

Welcome!

CS Curriculum
(Seth Gilbert)

University Life

classes

extracurriculars

socializing

University Life

classes

extracurriculuars

socializing

“What should I do now?”

Disclaimer

Information on these slides is simplified for this presentation and should not be treated as official degree requirements.

Students should *always* refer to the official SoC Website and NUS Bulletin for complete up-to-date information.

Please check with the SoC Undergraduate Office to clarify any requirements that are unclear.

Disclaimer

Information on these slides is simplified for this presentation and should not be treated as official degree requirements.

Students should *always* refer to the official SoC Website and NUS Bulletin for complete up-to-date information.

Please check with the SoC Undergraduate Office to clarify any requirements that are unclear.

Focus today: BComp(CS) degree requirements.

Other programs (Turing, DDP, etc.) are similar.

BComp(CS) Degree Requirements

*Special programmes and double degree programs are slightly different.

CS Program Requirements

80 units

SoC Common Core

40 units

40 units

Unrestricted Electives

CS Goals

Strong technical foundations.

Excellent problem solving skills.

Broad knowledge of the field.

In-depth knowledge of (at least) one specialized area.

Good communication and teamwork skills.

BComp(CS) Degree Requirements

CS Foundations

Algorithms and Theory

What do you want to do?

How do you do it efficiently?

Programming and Software Engineering

How do you translate your idea into code?

How do you build it?

How do you work on a team?

Computer Systems

How does a computer work?

What is really happening
underneath the abstractions?

How does a network work?

AI & ML

How do we design intelligent systems?

Big data

How do computers learn?

CS Foundations

Areas not covered in the CS Foundations:

- Security
- Databases
- Media
- Computational Biology

Algorithms and Theory

What do you want to do?

How do you do it efficiently?

Programming and Software Engineering

How do you translate your idea into code?

How do you build it?

How do you work on a team?

Computer Systems

How does a computer work?

What is really happening underneath the abstractions?

How does a network work?

AI & ML

How do we design intelligent systems?

Big data

How do computers learn?

