

Programming Refresher Workshop

Session 5

Dr Henry Chia

Contents

- What is recursion?
- Characteristics of recursion
- Tracing recursive calls
- Identifying the sub-problem
- General recursive problems
- Gist of recursion
- Testing a recursive function

What is Recursion? (1/2)

Other forms of recursion

Droste effect

What is Recursion? (2/2)

- A method of problem solving where the solution of a problem depends on solutions to smaller instances of the SAME problem.
 Base/Degenerated case
 - Factorial(0) = 1 Factorial(1) = 1Factorial(2) = 2 * 1 = 2

Factorial(n) = n * (n-1) * ... * 2 * 1

Recursive case

= n * Factorial(n-1)

...

Example

Given two integers a and b, with a <= b, find the sum of the square of the numbers between a and b, both inclusive.

Base/Degenerated case

 $sumSq(5,5) = 5^{2}$ $sumSq(5,6) = 5^{2} + 6^{2} = sumSq(5,5) + 6^{2}$ $sumSq(5,7) = 5^{2} + 6^{2} + 7^{2} = sumSq(5,6) + 7^{2}$

...

$$sumSq(5,15) = 5^{2} + 6^{2} + ... + 14^{2} + 15^{2}$$

= $sumSq(5,14) + 15^{2}$
 $sumSq(a,b) = sumSq(a,b-1) + b^{2}$

Recursive case

Characteristics of Recursion

- Does base cases exist?
- Are the recursive argument(s) getting "smaller"?
- Does the recursion ever reach the base case?

```
sumSq(a,b) =
pre: a <= b
If (a < b) then
return sumSq(a,b-1) + b*b
else
return a*a</pre>
```

Tracing the Recursive calls

```
sumSq(a,b) =
    pre: a <= b
    If (a < b) then
        return sumSq(a,b-1) + b*b
    else
        return a*a</pre>
```

```
sumSq(5,7)

\rightarrow sumSq(5,6) + 7<sup>2</sup>

\rightarrow sumSq(5,5) + 6<sup>2</sup>

\leftarrow return 5<sup>2</sup> = 25 from sumSq(5,5)

\leftarrow return 25 + 6<sup>2</sup> = 61 from sumSq(5,6)

\leftarrow return 61 + 7<sup>2</sup> = 110 from sumSq(5,7)
```

Identifying the sub-problem (1/2)

- Other ways to perform the sum of squares?
- ▶ sumSq(5,5) \rightarrow 5²
- ▶ sumSq(5,7) \rightarrow 5² + 6² + 7²
 - \rightarrow sumSq(5,6) + 7² ?
 - \rightarrow 5² + sumSq(6,7) ?
 - $\rightarrow 5^2 + sumSq(6,6) + 7^2$?
 - \rightarrow sumSq(5,6) + sumSq(7,7) ? \rightarrow ...

Identifying the sub-problem (2/2)

Combining two half-solutions' recursion:

sumSq(a,b) =pre: $a \le b$ If $(a \le b)$ then m = (a + b)/2return sumSq(a,m) + sumSq(m+1,b)
else
return a^*a

General Recursive Problems

- Example: Define a recursive function to print the first n elements of an array arr in reverse
- Print the last element, then call the function recursively to print arr from the start till just before the last element.
- What is the base case?

```
printArray (arr,n) =
  If (n > 0) then
    print arr[n-1]
    printArray(arr,n-1)
```

return

Gist of Recursion (1/2)

Iteration vs Recursion: How to compute factorial(3)?

Gist of Recursion (2/2)

The One-Layer Thinking Maxim

Don't try to think recursively about a recursive process

Illustration: *Compute* n^2 *recursively*.

Moment of inspiration:

 $(n-1)^2 = n^2 - 2n + 1$

Thus, $n^{2} = \begin{cases} 0 & \text{if } n = 0 \\ (n-1)^{2} + 2n - 1 & \text{otherwise} \end{cases}$

There is no need to think about how $(n-1)^2$ computes

Testing a Recursive Function/Method

- Check that it runs on base cases
- Check that it runs on slightly more complicated (than base) recursive cases
- Check the correctness of recursive cases via tracing

The End