
1

Abstraction Refinement

CS5219 2010-11 by Abhik 1

CS 5219
Abhik Roychoudhury

National University of Singapore

MC

Model checking is a search based procedure
applicable to only finite state systems.
Extension to infinite state systems (arising

CS5219 2010-11 by Abhik 2

g
out of infinite data domains) handled by
abstraction of memory store.
Requires human ingenuity in choice of the
abstract predicates.

Abstraction Refinement
Given a program P and a property f, very
difficult to get the “right” abstraction which
will be able to prove f (even if f is true).
Instead start with a very coarse abstraction

CS5219 2010-11 by Abhik 3

Instead start with a very coarse abstraction
and model check the resultant abstract
model.
Counter-example generated may not
correspond to any concrete trace of P.

Refine the abstract model.

Program
P

Model

Extraction

Finite state

Model M

Software Model Checking
without Refinement

User provided

Predicate store

CS5219 2010-11 by Abhik 4

Model Checker

Temporal
Property ϕ

M |= ϕ ?

YES,

Proved.

NO,

Counter-
example

Program
P

Model
Extraction Finite state

Model M

… and with Refinement

In practice,

provides preds.

Additional preds

CS5219 2010-11 by Abhik 5

Model Checker

Temporal
Property ϕ

M |= ϕ ?

YES,

ϕ Proved.

Counter-
example

Spurious, Refine

Additional preds

Real Counter-example, ϕ disproved CS5219 2010-11 by Abhik 6

2

Infeasible paths

CS5219 2010-11 by Abhik 7

An example program

L0: x = 5
L1: y = x
L2

CS5219 2010-11 by Abhik 8

L2
Property G (pc = L2 ⇒ y = 5)

Suppose we abstract with (y = 5)

L0, y = 5

x = 5
L0, y = 5, x = 4

Unreachable

In actual

executions

Fragment of Concrete
Transition System

CS5219 2010-11 by Abhik 9

L1, x = 5, y = 5 L1, x = 4, y = 5………………..

L2, x = 4, y = 4
L2, x= 5, y = 5

Abstract Transition System

L0, p L0, not p L0: x = 5
L1: y = x
L2 if (y != 5)
Property G (pc = L2 ⇒ y = 5)

CS5219 2010-11 by Abhik 10

L1, p

L2, p

L1, not p

Property not proved !L2, not p

p ≡ (y == 5)

Property G (pc = L2 ⇒ y = 5)

Abstract counter-example

The following can be a counter-example trace
returned by model checking

<L0,p>, <L1, p>, <L2, not p>

CS5219 2010-11 by Abhik 11

But this does not correspond to any execution
of the concrete program.
This is a spurious counter-example
Need to input new predicates for abstraction.

Abstraction refinement

Generate the new predicates by
analyzing the counter-example trace.
A more informative view of the

CS5219 2010-11 by Abhik 12

A more informative view of the
program’s memory store is thus
obtained.
But how to establish a correspondence
between the abstract counter-example
and the concrete program ?

3

An Example

Initially x == 0
L0: while (1) {
L1: x++;

CS5219 2010-11 by Abhik 13

L1: x++;
L2: while (x > 0) x - - ;
L3 }

Property: AG(pc == L2 ⇒ x == 1)

A locational invariant

Initial Abstraction
W.r.t. Predicate p = (x == 1)

L0, not p L1, not p
x++

x++

while(1)

CS5219 2010-11 by Abhik 14

L2, p L2, not p

x++

No need to traverse further, counter-example trace found.

Counter-example
Property AG (pc == L2 => p == true)

L0, not p L1, not p
x++

x++

while(1)

CS5219 2010-11 by Abhik 15

L2, p L2, not p

x++

The predicate p denotes (x == 1)

Counter-example verification

The counter-example may be spurious because our
abstraction was too coarse.

The sequence of statements in the control-flow graph
constitute an infeasible path in Control Flow Graph.

CS5219 2010-11 by Abhik 16

p p
Not part of any concrete execution trace in the program.

How to check whether the produced counter-example
trace is spurious ?

Backwards or forwards exact reasoning on the counter-
example trace.
Backwards reasoning shown now, forwards reasoning later
in the lecture.

