6 Demo #3: Coin Change Revisit (2/2)

int minimumCoins(int amt)

{

int denoms[] = {100,50,20,10,5,1};

int i, coins = 0;

for (i=0; i<6; i++)

{

coins += amt/denoms[i];

amt %= denoms[i];

}

return coins;

} Week7_CoinChangeArray.c

int minimumCoins(int amt)

{

int coins = 0;

coins += amt/100;

amt %= 100;

coins += amt/50;

amt %= 50;

coins += amt/20;

amt %= 20;

coins += amt/10;

amt %= 10;

coins += amt/5;

amt %= 5;

coins += amt/1;

amt %= 1;

return coins;

}
Week7_CoinChange.c

Q: which version
is better?

Session 3: Array Example16

4. Array Assignment (1/2)

#define N 10

int source[N] = { 10, 20, 30, 40, 50 };

int dest[N];

dest = source; // illegal!

source[0] source[9]

10 20 30 40 50 0 0 0 0 0

dest[0] dest[9]

? ? ? ? ? ? ? ? ? ?

A: array name refers to the address of the first element.

 The following is illegal in C:

Q: Why?

Session 3: Array Assignment17

int i;

for (i = 0; i < 10; i++)

dest[i] = source[i];

source[0] source[9]

10 20 30 40 50 0 0 0 0 0

dest[0] dest[9]

10 20 30 40 50 0 0 0 0 0

 Method 1: Use a loop

 Method 2: Use C library function memcpy()

 #include <string.h>

 Out of the scope of CS1010

4. Array Assignment (2/2)

Session 3: Array Assignment18

#include <stdio.h>

int sumArray(int [], int); // function prototype

int main(void) {

int foo[8] = {5, 3, 7, 1, -4, 2};

int bar[] = {2, 4, 6};

printf("sum is %d\n", sumArray(foo, 8));

printf("sum is %d\n", sumArray(foo, 3));

printf("sum is %d\n", sumArray(bar, 3));

return 0;

}

// need an array size parameter separately

int sumArray(int arr[], int size) {
int i, total=0;

for (i=0; i<size; i++)

total += arr[i];

return total;

}

Week7_SumArray.c

sum is 14

sum is 15

sum is 12

Q: How about this function
call?
sumArray(bar, 5)

5. Use Array in Function Calls

Q: What is the output?

Session 3: Array in Functions19

 Caution!

 When passing a value representing the number of array

elements to be processed, that value must not exceed the

actual array size.

 There is NO boundary checking done by the compiler.

printf("sum is %d\n", sumArray(foo, 10));

Compiler won’t detect this “error”.

6. Passing Array Arguments (1/4)

Session 3: Array in Functions20

int main(void) {

...

printf("sum is %d\n", sumArray(foo, 8));

...

}

int sumArray(int arr[], int size) {

...

}

6. Passing Array Arguments (2/4)

sumArray(foo[], 8)


Wrong!

foo[0] foo[1] foo[7]

44 9 17 1 -4 22 0 0

In main():

In sumArray(): arr size

8

 Recall that array name is the address of its first element.

Session 3: Array in Functions21

 Alternative syntax

 The following shows the alternative syntax for array parameter

in function prototype and function header

6. Passing Array Arguments (3/4)

 However, we recommend the [] notation

int sumArray(int *, int); // function prototype

int sumArray(int *arr, int size) { ... }

int sumArray(int [], int); // function prototype

int sumArray(int arr[], int size) { ... }

Session 3: Array in Functions22

 Function prototype
 As mentioned, name of parameters are optional. Hence, both of the followings

are acceptable and equivalent:

6. Passing Array Arguments (4/4)

int sumArray(int [], int);

int sumArray(int arr[], int size);

 Function header
 No need to put array size inside []; even if array size is present, compiler just

ignores it.

 Instead, provide the array size through another parameter.

int sumArray(int arr[], int size) { ... }

int sumArray(int arr[8], int size) { ... }

Ignored by compiler Actual number of elements you
want to process

Session 3: Array in Functions23

7. Modifying Array Arguments (1/2)
// preprocessor directives and

// function prototypes omitted

int main(void) {

int foo[8] = {44, 9, 17, 1, -4, 22};

doubleArray(foo, 4);

printArray(foo, 8);

return 0;

}

// double the values of array elements

void doubleArray(int arr[], int size) {

int i;

for (i=0; i<size; i++)

arr[i] *= 2;

}

// print arr

void printArray(int arr[], int size) {

int i;

for (i=0; i<size; i++)

printf("%d ", arr[i]);

printf("\n");

}

Week7_ModifyArrayArg.c

88 18 34 2 -4 22 0 0

Q: What is the output?

