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What is Recursion? (1/2)

» Other forms of recursion
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What is Recursion? (2/2)

» A method of problem solving where the solution of a
problem depends on solutions to smaller instances of the

CAMEproblem. -

Factorial(0) =1
Factorial(1) =1
Factorial(2)=2*1=2

Factorialln)=n* (n-1)*..*2*1

= n * Factorial(n-1)

Recursive case
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Example

» Given two integers a and b, with a <= b, find the sum of
the square of the numbers between a and b, both
inclusive.

sumSq(5,5) = 52

Base/Degenerated case

sumSq(5,6) = 5% + 62 = sumSq(5,5) + 62
sumSq(5,7) = 5% + 6% + 74 = sumSq(5,6) + 74

sumSq(5,15) = 5% + 6% + ... + 144 + 152
= sumSq(5,14) + 154

/ u
sumSq(a ) = sumSqfa, b-1)
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Characteristics of Recursion

» Does base cases exist!?
» Are the recursive argument(s) getting “smaller™?
» Does the recursion ever reach the base case!?

sumSq(a,b) =
pre:a <=b
If (a < b) then
return sumSq(a,b-1) + b*b
else
return a*a
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Tracing the Recursive calls

sumSq(a,b) =
pre:a <=b
If (a < b) then
return sumSq(a,b-1) + b*b

else
return a*a

sumSq(5,7)
- sumSq(5,6) + 77
- sumSq(5,5) + 62
< return 5% = 25 from sumSq(5,5)
< return 25 + 62= 61 from sumSq(5,6)
< return 61 + 74 =110 from sumSq(5,7)
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Identifying the sub-problem (1/2)

» Other ways to perform the sum of squares?
» sumSq(5,5) > 52
» sumSq(5,7) 2> 52+ 62+ 77

—> sumSq(5,6) + 7?2

—> 52 + sumSq(6,7) ?

- 52 + sumSq(6,6) + 7% ?

- sumSq(5,6) + sumSq(7,7) ?
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Identifying the sub-problem (2/2)

» ‘Combining two half-solutions’ recursion:

sumSq(a,b) =
pre:a <=b
If (a < b) then
m=(a+b)/2
return sumSq(a,m) + sumSq(m+1,b)

else
return a*a
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General Recursive Problems

» Example: Define a recursive function to print the first n
elements of an array arr in reverse

» Print the last element, then call the function recursively to
print arr from the start till just before the last element.

» What is the base case?

printArray (arr,n) =
If (n>0) then
print arr|[n-1]
printArray(arr,n-1)

return
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Gist of Recursion (1/2)

Iteration vs Recursion: How to compute factorial(3)?

')

Recursive thinker
You, do f(2) for me.
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answer to my boss.
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Gist of Recursion (2/2)

» The One-Layer Thinking Maxim

Don’t try to think recursively about a recursive
Process

Illustration: Compute n? recursively.

Moment of inspiration:
(n=1)? =n°-2n+1
Thus, — 0 If n=0
nz = -

_(n=1)*+2n-1 otherwise

There is no need to think about how (n—1)? computes
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Testing a Recursive Function/Method

» Check that it runs on base cases

» Check that it runs on slightly more complicated (than
base) recursive cases

» Check the correctness of recursive cases via tracing
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