! Abstraction Refinement
I

CS 5219
Abhik Roychoudhury
National University of Singapore

€S5219 2010-11 by Abhik 1

TiMC

= Model checking is a search based procedure
applicable to only finite state systems.

= Extension to infinite state systems (arising
out of infinite data domains) handled by
abstraction of memory store.

= Requires human ingenuity in choice of the
abstract predicates.

Cs5219 2010-11 by Abhik

* Abstraction Refinement

= Given a program P and a property f, very
difficult to get the “right” abstraction which
will be able to prove f (even if f is true).

= Instead start with a very coarse abstraction
and model check the resultant abstract
model.

= Counter-example generated may not
correspond to any concrete trace of P.
= Refine the abstract model.

CS5219 2010-11 by Abhik

Software Model Checking
i without Refinement

.- User provided

Predicate store

Counter-
example

Extraction

YES,

CS5219 2010-11 by Abhik

* ... and with Refinement

In practice,

... provides preds.

Additional preds

TR

YES,

@ Proved.
€S5219 2010-11 by Abhik

Real Counter-example, ¢ disproved

4 Tofertt P
V=0, ‘
l‘g('\’<0‘) dton S

£ 4 (u<0) Harr . S !
L (w0 e ST (52

CS5219 2010-11 by Abhik

* Infeasible paths

\ o
Lo (G2 1]
"g Jo/oz G-gf;“
d/)& QZ

Cafd

€S5219 2010-11 by Abhik 7

i An example program

= L0:x=5
mll:y =X
=2

Property G (pc = L2 =y =5)

Suppose we abstract with (y = 5)

Cs5219 2010-11 by Abhik

Fragment of Concrete
Unreachable

Transition System
In actual
\ . executions

- - 45

CS5219 2010-11 by Abhik 9

i Abstract Transition System

L0:x=5

Ll:y=x

L2 if (y!=5)

Property G (pc=L2 =y =05)

Property not proved !

=(y==5
p=U) €S5219 2010-11 by Abhik

10

Abstract counter-example

= The following can be a counter-example trace
returned by model checking

= <LO,p>, <L1, p>, <L2, not p>
= But this does not correspond to any execution
of the concrete program.

= This is a spurious counter-example
= Need to input new predicates for abstraction.

€S5219 2010-11 by Abhik 11

* Abstraction refinement

= Generate the new predicates by
analyzing the counter-example trace.

= A more informative view of the
program’s memory store is thus
obtained.

= But how to establish a correspondence
between the abstract counter-example
and the concrete program ?

CS5219 2010-11 by Abhik

12

An Example

Initially x ==

LO: while (1) {

= L1: X++;

m L2: while (x > 0) x - - ;

« L3 }
Property: AG(pc==L2 =>x==1)

A locational invariant

€S5219 2010-11 by Abhik

Initial Abstraction

W.r.t. Predicate p= (x==1)

while(1)

No need to traverse further, counter-example trace found.

Cs5219 2010-11 by Abhik 14

Counter-example

Property AG (pc == L2 =>p ==true)

while(1)

The predicate p denotes (x == 1)

CS5219 2010-11 by Abhik

Counter-example verification

= The counter-example may be spurious because our
abstraction was too coarse.

= The sequence of statements in the control-flow graph
constitute an infeasible path in Control Flow Graph.

= Not part of any concrete execution trace in the program.
= How to check whether the produced counter-example
trace is spurious ?

= Backwards or forwards exact reasoning on the counter-
example trace.

= Backwards reasoning shown now, forwards reasoning later
in the lecture.

CS5219 2010-11 by Abhik 16

Exact reasoning

while(1)

(L2, x #1) « (L1, x # 0) « (LO, x # 0) « Initially (x # 0 A x = 0)
-- the constraint to hold initially is unsatisfiable.

€S5219 2010-11 by Abhik

One step of exact reasoning

L2, x #1

L1, x#0

What is the weakest constraint on data states that should hold at L1, such

that when control moves to L2 (by executing x++), the data state at L2 is
guaranteed to satisfy x =1 ?

-- Weakest pre-condition (WP) computation.
-- We repeat the WP computation until we reach the end of the trace OR
the constraint accumulated becomes unsatisfiable.

-- Corresponds to Real counter-example OR spurious counter-example.

CS5219 2010-11 by Abhik 18

ClPect conshaurd Of eoch Sickned
t f 4‘ or>Won \4} (5() X I)
2.9 o et O
P RE++ 1‘5
X = Xl
During backwards reasoning along the trace from the end of the trace

--- for every assignment X = e, replace X by e in the formula
--- for every branch with condition c, conjoin formula with c.

For assignment X = e, formula f becomes f[X—e]
For branch with condition ¢, formula f becomes f A ¢

€S5219 2010-11 by Abhik 19

So, what do we know ?

= We are verifying an invariant ¢ against an infinite
state system M.

= We abstracted (the data states of) M w.r.t. p1,...,pk
to get M1

= For every trace c1,c2,...,cn (statement sequences)
in M, there is a trace c1,c2...,cn in M1 (not vice-
versa)

= Model check M1 |= ¢ to
= Case 1: Success. We have proved M |= ¢
= Case 2: We get a counter-example trace o1

= Need to check whether o1 is “spurious”
C€S5219 2010-11 by Abhik 20

What is “spurious” ?

= Each trace in M (concrete system) has a
corresponding trace with same statement
sequence in M1 (abstract system).

= A trace in M1 may not have a corresponding
trace with same statement sequence in M.

= Does the counter-example trace o1 in M1
have a corresponding trace ¢ with same
statement sequence in M ?
= If not, then o1 is a spurious counter-example

CS5219 2010-11 by Abhik 21

What if spurious ?