Session 3: Array in Functions24

int main(void) {

int foo[8] = {44, 9, 17, 1, -4, 22};

doubleArray(foo, 4);

. . .

}

// double the values of array elements

void doubleArray(int arr[], int size) {

int i;

for (i=0; i<size; i++)

arr[i] *= 2;

}

foo[0] foo[1] foo[7]

44 9 17 1 -4 22 0 0

In main():

In doubleArray(): arr size

4

i

?

88 18 34 2

01234

7. Modifying Array Arguments (2/2)

Session 3: Array in Functions25

 Consider two arrays arrA and arrB of distinct int values, where their

sizes are sizeA and sizeB respectively (less than 10).

 Write a function

int isSubset(int arrA[], int sizeA, int arrB[], int sizeB)

to check if numbers in arrA is a subset of numbers in arrB.

This function returns 1 if so, 0 otherwise.

 Skeleton:

 Sample run:

8. Exercise #2: Set Containment

cp ~cs1010/lecture/Week7_SetContainment.c .

Size of 1st array? 4

Enter 4 values: 14 5 1 9

Size of 2nd array? 7

Enter 7 values: 2 9 3 14 5 6 1

1st array is a subset of 2nd array

Algorithm
!

Session 3: Array in Functions26

Searching and Sorting

 We will study some simple yet useful classical algorithms

which find their place in many CS applications.

 Searching for some data amid very large collection of data

 Sorting very large collection of data according to some order

 We will begin with an algorithm (idea), then show how

the algorithm is transformed into a C program

(implementation).

 This brings back (reminds you):

the importance of beginning with an algorithm

Session 3: Searching and Sorting27

 Searching is a common task that we carry out without much

thought everyday.

 Searching for a location in a map.

 Searching for the contact of a particular person.

 Searching for a nice picture for your project report.

 Searching for a research paper required in your course.

 etc.

 In this lecture, you will learn how to search for an item

(sometimes called a search key) in an array.

1. Searching (1/2)

Session 3: Searching28

1. Searching (2/2)

 Problem statement:

Given a list (collection of data) and a search key X, return the

position of X in the list if it exists.

For simplicity, we shall assume there are no duplicate values in the

list.

 We will count the number of comparisons the algorithms

make to analyze their performance.

 The ideal searching algorithm will make the least possible number of

comparisons to locate the desired data.

 We will introduce worst-case scenario.

 (This topic is called analysis of algorithms, which will be formally

introduced in CS1020. Here, we will give an informal introduction just for

an appreciation.)

Session 3: Searching29

// Search for key in list A with n items
linear_search (A, n, key)
{

for i = 0 to n-1
if Ai is key then report i

}

87 12 51 9 24 63

Example: Search for 24
in this list

no no no no yes!

2. Linear Search (1/3): Algorithm

 Also known as Sequential Search

 Idea: Search the list from one end to the other end in linear

progression.

 Algorithm:

Q: What to report if key is not found? (aim for a clean design)

Session 3: Searching30

// To search for key in arr using linear search

// Return index if found; otherwise return -1

int linearSearch(int arr[], int size, int key)

{

int i;

for (i=0; i<size; i++)

if (key == arr[i])

return i;

return -1; // not found

}

2. Linear Search (2/3): Code

 If the list is an array, how would you implement the Linear

Search algorithm?

Q: What would be returned if array contains duplicated values of the key?

Session 3: Searching31

2. Linear Search (3/3): Performance

 We use the number of comparisons here as a rough

measurement.

 Analysis can be done for best case, average case, and worst case. We

will focus on the worst case.

 Given an array with n elements, in the worst case,

int linearSearch(int arr[], int n, int key)

{

int i;

for (i=0; i<n; i++)

if (key == arr[i])

return i;

return -1;

}

(a) Key not found

(b) Found at last position

Q: What is the maximum number of
comparisons in this algorithm?

Q: Under what circumstances do we
encounter the worst case?

n comparisons

Session 3: Searching32

3. Binary Search (1/6)

 The idea is simple and fantastic, but applied on the
searching problem, it has this pre-condition that the list
must be sorted before-hand.

