12/1/2010

Evolving Programs
Debugging of Evolving Programs
¢ Code Evolution
— Consider a banking system
 Features: Login, Logout, View Balance, ...
¢ Version 1, P1
— Customer wants new feature, produce new version P2

Abhik Roychoudhury * New feature: Funds transfer
National University of Singapore * This breaks the functionality of “View Balance”
http://www.comp.nus.edu.sg/~abhik — No longer see the latest balance correctly!

¢ Example of regression due to code evolution
— Different from “requirements evolution” — intended meaning of
“view balance” is unchanged from P1 to P2.

12/1/2010 €S5219 2010-11 by Abhik 1 12/1/2010 €S5219 2010-11 by Abhik 2

Problem Statement Change Analysis?

Search among subsets !

Test Input t

} else{ } else{
0Old Stable New Buggy y °F y
Program P Program P’
Requires defining the set of all changes.
PESS Fail Question: What if the two programs are completely
different implementations of the same protocol?
12/1/2010 CS5219 2010-11 by Abhik 3 12/1/2010 CS5219 2010-11 by Abhik 4
Trace Comparison? Adapting Trace Comparison

Test Input t

)
"~

Compare failing test with a

similar, successful test. t\.a
Requirement: How do we find

such an execution? Ro e
Question : why ignore

the evolution?

Y

New Buggy
Program P’

Old Stable
Program P

)

26
:
E L‘i

Directly Compare o and m

X

12/1/2010 €S5219 2010-11 by Abhik 5 12/1/2010 €S5219 2010-11 by Abhik 6

How to obtain the new test?

(o]} New
¢ We have: Pgm P Pgm P’

— Atest t that fails on P’ but
passeson P.
¢ Key requirement: Similarity
— Test t and t’ are similar if
they induce

* same control flow path
in P but

« different paths in P’.

‘\\fﬁ‘\\‘.

té'l

12/1/2010 €S5219 2010-11 by Abhik

How to obtain the new test?

The new test input
New

Pgm. P’

Buggy input

12/1/2010 €S5219 2010-11 by Abhik 8

— Two versions of the 5
Our Approach

program. (P and P’).
Test Input t I |

New Buggy
Program P’

|

| Path m for t Path m” for t ‘
Path conditionf\ /

" 0ld Stable
Program P

m—)

Path ofort

Path condition f

1. Solve fA—f'to get 2. Compare m and
another input t’ m’to get bug report.
12/1/2010 CS5219 2010-11 by Abhik 9

Path conditions

« Quantifier free first order logic formula
¢ Obtained from a path

— input x, y;
—if(x>1){ x>1
- if(y<20){ x>1Ay<20

¢ Conjunction of primitive constraints with program variables.
— All program variables implicitly existentially quantified.

12/1/2010 €S5219 2010-11 by Abhik 10

Exercise

¢ Given a program and an input, develop an
automated method to compute path

conditions.

—inputx, y;

—if(x> 1) x>1

- z=x+y

— if(z<20){ x>1Ax+y <20

12/1/2010 CS5219 2010-11 by Abhik 1

Generating New Input

1. Compute f, the path condition of t in P.
2. Compute f’, the path condition of tin P’.
3. Solvefor § A_f'

= Many solutions: Compare the trace of each t’in P’ with
the trace of tin P’. Return bug report from P’.

= No solution: go to next step.
4. Solvefor f'a—f

= Many solutions: Compare the trace of each t’in P with
the trace of tin P. Return bug report from P.
= No solution: Impossible, since then

fof

12/1/2010 €S5219 2010-11 by Abhik 12

12/1/2010

12/1/2010

Simple Example

int inp, outp; int inp, outp;

scanf('%d", &inp); scanf(""%d", &inp);

if (inp >=1){ if (inp >= 1){
outp = g(inp);

if Qe
¢t 1Ginp);

3
} elsed
outp | | h(inp);

}
printf("%d", outp);

¥
printf('%d"”, outp);

Explain inp == 100
R

using ?? 9

2/1/2010 €S5219 2010-11 by Abhik

int inp, outp; int inp, outp;

scanf('%d™, &inp); scanf("'%d", &inp);

if (inp >=1){ if (inp >= 1){
outp = g(inp); outp = g(inp);

it (D{ /*) {
¢ tp= L(inp); inp);
¥ }
} 3

printf("%d”, outp); printf('%d"”, outp);
Path condition f* Path condition f”
(inp >= 1)&& (inp>9) (inp >= 1)

[f A—f'=(inp > 9) & &(inp <= 1)]w [No soln. |

[f‘Aﬁf = (inp >=1) & &(inp <= Q)J STP Solver

12/1/2010 €S5219 2010-11 by Abhik

D =

1 int inp, outp; 1 int inp, outp;
2 scanf('%d", &inp); 2 scanf('%d", &inp);
3 if (inp >=1){ 3 if (inp >=1){
4 outp = inp); 4 outp = g(inp);
< 5 if 9
6 6 (tp=C (inp);
7 7
8 } else: 8 } else;
9 outp h(inp); 9 outp h(inp);
10 } 10
11 printf("%d™”, outp); 11 printf("%d"”, outp);
1
) 12345|6|7 11
Trace Alignment
12345 | 11
7
Bug Report : Line 5 if (inp >9){
12/1/2010 CS5219 2010-11 by Abhik 15

Overview of our Solution

1. Compute f, the path condition of t in P.
2. Compute f’, the path condition of tin P’.
3. Solve for fA —f".

= Many solutions: Compare the trace of each t’in P’ with
the trace of tin P’. Return bug report from P’.

