
Programming Refresher Workshop

Dr Henry ChiaSession 5

Contents

 What is recursion?

 Characteristics of recursion

 Tracing recursive calls

 Identifying the sub-problem

 General recursive problems

 Gist of recursion

 Testing a recursive function

2 Session 5: Contents

What is Recursion? (1/2)

 Other forms of recursion

3

Droste effect

Sierpinksi triangle

Garfield dreaming
recursively.

Recursive tree

Session 5: What is recursion?

What is Recursion? (2/2)

 A method of problem solving where the solution of a

problem depends on solutions to smaller instances of the

SAME problem.

4 Session 5: What is recursion?

Factorial(0) = 1
Factorial(1) = 1
Factorial(2) = 2 * 1 = 2
…
Factorial(n) = n * (n-1) * … * 2 * 1

= n * Factorial(n-1)

Base/Degenerated case

Recursive case

Example

5

 Given two integers a and b, with a <= b, find the sum of
the square of the numbers between a and b, both
inclusive.

sumSq(5,5) = 52

sumSq(5,6) = 52 + 62 = sumSq(5,5) + 62

sumSq(5,7) = 52 + 62 + 72 = sumSq(5,6) + 72

…

sumSq(5,15) = 52 + 62 + … + 142 + 152

= sumSq(5,14) + 152

sumSq(a,b) = sumSq(a, b-1) + b2

Base/Degenerated case

Recursive case

Session 5: Example

Characteristics of Recursion

6

 Does base cases exist?

 Are the recursive argument(s) getting “smaller”?

 Does the recursion ever reach the base case?

sumSq(a,b) =
pre: a <= b
If (a < b) then

return sumSq(a,b-1) + b*b
else

return a*a

Session 5: Characteristics of Recursion

Tracing the Recursive calls

7

sumSq(5,7)
 sumSq(5,6) + 72

 sumSq(5,5) + 62

 return 52 = 25 from sumSq(5,5)
 return 25 + 62 = 61 from sumSq(5,6)

 return 61 + 72 = 110 from sumSq(5,7)
Session 5: Tracing recursive calls

sumSq(a,b) =
pre: a <= b
If (a < b) then

return sumSq(a,b-1) + b*b
else

return a*a

8

 Other ways to perform the sum of squares?

 sumSq(5,5)  52

 sumSq(5,7)  52 + 62 + 72

 sumSq(5,6) + 72 ?

 52 + sumSq(6,7) ?

 52 + sumSq(6,6) + 72 ?

 sumSq(5,6) + sumSq(7,7) ?

 …

Session 5: Identifying the Sub-Problem

Identifying the sub-problem (1/2)

9

 ‘Combining two half-solutions’ recursion:

sumSq(a,b) =
pre: a <= b
If (a < b) then

m = (a + b)/2
return sumSq(a,m) + sumSq(m+1,b)

else
return a*a

Identifying the sub-problem (2/2)

Session 5: Identifying the Sub-Problem

General Recursive Problems

10

 Example: Define a recursive function to print the first n
elements of an array arr in reverse

 Print the last element, then call the function recursively to
print arr from the start till just before the last element.

 What is the base case?

printArray (arr,n) =
If (n > 0) then

print arr[n-1]
printArray(arr,n-1)

return

Session 5: General Recursive Problems

Gist of Recursion (1/2)

11

Iteration vs Recursion: How to compute factorial(3)?

Iterative thinker

Recursive thinker

I do f(3) all by

myself…return

6 to my boss.

f(3)

You, do f(2) for me.

I’ll return 3 * your

answer to my boss.

f(3)

You, do f(1) for me.

I’ll return 2 * your

answer to my boss.

f(2)

You, do f(0) for me.

I’ll return 1 * your

answer to my boss.

f(1)

I will do f(0) all by

myself, and return

1 to my boss.

f(0)

Session 5: Gist of Recursion

Gist of Recursion (2/2)

12

 The One-Layer Thinking Maxim

Don’t try to think recursively about a recursive
process

Illustration: Compute n2 recursively.

Moment of inspiration:

(n-1)2 = n2 - 2n + 1

Thus, 0 if n = 0

n2 =

(n - 1)2 + 2n - 1 otherwise

There is no need to think about how (n-1)2 computes
Session 5: Gist of Recursion

Testing a Recursive Function/Method

13

 Check that it runs on base cases

 Check that it runs on slightly more complicated (than

base) recursive cases

 Check the correctness of recursive cases via tracing

Session 5: Testing a Recursive Function/Method

The End

14 Session 5: Final Notes