CS Foundations

The Beginning

Algorithms and Theory

Programming and Software Engineering

Computer Systems

AI & ML

CS Foundations

The Beginning

CS1101s
Programming
Methodology

CS1231s
Discrete
Structures

Algorithms and Theory

Programming and Software Engineering

Computer Systems

AI & ML

CS Foundations

The Beginning

CS1101s
Programming
Methodology

CS1231s
Discrete
Structures

Algorithms and Theory

CS2040S
Data Structures
& Algorithms

CS3230
Design & Analysis
of Algorithms

Programming and Software Engineering

Computer Systems

AI & ML

CS Foundations

The Beginning

CS1101s
Programming
Methodology

CS1231s
Discrete
Structures

Algorithms and Theory

CS2040S
Data Structures
& Algorithms

CS3230
Design & Analysis
of Algorithms

Programming and Software Engineering

CS2030S
Programming
Methodology II

CS2103T
Software
Engineering

CS2101
Effective
Communication

Computer Systems

AI & ML

CS Foundations

The Beginning

CS1101s
Programming
Methodology

CS1231s
Discrete
Structures

Algorithms and Theory

CS2040S
Data Structures
& Algorithms

CS3230
Design & Analysis
of Algorithms

Programming and Software Engineering

CS2030S
Programming
Methodology II

CS2103T
Software
Engineering

CS2101
Effective
Communication

Computer Systems

CS2100
Computer
Organization

CS2106
Intro to Operating
Systems

AI & ML

CS Foundations

The Beginning

CS1101s
Programming
Methodology

CS1231s
Discrete
Structures

Algorithms and Theory

CS2040S
Data Structures
& Algorithms

CS3230
Design & Analysis
of Algorithms

Programming and Software Engineering

CS2030S
Programming
Methodology II

CS2103T
Software
Engineering

CS2101
Effective
Communication

Computer Systems

CS2100
Computer
Organization

CS2106
Intro to Operating
Systems

AI & ML

CS2109S
Intro to AI and
Machine Learning

Semester 1

The Beginning

CS1101s
Programming
Methodology

CS1231s
Discrete
Structures

Semesters 2 & 3

Algorithms and Theory

CS2040S
Data Structures
& Algorithms

Programming and Software Engineering

CS2030S
Programming
Methodology II

Computer Systems

CS2100
Computer
Organization

AI & ML

Semesters 3 & 4

CS3230
Design & Analysis
of Algorithms

CS2103T
Software
Engineering

CS2101
Effective
Communication

CS2106
Intro to Operating
Systems

CS2109S
Intro to AI and
Machine Learning

Semester 1

ing

S1101s
rogramming
hodology

S1231s
iscrete
uctures

Semesters 2 & 3

Algorithms and Theory

CS2040S
Data Structures
& Algorithms

Programming and Software Engineering

CS2030S
Programming
Methodology II

Computer Systems

CS2100
Computer
Organization

AI & ML

Semesters 3 & 4

CS3230
Design & Analysis
of Algorithms

CS2103T
Software
Engineering

CS2101
Effective
Communication

CS2106
Intro to Operating
Systems

CS2109S
Intro to AI and
Machine Learning

Year 3

Industry
Experience

Semester
abroad /
exchange /
NOC / SEP

BComp(CS) Degree Requirements

Breadth & Depth

1. Complete 12 units at level 4000 or above.

2. Satisfy a focus area:

Complete 3 “primary” courses in an area (at least one level 4000).

3. Get industrial experience:

Complete 3 month (6 unit) or 6 month (12 unit) industrial experience.

10 Focus Areas

1. Algorithms and Theory
2. Artificial Intelligence
3. Computer Graphics and Games
4. Computer Security
5. Database Systems
6. Multimedia Information Retrieval
7. Networking and Distributed Systems
8. Parallel Computing
9. Programming Languages
10. Software Engineering

Algorithms & Theory

CS3230
Design and Analysis
of Algorithms

CS3236
Introduction to
Information Theory

CS4231
Parallel and Distributed
Algorithms

CS3231
Theory of
Computation

CS3234
Optimisation
Algorithms

Artificial Intelligence

CS2109S

Intro to AI and
Machine Learning

CS3263

Foundations of
Artificial Intelligence

CS3264

Foundations of
Machine Learning

CS4243

Computer Vision and
Pattern Recognition

CS4244

Knowledge Representation
and Reasoning

CS4246

AI Planning and
Decision Making

CS4248

Natural Language
Processing

Computer Graphics and Games

CS3241
Computer Graphics

CS3247
Game Development

CS3242
3D Modelling and
Animation

CS4247
Graphics Rendering
Techniques

CS4350
Game Development
Project

Computer Security

CS2107
Introduction to
Information Security

CS4236
Cryptography Theory
and Practice

CS3235
Computer Security

CS4238
Computer Security
Practice

CS4239
Software Security

Database Systems

CS2102
Database Systems

CS4221
Database Applications
Design and Tuning

CS3223
Database Systems
Implementation

CS4224
Distributed Databases

CS4225
Big Data Systems for Data
Science

Warning: Check Prerequisites

Example: Artificial Intelligence

Warning: Check Prerequisites

Example: Computer Graphics & Games

Focus area electives

Each focus areas has a set of “electives” for students who want to learn more about the area.

Breadth & Depth

1. Complete 12 units at level 4000 or above.

2. Satisfy a focus area:

Complete 3 “primary” courses in an area (at least one level 4000).

3. Get industrial experience:

Complete 3 month (6 unit) or 6 month (12 unit) industrial experience.

Industrial Experience

“Complete 3 month (6 unit) or 6 month (12 unit) industrial experience.”

ATAP

Advanced Technology Attachment Program

IIC

Industry Internship Program

SIP

Student Internship Program

CVWO

Computing Voluntary Welfare Organization

NOC

NUS Overseas College

Other...

Students with GPA of 4.00 or higher may replace Industry Experience with a dissertation (Final Year Project: CP4101).

Students who aim for Honours (Highest Distinction) must pass the programme's dissertation course (i.e. CP4101).

BComp(CS) Degree Requirements

BComp(CS) Degree Requirements

BComp(CS) Degree Requirements

*Special programmes and double degree programs are slightly different.

CS Program
Requirements

80 units

SoC
Common Core

40 units

40 units

Unrestricted
Electives

BComp(CS) Degree Requirements

BComp(CS) Degree Requirements

<https://www.nus.edu.sg/registrar/academic-information-policies/undergraduate-students/general-education/for-students-admitted-from-AY2021-22>

University Pillars

Cultures & Connections

Critique & Expression

Data Literacy

Digital Literacy

Singapore Studies

Communities & Engagement

BComp(CS) Degree Requirements

<https://www.nus.edu.sg/registrar/academic-information-policies/undergraduate-students/general-education/for-students-admitted-from-AY2021-22>

University Pillars

Cultures & Connections

Critique & Expression

Data Literacy

Digital Literacy

Singapore Studies

Communities & Engagement

ES2660
Communicating in the
Information Age

CS1101S
Programming
Methodology

BComp(CS) Degree Requirements

<https://www.nus.edu.sg/registrar/academic-information-policies/undergraduate-students/general-education/for-students-admitted-from-AY2021-22>

University Pillars

Data Literacy:

- Preregistered: GEA1000
- Other options: DSA1101, STA1131
- Can drop GEA1000 and apply for other options

