(wis) NUS | Computing

Programming Refresher Workshop

Session 5
Dr Henry Chia

Contents

- What is recursion?
- Characteristics of recursion
- Tracing recursive calls
- Identifying the sub-problem
- General recursive problems
- Gist of recursion
- Testing a recursive function

What is Recursion? (1/2)

- Other forms of recursion

What is Recursion? (2/2)

- A method of problem solving where the solution of a problem depends on solutions to smaller instances of the SAME problem.

Base/Degenerated case

Factorial(0) = 1
Factorial(1) $=1$
Factorial(2) $=2 * 1=2$
Factorial(n) $=n^{*}(n-1) * \ldots * 2 * 1$

$$
=n * \text { Factorial(n-1) }
$$

Example

- Given two integers a and b, with $a<=b$, find the sum of the square of the numbers between a and b, both inclusive.

$$
\operatorname{sumSq}(5,5)=5^{2}
$$

Base/Degenerated case

$\operatorname{sumSq}(5,6)=5^{2}+6^{2}=\operatorname{sumSq}(5,5)+6^{2}$ $\operatorname{sumSq}(5,7)=5^{2}+6^{2}+7^{2}=\operatorname{sumSq}(5,6)+7^{2}$

$$
\begin{aligned}
\operatorname{sumSq}(5,15) & =5^{2}+6^{2}+\ldots+14^{2}+15^{2} \\
& =\operatorname{sumSq}(5,14)+15^{2}
\end{aligned}
$$

$$
\operatorname{sumSq}(a, b)=\operatorname{sumSq}(a, b-1) \widehat{+b^{2}}
$$

Recursive case

Characteristics of Recursion

- Does base cases exist?
- Are the recursive argument(s) getting "smaller"?
- Does the recursion ever reach the base case?

$$
\begin{aligned}
& \text { sumSq }(a, b)= \\
& \text { pre: } a<=b \\
& \text { If }(a<b) \text { then } \\
& \text { return sumSq }(a, b-1)+b^{*} b \\
& \text { else } \\
& \text { return } a^{*} a
\end{aligned}
$$

Tracing the Recursive calls

$$
\begin{aligned}
& \text { sumSq }(a, b)= \\
& \text { pre: } a<=b \\
& \text { If }(a<b) \text { then } \\
& \text { return sumSq }(a, b-1)+b^{*} b \\
& \text { else } \\
& \text { return } a^{*} a
\end{aligned}
$$

$\operatorname{sumSq}(5,7)$
$\rightarrow \operatorname{sumSq}(5,6)+7^{2}$
$\rightarrow \operatorname{sumSq}(5,5)+6^{2}$
\leftarrow return $5^{2}=25$ from $\operatorname{sumSq}(5,5)$
\leftarrow return $25+6^{2}=61$ from $\operatorname{sumSq}(5,6)$
\leftarrow return $61+7^{2}=110$ from $\operatorname{sumSq}(5,7)$

Identifying the sub-problem (1/2)

- Other ways to perform the sum of squares?
- $\operatorname{sumSq}(5,5) \rightarrow 5^{2}$
- $\operatorname{sumSq}(5,7) \rightarrow 5^{2}+6^{2}+7^{2}$
\rightarrow sumSq(5,6) $+7^{2}$?
$\rightarrow 5^{2}+\operatorname{sumSq}(6,7)$?
$\rightarrow 5^{2}+\operatorname{sumSq}(6,6)+7^{2}$?
$\rightarrow \operatorname{sumSq}(5,6)+\operatorname{sumSq}(7,7)$?
\rightarrow...

Identifying the sub-problem $(2 / 2)$

- 'Combining two half-solutions' recursion:

$$
\begin{aligned}
& \text { sumSq }(a, b)= \\
& \text { pre: } a<=b \\
& \text { If }(a<b) \text { then } \\
& \quad m=(a+b) / 2 \\
& \text { return } \operatorname{sumSq}(a, m)+\operatorname{sumSq}(m+1, b) \\
& \text { else } \\
& \text { return } a^{*} a
\end{aligned}
$$

General Recursive Problems

- Example: Define a recursive function to print the first n elements of an array arr in reverse
- Print the last element, then call the function recursively to print arr from the start till just before the last element.
- What is the base case?

```
printArray (arr,n) =
    If ( }n>0)\mathrm{ then
    print arr[n-1]
    printArray(arr,n-1)
    return
```


Gist of Recursion (1/2)

Iteration vs Recursion: How to compute factorial(3)?

Iterative thinker

Gist of Recursion (2/2)

- The One-Layer Thinking Maxim

Don't try to think recursively about a recursive process

Illustration: Compute n^{2} recursively.
Moment of inspiration:

$$
(n-1)^{2}=n^{2}-2 n+1
$$

Thus,

$$
n^{2}= \begin{cases}0 & \text { if } n=0 \\ (n-1)^{2}+2 n-1 & \text { otherwise }\end{cases}
$$

There is no need to think about how $(n-1)^{2}$ computes

Testing a Recursive Function/Method

- Check that it runs on base cases
- Check that it runs on slightly more complicated (than base) recursive cases
- Check the correctness of recursive cases via tracing

The End