Exact reasoning

L0, not p L1, not p
x++

x++

while(1)

CS5219 2010-11 by Abhik 17

L2, p L2, not p

(L2, x ≠1) ← (L1, x ≠ 0) ← (L0, x ≠ 0) ← Initially (x ≠ 0 ∧ x = 0)

-- the constraint to hold initially is unsatisfiable.

One step of exact reasoning

L2, x ≠1
x++

L1, x ≠ 0

What is the weakest constraint on data states that should hold at L1, such

CS5219 2010-11 by Abhik 18

,

that when control moves to L2 (by executing x++), the data state at L2 is
guaranteed to satisfy x ≠ 1 ?

-- Weakest pre-condition (WP) computation.

-- We repeat the WP computation until we reach the end of the trace OR

the constraint accumulated becomes unsatisfiable.

-- Corresponds to Real counter-example OR spurious counter-example.

4

CS5219 2010-11 by Abhik 19

During backwards reasoning along the trace from the end of the trace
--- for every assignment X = e, replace X by e in the formula
--- for every branch with condition c, conjoin formula with c.

For assignment X = e, formula f becomes f[X→e]
For branch with condition c, formula f becomes f ∧ c

So, what do we know ?
We are verifying an invariant ϕ against an infinite
state system M.
We abstracted (the data states of) M w.r.t. p1,…,pk
to get M1

CS5219 2010-11 by Abhik 20

For every trace c1,c2,…,cn (statement sequences)
in M, there is a trace c1,c2…,cn in M1 (not vice-
versa)

Model check M1 |= ϕ to
Case 1: Success. We have proved M |= ϕ
Case 2: We get a counter-example trace σ1

Need to check whether σ1 is “spurious”

What is “spurious” ?

Each trace in M (concrete system) has a
corresponding trace with same statement
sequence in M1 (abstract system).

CS5219 2010-11 by Abhik 21

A trace in M1 may not have a corresponding
trace with same statement sequence in M.
Does the counter-example trace σ1 in M1
have a corresponding trace σ with same
statement sequence in M ?

If not , then σ1 is a spurious counter-example

What if spurious ?
So, we discussed how to check whether an obtained
counter-example is spurious.
If σ1 is not spurious, then we have proved that M
(concrete sys) does not satisfy ϕ

CS5219 2010-11 by Abhik 22

(concrete sys.) does not satisfy ϕ
If σ1 is spurious, we need to refine the abstraction of
M

Original abs: Predicates p_1,…,p_k
New abs: Preds p_1,…,p_k, p_(k+1),…,p_n

But how do we …
… compute the new preds p_(k+1),…,p_n ?

No satisfactory answer, still somewhat active topic
of research.
All i ti h b d l i f

CS5219 2010-11 by Abhik 23

All existing approaches are based on analysis of
the spurious counter-example trace σ1
Concretize the abstract states of σ1 to get
constraints on concrete data states.
But several ways to glean the new predicates from
these constraints.

We will just look at some possible heuristics.

Our example
Pc = L0, p = falsepc = L0, p = false

While(1){

pc = L1 /\ x ≠ 0

Clearly, such states
should be

h bl i th

CS5219 2010-11 by Abhik 24

Pc = L1, p = false

Pc = L2, p =
false

pc = L1, p = false

pc = L2, p =
false

x++

pc = L2 /\ x ≠ 1

pc = L1 /\ x ≠ 0 unreachable in the
concrete system.

5

New predicates
Based on the spurious trace, we choose another
predicate q = (x = 0)

No clear answer why, different research papers
give different heuristic ‘justifications’

CS5219 2010-11 by Abhik 25

give different heuristic justifications .
Again abstract the concrete program w.r.t. the
predicates

p = (x = 1)
q = (x = 0)

New abstract transition
system

pc = L0, not p, q
pc =L1,not p, q

While(1) {

CS5219 2010-11 by Abhik 26

Pc = L2, p, not q
Pc =L3, not p, q

x++

If x > 0 then x - - else ….

p⇒ x >0

End of while loop

Final result
Model checking the new abstract transition system
w.r.t.