Cultures & Connections

Critique & Expression

Data Literacy

Digital Literacy

Singapore Studies

Communities & Engagement

ES2660
Communicating in the
Information Age

CS1101S
Programming
Methodology

Data Literacy

GEA1000: Quantitative Reasoning

- Intro to statistics
- Data analysis
- Data analysis project

Broader
Less mathematical
Less programming

ST1131: Introduction to Statistics and Statistical Computing

- Statistics
- R programming
- Data analysis

DSA1101: Introduction to Data Science

- Basic probability and statistics
- Data manipulation
- Data analysis

Targeted at DSA students
Fewer seats available
More overlap with CS courses

Data Literacy

GEA1000: Quantitative Reasoning

- Intro to statistics
- Data analysis
- Data analysis project

Computational / programming centered
Mathematically rigorous
Good preparation for CS courses in AI / ML

ST1131: Introduction to Statistics and Statistical Computing

- Statistics
- R programming
- Data analysis

DSA1101: Introduction to Data Science

- Basic probability and statistics
- Data manipulation
- Data analysis

BComp(CS) Degree Requirements

<https://www.nus.edu.sg/registrar/academic-information-policies/undergraduate-students/general-education/for-students-admitted-from-AY2021-22>

University Pillars

Cultures & Connections

Critique & Expression

Data Literacy

Digital Literacy

Singapore Studies

Communities & Engagement

ES2660
Communicating in the
Information Age

CS1101S
Programming
Methodology

Communities & Engagement

- One of the Pillars under Common Curriculum
- GEN courses may be Semester or Year long

Communities and Engagement

Issues: semester-long GEN courses have limited capacity per semester – alternative is year-long GEN Courses (i.e. Service Learning)

Students planning for enrichment programmes (Student Exchange Prog (SEP), NOC and/or internships) who wish to take year-long GEN option – recommend not leaving the GEN course too late and recommend to include Servicing Learning in their Study Plan.

BComp(CS) Degree Requirements

Unrestricted
Electives

SoC
Common Core

40 units

40 units

4 units
(1 course)

24 units
(6 courses)

12 units
(3 courses)

Ethics: IS1108
Digital Ethics
and Privacy

University Pillars

Interdisciplinary /
Cross-Disciplinary
Courses

BComp(CS) Degree Requirements

Interdisciplinary / Cross-disciplinary courses

- Choose three courses from the specified course lists.
- At least two must be interdisciplinary.

Interdisciplinary = integrates more than one discipline

Cross-disciplinary = a field different from CS that has interesting connections to CS.

BComp(CS) Degree Requirements

Examples: Interdisciplinary courses

- IS1128 IT, Management and Organisation
- IS2238 Economics of IT and AI
- HSH1000 The Human Condition
- HSI2001 Scientific Inquiry & Health: Good Science, Bad Science
- HSI2011 The World of Quantum
- DTK1234 Design Thinking
- EG2501 Liveable Cities
- IE2141 Systems Thinking and Dynamics
- PF1101 Fundamentals of Project Management

BComp(CS) Degree Requirements

Examples: Cross-disciplinary courses

- DAO2703 Operations and Technology Management
- EL1101E The Nature of Language
- SPH2002 Public Health and Epidemiology
- NUR1113A Healthy Ageing and Well-being
- EG2201A User-Centred Collaborative Design
- EG2310 Fundamentals of Systems Design
- Any Chemistry, Physics, or Biological Sciences (PC, CM, or LSM coded)

BComp(CS) Degree Requirements

Unrestricted
Electives

SoC
Common Core

40 units

40 units

4 units
(1 course)

24 units
(6 courses)

12 units
(3 courses)

Ethics: IS1108
Digital Ethics
and Privacy

University Pillars

Interdisciplinary /
Cross-Disciplinary
courses

BComp(CS) Degree Requirements

*Special programmes and double degree programs are slightly different.

CS Program Requirements

80 units

SoC Common Core

40 units

40 units

Unrestricted Electives

Some options:

- Second major in mathematics.
- Second major in statistics.
- Minor in mathematics.
- Minor in statistics.
- Minor in financial mathematics.
- Minor in life sciences.
- Minor in geographic information systems.
- Minor in interactive media development.
- Minor in management.
- Minor in management of technology.
- Minor in entrepreneurship.

And many more...

40 units of Unrestricted Electives are useful here...

How should I plan my time?

Year 1: The Basic Foundation

Sample

CS1101s
Programming
Methodology

CS2040s
Data Structures
& Algorithms

IS1108
Privacy/Ethics
in Computing

CS2030s
Programming
Methodology II

CS1231s
Discrete
Structures

CS2100
Computer
Organization

How to think computationally.
How to solve computational problems.
How to program.
How does a computer work.
Basic computing math.
Ethical/legal/social issues.