= So, we discussed how to check whether an obtained
counter-example is spurious.

= If 61 is not spurious, then we have proved that M
(concrete sys.) does not satisfy ¢

= If o1 is spurious, we need to refine the abstraction of
M

= Original abs: Predicates p_1,...,p_k
= New abs: Preds p_1,...,p_k, p_(k+1),...,p_n

CS5219 2010-11 by Abhik 22

But how do we ...

= ... compute the new preds p_(k+1),...,p_n ?

= No satisfactory answer, still somewhat active topic
of research.
All existing approaches are based on analysis of
the spurious counter-example trace c1
Concretize the abstract states of 1 to get
constraints on concrete data states.
But several ways to glean the new predicates from
these constraints.

= We will just look at some possible heuristics.

€S5219 2010-11 by Abhik 23

Our example

pc=L1AXx#0
While(1){ Clearly, such states
should be
pc=L1 A x#0 unreachable in the
concrete system.
pc=L2NA x#1

CS5219 2010-11 by Abhik 24

!-’ New predicates

= Based on the spurious trace, we choose another
predicate g = (x = 0)
= No clear answer why, different research papers
give different heuristic ‘justifications’.

= Again abstract the concrete program w.r.t. the

New abstract transition
system

While(1) {

End of while loop

Ifx>0thenx--else ...

Cs5219 2010-11 by Abhik 26

predicates
sp=(x=1)
= q=(x=0)
€S5219 2010-11 by Abhik 25
Final result

= Model checking the new abstract transition system
w.r.t.

s AG(pc==L2=>x==1)

= ... yields no counter-example trace.

= Constitutes a proof of

s M|=AG(pc==L2=x==1)

= Where M is the transition system corresponding to
original program.

CS5219 2010-11 by Abhik 27

!.| Constructing Explanations

= Start from the end (or beginning of the trace)
= Strongest post condition (SP), [next slide]
= Or Weakest Pre condition (WP) [discussed]
= Perform exact reasoning at each step until
you hit unsatisfiability
= Greedily remove one constraint at a time
from the unsatisfiable constraint store until it
becomes satisfiable
= Is that sufficient ?

CS5219 2010-11 by Abhik 28

SP along a trace

= assume(b> 0) b>0

= C:=2%b b>0c=2b

= a:=b b>0c=2ba=b

= a:=a-1 b>0 ¢c=2b a=0>b-1

= assume (a < b) b>0, c =2b, a =b-1, a<b

= assume (a =c) b>0,c=2b, a=b-1, a<b,a=c

= Conjunction shown with comma.

€S5219 2010-11 by Abhik 29

!-‘ Choosing predicates
b>0,c=2b,a=0b-1, a<b, a=c
= Removing a = b-1 makes the constraint satisfiable

= Should we choose it?

= Is it sufficient to choose predicates from the formula
which makes the formula uns

= Exercise: Try to work out the backwards traversal
and investigate choices of predicates.

CS5219 2010-11 by Abhik 30

3 Choosing predicates

= a:=b; a=bh
= a:=a-1; a=b-1
= assume(a > b) a=b-1l,az2b

= If we choose a = b-1, a > b as new refinement it may
not suffice.

= The effect of a := b can only be accurately captured
by the pred (a = b)

= S0, we need all predicates whose transformation
leads to one of the predicates causing unsatisfiability.

€S5219 2010-11 by Abhik 31

:-| Exercise

= Try verifying absence of error in
sma:=b;a:=a-1;if (a=b) {error}

= Using the predicates
= {a>Db}
«{axb,a=b-1}

= Feel free to use forwards or backwards
counter-example analysis ...

Cs5219 2010-11 by Abhik 32

Additional: Dealing with pointers

= int *p, *q;
= void main(){
. if (*p == 3){

. =2 p may or may not
" if (p==2){ be aliased to q
" *p=3;
] if (*q == 2){
. ERROR
. ¥ Is the ERROR state
- } ever reachable ?
=}
=}
€S5219 2010-11 by Abhik 33

:.| Use pointer analysis

= Can p ever alias to q
= Static analysis, flow insensitive.
= If yes, then need to consider both the aliased
and non-aliased cases
= Corresponding to truth of p=qg which is
also maintained as a predicate.
= Infeasible constraint store has disjunction
sE=gNA . N)NVEE=A.LAL)

3 More details

= Computation of SP

= Forward simulation of the trace with non-
concrete input values.
= Maintain a variable valuation store as well
as constraint store
= Please check out the reading

€S5219 2010-11 by Abhik 35

CS5219 2010-11 by Abhik 34
Example
assume(b>0) b>0
c=2*b <(c,2b)> b>0
a=b <(c,2b),(a,b)> b >0
a=a-1 <(c,2b),(a,b-1)> b>0
assume(a<b) <(c,2b),(a,b-1)> b >0/ b-1<b
assume(c=a) <(c,2b),(a,b-1)> b>0 A\ b-1<b /\ 2b=b-1

CS5219 2010-11 by Abhik 36

Try it out — (1)

= Consider the program
m X=0;x=x+1;x=x+1;
n if (x> 2){ error }

= Suppose we want to prove that the ~~error” location
is never reached, that is, any trace reaching ~~error"
is a counter-example. Show that the predicate
abstraction x > 2 is insufficient to prove this
property. You need to construct the abstract
transition system for this purpose.

€S5219 2010-11 by Abhik 37

Try it out — (2)

= Refine your abstraction { x > 2 }

= by traversing the counter-example obtained.

= Show and explain all steps. Your refined abstraction
should be sufficient to prove the unreachability of the
““error" location — i.e. all spurious counter-examples
should have been explained by the refined predicate
abstraction.

Cs5219 2010-11 by Abhik 38