AG(pc == L2 ⇒ x == 1)
i ld t l t

CS5219 2010-11 by Abhik 27

… yields no counter-example trace.
Constitutes a proof of
M |= AG(pc == L2 ⇒ x == 1)
Where M is the transition system corresponding to
original program.

Constructing Explanations
Start from the end (or beginning of the trace)

Strongest post condition (SP), [next slide]
Or Weakest Pre condition (WP) [discussed]

CS5219 2010-11 by Abhik 28

Perform exact reasoning at each step until
you hit unsatisfiability
Greedily remove one constraint at a time
from the unsatisfiable constraint store until it
becomes satisfiable

Is that sufficient ?

SP along a trace
assume(b> 0) b > 0
c := 2*b b > 0, c = 2b
a := b b > 0, c = 2b, a = b

CS5219 2010-11 by Abhik 29

a := a – 1 b> 0, c = 2b, a = b-1
assume (a < b) b>0, c = 2b, a = b-1, a<b
assume (a = c) b>0, c = 2b, a = b-1, a<b, a = c

Conjunction shown with comma.

Choosing predicates
b>0, c = 2b, a = b-1, a<b, a = c

Removing a = b-1 makes the constraint satisfiable
Should we choose it?

CS5219 2010-11 by Abhik 30

Is it sufficient to choose predicates from the formula
which makes the formula uns

Exercise: Try to work out the backwards traversal
and investigate choices of predicates.

6

Choosing predicates
a := b ; a = b
a := a – 1; a = b – 1
assume(a ≥ b) a = b-1, a ≥ b

CS5219 2010-11 by Abhik 31

If we choose a = b-1, a ≥ b as new refinement it may
not suffice.
The effect of a := b can only be accurately captured
by the pred (a = b)
So, we need all predicates whose transformation
leads to one of the predicates causing unsatisfiability.

Exercise

Try verifying absence of error in
a := b; a := a - 1; if (a ≥ b) { error}

Using the predicates

CS5219 2010-11 by Abhik 32

Using the predicates
{a ≥ b}
{ a ≥ b, a = b – 1}

Feel free to use forwards or backwards
counter-example analysis …

Additional: Dealing with pointers
int *p, *q;
void main(){

if (*p == 3){
*q = 2; p may or may not

CS5219 2010-11 by Abhik 33

if (*p == 2){
*p = 3;
if (*q == 2){

ERROR
}

}
}

}

p y y
be aliased to q

Is the ERROR state
ever reachable ?

Use pointer analysis

Can p ever alias to q
Static analysis, flow insensitive.

If yes, then need to consider both the aliased

CS5219 2010-11 by Abhik 34

If yes, then need to consider both the aliased
and non-aliased cases

Corresponding to truth of p=q which is
also maintained as a predicate.
Infeasible constraint store has disjunction

(p =q /\ … /\ …) \/ (¬(p = q) /\ … /\ …)

More details

Computation of SP
Forward simulation of the trace with non-
concrete input values.p
Maintain a variable valuation store as well
as constraint store

Please check out the reading

CS5219 2010-11 by Abhik 35

Example
assume(b>0) b>0
c = 2*b <(c,2b)> b > 0
a = b <(c,2b),(a,b)> b >0
a = a -1 <(c,2b),(a,b-1)> b > 0(,),(,)
assume(a<b) <(c,2b),(a,b-1)> b > 0 /\ b-1<b
assume(c=a) <(c,2b),(a,b-1)> b>0 /\ b-1<b /\ 2b=b-1

CS5219 2010-11 by Abhik 36

7

Try it out – (1)
Consider the program
x = 0; x = x + 1; x = x + 1;
if (x > 2){ error }

CS5219 2010-11 by Abhik 37

Suppose we want to prove that the ``error'' location
is never reached, that is, any trace reaching ``error''
is a counter-example. Show that the predicate
abstraction x > 2 is insufficient to prove this
property. You need to construct the abstract
transition system for this purpose.

Try it out – (2)
Refine your abstraction { x > 2 }
by traversing the counter-example obtained.
Show and explain all steps. Your refined abstraction
h ld b ffi i t t th h bilit f th

CS5219 2010-11 by Abhik 38

should be sufficient to prove the unreachability of the
``error'' location – i.e. all spurious counter-examples
should have been explained by the refined predicate
abstraction.