Data Literacy
course

Math

University Pillar
or
Interdisciplinary

Math

Year 2: The CS Core

Sample

CS2103T
Software
Engineering

CS2106
Intro. to Operating
Systems

CS2101
Communication

ES2660
Communication

CS3230
Design & Analysis
of Algorithms

CS2109S
Intro to AI and
Machine Learning

How to deal with complex systems.
How to deal with complex software.
How to solve hard problems.
Advanced algorithmic techniques.
Begin to specialize.
Develop software skills.

University Pillar
or
Interdisciplinary

Math

University Pillar
or
Interdisciplinary

University Pillar
or
Interdisciplinary

Year 3: The Practical Year

Sample

Focus Area
Primary

Industrial
Experience

Apply knowledge to projects.
Learn practical skills on internships or NOC.
Drill deeper into focus area.

Focus Area
Primary

Breadth & Depth

University Pillar
or
Interdisciplinary

University Pillar
or
Interdisciplinary

Breadth & Depth

Elective

Elective

Math

Year 4: Choose Your Own Adventure

Sample

Focus Area
Primary

Breadth &
Depth

Breadth &
Depth

Breadth &
Depth

Breadth &
Depth

Elective

Study advanced courses.
Do research.
Work on projects.
Broaden your knowledge.

Elective

Elective

Elective

Elective

What if I can't take XXX in Year 1?

Example: Student cannot take CS1231S in Semester 1

- Semester 1: MA1100
- Semester 2: CS1231S
- Semester 3: CS2040S
- Semester 4: CS2103T

It's okay!

As long as CS Foundations are mostly finished by the end of Year 2, you are on track!

What should I do during the summer?

What should I do during the summer?

- Orbital
- CVWO
- Internship
- Summer School
- Research
- Independent project
- Etc.

Research at SOC

Lots of exciting research happening in Computer Science!

Examples:

- SINGA: platform for deep learning.
- Self-driving car(t)s.
- Drones.
- Singapore Cyber-security Consortium
- Cryptocurrencies.
- Cancer data analysis.
- SeSaMe: Sensor-enhanced Social Media.
- TSUNAMI: Trustworthy Systems from UN-trusted component Amalgamations

Undergraduate Research at SOC

You can be part of it...

[Error Correction of Reads in DNA Fragment Assembly](#)
By Zheng Jia

[Secure and Lightweight Acknowledgment for Peer-to-Peer Overlay Networks](#)
By Lim Chee Liang

[Directed Novelty and Redundancy in Information Retrieval](#)
By Joseph Tan Kai Huang

[Algorithms for Peptide Sequencing via Tandem Mass Spectrometry](#)
By Ye Nan

[A Repetition-Based Framework for Lyric Alignment in Popular Songs](#)
By Luong Minh Thang

[Recognition of Polyadenylation Sites from Genomic Arabidopsis Sequences](#)
By Koh Chuan Hock

[Performance Analysis of Two Data Delivery Schemes for Underwater Sensor Networks](#)
By Pius W. Q. Lee

[Modeling from Photographs](#)
By Tan Min Rui

[Simplified Muscle Dynamics For Appealing Real-Time Skin Deformation](#)
By Lee Keng Siang

Turing Programme

Alan Turing

Turing Programme:

- Take CS2309: Research Methodology.
- Do a UROP (Undergraduate Research Opportunity Project)
- Do an FYP (Final Year Project)

Similar requirements, with additional research.

Why?

- You are interested in research!
- You may want to pursue a career in research (either industrial or academic).
- “Honors” program for our most successful students.
- Networking opportunities.
- Mentor in research.

By invitation only.

Based on recommendation from
CS2309 instructor or UROP advisor.

<http://researchweek.comp.nus.edu.sg>

<http://researchweek.comp.nus.edu.sg/computing/>

 NUS | Computing Computer Science Research Week 2023 January 4 to 6

The NUS Computer Science Research Week is an event that brings together the best researchers in computer science from academia and industry. The event includes a series of research and tutorial talks, by renowned computer scientists from around the world. The event will be held from January 4 through January 6, 2023.

Registration
The event is free of charge. [However, please register to help with the organization \(to cater for coffee and lunch\).](#)

Speakers

 Anastasia Borovykh Imperial College London	 Srdjan Capkun ETH Zurich	 Volkan Cevher EPFL	 Finale Doshi-Velez Harvard	 Amin Karbasi Yale	 Negar Kiyavash EPFL	 Swastik Kopparty University of Toronto	 Kasper Green Larsen Aarhus University
 Michael Swift University of Wisconsin-Madison	 Vinod Vaikuntanathan MIT						

Welcome!

