
Programming Refresher Workshop

Dr Henry ChiaSession 5

Contents

 What is recursion?

 Characteristics of recursion

 Tracing recursive calls

 Identifying the sub-problem

 General recursive problems

 Gist of recursion

 Testing a recursive function

2 Session 5: Contents

What is Recursion? (1/2)

 Other forms of recursion

3

Droste effect

Sierpinksi triangle

Garfield dreaming
recursively.

Recursive tree

Session 5: What is recursion?

What is Recursion? (2/2)

 A method of problem solving where the solution of a

problem depends on solutions to smaller instances of the

SAME problem.

4 Session 5: What is recursion?

Factorial(0) = 1
Factorial(1) = 1
Factorial(2) = 2 * 1 = 2
…
Factorial(n) = n * (n-1) * … * 2 * 1

= n * Factorial(n-1)

Base/Degenerated case

Recursive case

Example

5

 Given two integers a and b, with a <= b, find the sum of
the square of the numbers between a and b, both
inclusive.

sumSq(5,5) = 52

sumSq(5,6) = 52 + 62 = sumSq(5,5) + 62

sumSq(5,7) = 52 + 62 + 72 = sumSq(5,6) + 72

…

sumSq(5,15) = 52 + 62 + … + 142 + 152

= sumSq(5,14) + 152

sumSq(a,b) = sumSq(a, b-1) + b2

Base/Degenerated case

Recursive case

Session 5: Example

Characteristics of Recursion

6

 Does base cases exist?

 Are the recursive argument(s) getting “smaller”?

 Does the recursion ever reach the base case?

sumSq(a,b) =
pre: a <= b
If (a < b) then

return sumSq(a,b-1) + b*b
else

return a*a

Session 5: Characteristics of Recursion

Tracing the Recursive calls

7

sumSq(5,7)
 sumSq(5,6) + 72

 sumSq(5,5) + 62

 return 52 = 25 from sumSq(5,5)
 return 25 + 62 = 61 from sumSq(5,6)

 return 61 + 72 = 110 from sumSq(5,7)
Session 5: Tracing recursive calls

sumSq(a,b) =
pre: a <= b
If (a < b) then

return sumSq(a,b-1) + b*b
else

return a*a

8

 Other ways to perform the sum of squares?

 sumSq(5,5) 52

 sumSq(5,7) 52 + 62 + 72

 sumSq(5,6) + 72 ?

 52 + sumSq(6,7) ?

 52 + sumSq(6,6) + 72 ?

 sumSq(5,6) + sumSq(7,7) ?

 …

Session 5: Identifying the Sub-Problem

Identifying the sub-problem (1/2)

9

 ‘Combining two half-solutions’ recursion:

sumSq(a,b) =
pre: a <= b
If (a < b) then

m = (a + b)/2
return sumSq(a,m) + sumSq(m+1,b)

else
return a*a

Identifying the sub-problem (2/2)

Session 5: Identifying the Sub-Problem

General Recursive Problems

10

 Example: Define a recursive function to print the first n
elements of an array arr in reverse

 Print the last element, then call the function recursively to
print arr from the start till just before the last element.

 What is the base case?

printArray (arr,n) =
If (n > 0) then

print arr[n-1]
printArray(arr,n-1)

return

Session 5: General Recursive Problems

Gist of Recursion (1/2)

11

Iteration vs Recursion: How to compute factorial(3)?

Iterative thinker

Recursive thinker

I do f(3) all by

myself…return

6 to my boss.

f(3)

You, do f(2) for me.

I’ll return 3 * your

answer to my boss.

f(3)

You, do f(1) for me.

I’ll return 2 * your

answer to my boss.

f(2)

You, do f(0) for me.

I’ll return 1 * your

answer to my boss.

f(1)

I will do f(0) all by

myself, and return

1 to my boss.

f(0)

Session 5: Gist of Recursion

Gist of Recursion (2/2)

12

 The One-Layer Thinking Maxim

Don’t try to think recursively about a recursive
process

Illustration: Compute n2 recursively.

Moment of inspiration:

(n-1)2 = n2 - 2n + 1

Thus, 0 if n = 0

n2 =

(n - 1)2 + 2n - 1 otherwise

There is no need to think about how (n-1)2 computes
Session 5: Gist of Recursion

Testing a Recursive Function/Method

13

 Check that it runs on base cases

 Check that it runs on slightly more complicated (than

base) recursive cases

 Check the correctness of recursive cases via tracing

Session 5: Testing a Recursive Function/Method

The End

14 Session 5: Final Notes

