B ®

NUS | Computin
95 e P g

aaaaaaa | University
of Singapore

Programming Refresher Workshop

Session S Dr Henry Chia

Contents

» What is recursion?

» Characteristics of recursion
» Tracing recursive calls

» Identifying the sub-problem
» General recursive problems
» Gist of recursion

» Testing a recursive function

b 2 Session 5: Contents

What is Recursion? (1/2)

» Other forms of recursion

A
At A

Anunu.uu.u

Kﬁfﬁ;}:&éﬁ?&

AbLA AAAD

Garfield dreaming
recursively.

Sierpinksi triangle

Droste effect

Recursive tree

p 3 Session 5:What is recursion?

What is Recursion? (2/2)

» A method of problem solving where the solution of a
problem depends on solutions to smaller instances of the

CAMEproblem. -

Factorial(0) =1
Factorial(1) =1
Factorial(2)=2*1=2

Factorialln)=n* (n-1)*..*2*1

= n * Factorial(n-1)

Recursive case

p 4 Session 5:What is recursion?

Example

» Given two integers a and b, with a <= b, find the sum of
the square of the numbers between a and b, both
inclusive.

sumSq(5,5) = 52

Base/Degenerated case

sumSq(5,6) = 5% + 62 = sumSq(5,5) + 62
sumSq(5,7) = 5% + 6% + 74 = sumSq(5,6) + 74

sumSq(5,15) = 5% + 6% + ... + 144 + 152
= sumSq(5,14) + 154

/ u
sumSq(a) = sumSqfa, b-1)

b 5 Session 5: Example

Characteristics of Recursion

» Does base cases exist!?
» Are the recursive argument(s) getting “smaller™?
» Does the recursion ever reach the base case!?

sumSq(a,b) =
pre:a <=b
If (a < b) then
return sumSq(a,b-1) + b*b
else
return a*a

p 6 Session 5: Characteristics of Recursion

Tracing the Recursive calls

sumSq(a,b) =
pre:a <=b
If (a < b) then
return sumSq(a,b-1) + b*b

else
return a*a

sumSq(5,7)
- sumSq(5,6) + 77
- sumSq(5,5) + 62
< return 5% = 25 from sumSq(5,5)
< return 25 + 62= 61 from sumSq(5,6)
< return 61 + 74 =110 from sumSq(5,7)

b 7 Session 5:Tracing recursive calls

Identifying the sub-problem (1/2)

» Other ways to perform the sum of squares?
» sumSq(5,5) > 52
» sumSq(5,7) 2> 52+ 62+ 77

—> sumSq(5,6) + 7?2

—> 52 + sumSq(6,7) ?

- 52 + sumSq(6,6) + 7% ?

- sumSq(5,6) + sumSq(7,7) ?

b 8 Session 5: Identifying the Sub-Problem

Identifying the sub-problem (2/2)

» ‘Combining two half-solutions’ recursion:

sumSq(a,b) =
pre:a <=b
If (a < b) then
m=(a+b)/2
return sumSq(a,m) + sumSq(m+1,b)

else
return a*a

b 9 Session 5: Identifying the Sub-Problem

General Recursive Problems

» Example: Define a recursive function to print the first n
elements of an array arr in reverse

» Print the last element, then call the function recursively to
print arr from the start till just before the last element.

» What is the base case?

printArray (arr,n) =
If (n>0) then
print arr|[n-1]
printArray(arr,n-1)

return

b 10 Session 5: General Recursive Problems

Gist of Recursion (1/2)

Iteration vs Recursion: How to compute factorial(3)?

')

Recursive thinker
You, do f(2) for me.

I'll return 3 * your
answer to my boss.

You, do f(1) for me.

Iterative thinker /il return 2 * your

/7 answer to my boss
| do (3) all by f3) You, do f(0) for me.
myself...return " Y Ill return 1 * your
6 to my boss. - f answer to my boss.
f(2
*}) | will do f(0) all by
hg . \ myself, and return
/ ‘ ” 1 to my boss.
f(3) A
\ Y
‘t l i j"
"\l} ﬁfgd)
"\\‘

b Il Session 5: Gist of Recursion

Gist of Recursion (2/2)

» The One-Layer Thinking Maxim

Don’t try to think recursively about a recursive
Process

Illustration: Compute n? recursively.

Moment of inspiration:
(n=1)? =n°-2n+1
Thus, — 0 If n=0
nz = -

_(n=1)*+2n-1 otherwise

There is no need to think about how (n—1)? computes

p 12 Session 5: Gist of Recursion

Testing a Recursive Function/Method

» Check that it runs on base cases

» Check that it runs on slightly more complicated (than
base) recursive cases

» Check the correctness of recursive cases via tracing

p I3 Session 5:Testing a Recursive Function/Method

b 14 Session 5: Final Notes