 How the data is organized (in this case, sorted) usually
affects how we choose/design an algorithm to access
them.

 In other words, sometimes (actually, very often) we seek
out new way to organize the data so that we can process
them more efficiency.

Session 3: Searching33

3. Binary Search (2/6): Algorithm

(Pre-condition: list is sorted in ascending order)

 Algorithm

 Look for the key in the middle position of the list.

Either of the following 2 cases happens:

 If the key is smaller than the middle element, then “discard” the right

half of the list and repeat the process.

 If the key is greater than the middle element, then “discard” the left

half of the list and repeat the process.

 Terminating condition: either the key is found, or when all

elements have been “discarded”.

Session 3: Searching34

5 12 17 23 38 44 77 84 90

[0] [1] [2] [3] [4] [5] [6] [7] [8]array

1. low = 0, high = 8, mid = (0+8)/2 = 4

2. low = 0, high = 3, mid = (0+3)/2 = 1

3. low = 2, high = 3, mid = (2+3)/2 = 2

4. low = 3, high = 3, mid = (3+3)/2 = 3

Found!

Return 3

3. Binary Search (3/6): Illustration

 Example: Search for key = 23

Session 3: Searching35

3. Binary Search (4/6): Iterative Code

 Iterative version

// To search for key in sorted arr using binary search

// Return index if found; otherwise return -1

int binarySearch(int arr[], int size, int key)

{

int low=0, high=size–1, mid=(low + high)/2;

}
Week10_BinarySearch.c

while ((low <= high) && (arr[mid] != key))

{

if (key < arr[mid])

high = mid - 1;

else

low = mid + 1;

mid = (low + high)/2;

}

if (low > high) return -1;

else return mid;

Session 3: Searching36

3. Binary Search (5/6): Analysis

 In binary search, each step eliminates the problem size
(array size) by half.

 The problem size gets reduced to 1 very quickly (see next
slide)

 This is a simple yet powerful strategy, of halving the
solution space in each step

 Which exercise employs a similar strategy?

 Such strategy, a special case of divide-and-conquer
paradigm, can be naturally implemented using recursion.

 At the moment, we will stick to repetition (loop)

 You can write a recursion version after saturday’s lecture.

A: Bisection Method

Session 3: Searching37

Array size

n

Linear Search

(n comparisons)

Binary search

(log2 n comparisons)

100 100 7

1,000 1,000 10

10,000 10,000 14

100,000 100,000 ?

1,000,000 1,000,000 ?

109 109 ?

17

20

30

3. Binary Search (6/6): Performance

 In binary search, each step eliminates the problem size
(array size) by half.

 The problem size gets reduced to 1 very quickly.

 Worst-case analysis

Session 3: Searching38

4. Sorting (1/2)

 Sorting is any process of arranging items in some

sequence.

 Sorting is important because once a set of items is sorted,

many problems (such as searching) become easy.
 Searching can be speeded up.

 Determining whether the items in a set are all unique.

 Finding the median item in the set.

 etc.

Session 3: Sorting39

4. Sorting (2/2)

 Problem statement:

Given a list of n items, arrange all items into ascending order.

 We will implement the list as an integer array.

 We will introduce two basic sort algorithms.

 We will count the number of comparisons the algorithms

make to analyze their performance.

 The ideal sorting algorithm will make the least possible number

of comparisons to arrange data in a designated order.

 We will compare the algorithms by analyzing their worst-

case performance.

Session 3: Sorting40

5. Selection Sort (1/3)

 Algorithm

 Step 1: Find the smallest element in the list.

 Step 2: Swap this smallest element with the element in the
first position. (Now, the smallest element is in the right
place.)

 Step 3: Repeat steps 1 and 2 with the list having one fewer
element (i.e. the smallest element just found and placed is
“exempted” from further processing).

Session 3: Sorting41

5. Selection Sort (2/3)

n = 9

23 17 5 90 12 44 38 84 77

[0] [1] [2] [3] [4] [5] [6] [7] [8]array

1st pass:

first min

5 17 23 90 12 44 38 84 772nd pass:

first min

5 12 23 90 17 44 38 84 773rd pass:

first min

5 12 17 90 23 44 38 84 774th pass:

first min

Session 3: Sorting42

n = 9

5 12 17 23 90 44 38 84 775th pass:

first min

5 12 17 23 38 44 90 84 776th pass:

first min

5 12 17 23 38 44 90 84 777th pass:

first min

5 12 17 23 38 44 77 84 908th pass:

first min

5 12 17 23 38 44 77 84 90Final array:

5. Selection Sort (3/3) Q: How many passes for an
array with n elements?

n-1

Session 3: Sorting43

// To sort arr in increasing order

void selectionSort(int arr[], int size)

{

int i, start_index, min_index, temp;

for (start_index = 0; start_index < size-1; start_index++)

{

// each iteration of the for loop is one pass

// find the index of minimum element

min_index = start_index;

for (i = start_index+1; i < size; i++)

if (arr[i] < arr[min_index])

min_index = i;

// swap minimum element with element at start_index

temp = arr[start_index];

arr[start_index] = arr[min_index];

arr[min_index] = temp;

}

}

Week10_SelectionSort.c

5. Demo #2: Selection Sort

Session 3: Sorting44

Pass #comparisons

1 n – 1

2 n – 2

3 n – 3

… …

n – 1 1

5. Selection Sort: Performance

 We choose the number of comparisons as our basis of analysis.

 Comparisons of array elements occur in the inner loop, where the
minimum element is determined.

 Assuming an array with n elements. Table below shows the number of
comparisons for each pass.

 The total number of comparisons is calculated in the formula below.

 Such an algorithm is call an n2 algorithm, or quadratic algorithm, in terms of
running time complexity.

Session 3: Sorting45

6. Bubble Sort

 Selection sort makes one exchange at the end of each

pass.

 What if we make more than one exchange during each

pass?

 The key idea of the bubble sort is to make pairwise

comparisons and exchange the positions of the pair if

they are out of order.

Session 3: Sorting46

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

17 23 5 90 12 44 38 84 77

17 5 23 90 12 44 38 84 77

17 5 23 12 90 44 38 84 77

17 5 23 12 44 90 38 84 77

17 5 23 12 44 38 90 84 77

17 5 23 12 44 38 84 90 77

17 5 23 12 44 38 84 77 90

exchange

ok

exchange

exchange

exchange

exchange

exchange

exchange

Done!Q: Is the array sorted?
Q: What did we achieve?

6. One Pass of Bubble Sort

Session 3: Sorting47

// To sort arr in increasing order

void bubbleSort(int arr[], int size)

{

int i, limit, temp;

for (limit = size-2; limit >= 0; limit--)

{

// limit is where the inner loop variable i should end

for (i=0; i<=limit; i++) // one pass

{

if (arr[i] > arr[i+1]) // swap arr[i] with arr[i+1]

{

temp = arr[i];

arr[i] = arr[i+1];

arr[i+1] = temp;

}

}

}

}

Week10_BubbleSort.c

6. Demo #3: Bubble Sort

Session 3: Sorting48

Pass #comparisons

1 n – 1

2 n – 2

3 n – 3

… …

n – 1 1

6. Bubble Sort: Performance

 Bubble sort, like selection sort, requires n – 1 passes for an array with n
elements.

 The comparisons occur in the inner loop. The number of comparisons in

each pass is given in the table below.

 The total number of comparisons is calculated in the formula below.

 Like selection sort, bubble sort is also an n2 algorithm, or quadratic
algorithm, in terms of running time complexity.

Session 3: Sorting49

6. Bubble Sort: Enhanced Version

 It is possible to enhance bubble sort algorithm to reduce

the number of passes.

 Suppose that in a certain pass, no swap is needed. This implies

that the array is already sorted, and hence the algorithm may

terminate without going on to the next pass.

Session 3: Sorting50

7. More Sorting Algorithms

 What we have introduced are 2 basic sort algorithms.

Together with the Insertion Sort algorithm, these 3

algorithms are the simplest.

 However, they are very slow, as their running time

complexity is quadratic.

 Faster sorting algorithms exist and are topics in more

advanced programming modules.

 Merge sort (CS1020)

 Quick sort (CS1020)

 Heap sort (CS2010)

Session 3: Sorting51

8. Animated Sorting Algorithms

 There are a number of animated sorting algorithms on

the Internet.

 Here are two sites:

 http://www.sorting-algorithms.com/

 http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html

 YouTube video on Bubble sort:

 http://www.youtube.com/watch?v=lyZQPjUT5B4

Session 3: Sorting52

http://www.sorting-algorithms.com/
http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.youtube.com/watch?v=lyZQPjUT5B4

The End