= No solution: go to next step.
4. Solve for f'A—f.

= Many solutions: Compare the trace of each t’in P with
the trace of tin P. Return bug report from P.

= No solution: Impossible, since then (f< f')

12/1/2010 €S5219 2010-11 by Abhik 16

Choosing Alternative Inputs
Solve f A—f"

f'=(y Ay, nny,)

Check for satisfiability of
f AT l//l

fryin—y,
f Ay Ay, A=y,

At most m alternate inputs !!

2/1/2010 C€S5219 2010-11 by Abhik 17

Bug report for one alternate input

thew = iNPUt Obtained by solving
FAayiny, nmys

= Bug report by comparing traces of t;,q
andt,, should be the branch b3 !!

2 _
At most m alternate inputs =
at most m lines in bug report.

Comparing traces with deviation in one
branch — simple trace comparison, or even
trace comparison altogether

12/1/2010 €S5219 2010-11 by Abhik 18

Putting Everything Together

Old Stable New Buggy
Program P Program P’

STP Solver Satisfiable sub-

and input Concrete and
validation Symbolic Execution

formulae from
fA-f

\f:Path condition |f:Path condition
oftinP of tin P’

o

€S5219 2010-11 by Abhik 19

12/1/2010

Results

LiIbPNG v1.0.7 LibPNG 13m34s 9
(31164 loc) v1i.2.21

(36776 loc)
TCPflow TCPflow 31m 6
(patched) (unpatched)
Miniweb Apache 14s 5
(2838 loc) (358379 loc)
Savant Apache httpd ~ 9m 46

(8730 loc) (358379 loc)

If we require the alternative input to behave the same in buggy progra
and reference program (passing test) -

the bug report size is 1 in all three cases.

12/1/2010 €S5219 2010-11 by Abhik 20

Can find other potential bugs

ﬁbPNG v1.0.7 length = \
png_get_uint_32(chunk_length);

LibPNG v1.2.21 length =
png_get_uint_31(chunk_length);

png_get_uint_31(png_structp png_ptr,
t png_bytep buf)
{
png_uint_32 i = png_get_uint_32(buf);
if (i > PNG_UINT_31_MAX)
png_error(png_ptr, "PNG unsigned integer
out of range.™);

return (i);
< tuug k j

12/1/2010 €S5219 2010-11 by Abhik 21

Summary so far

= Novel approach for debugging evolving programs
o Semantic analysis to generate alternative similar inputs
o Can be applied to two totally different implementations.
= Implementation and Evaluation
= DARWIN tool : built on BitBlaze platform.
= Accurate bug reports for various real-life examples.

= Extensions

= Found new bugs via debugging of a given observable error
= More detailed path conditions via pred. instrumentation.

12/1/2010 €S5219 2010-11 by Abhik 22

An experiment

Validate Embedded Linux

AGAINST

Linux (GNU Core-utils, net —tools)

Busybox distribution is 121 KLOC.
Various errors to be root-caused in tr, arp, top, printf.
12/1/2010 €S5219 2010-11 by Abhik 23

Trying on Embedded Linux

¢ The concept
— Golden: GNU Coreutils, net-tools
— Buggy: Busybox
* De-facto distribution for embedded devices.
* Aims for low code size
* Less checks and more errors.
— Try DARWIN!
¢ The practice
— Failing input takes logically equivalent paths in
Busybox and Core-utils.

12/1/2010 €S5219 2010-11 by Abhik 24

Going beyond

input x; input x;
y=2%x y=2*+1; /lbug
outputy output y

Observable error: Input x == 0, Expected output y ==
Observed outputy == 1

Employ DARWIN:

In program P, path condition f == true
path condition f' == true

fa-f ==false also fA—f==false.

No Bug report generated !!

12/1/2010 €S5219 2010-11 by Abhik 25

12/1/2010

What went wrong?

¢ The effect of the bug is not observable in
terms of change in program paths.

input x; input x;
y=2%x y =2*+1; [/ bug

output y output y

¢ Reasoning with path conditions does not
expose the bug location either!

12/1/2010 €S5219 2010-11 by Abhik

A more direct approach

input x; input x;
y=2%x y =2*+1; //bug

output y outputy

¢ Characterize observable error (obs)

-y!=0

* Weakest pre-condition along failing path w.r.t. obs
— 2%x1=0
- 2*xX+1!=0

» Compare the WPs and find differing constraints.
* Map differing constraints to the lines contributing them.

12/1/2010 55219 2010-11 by Abhik 27

Weakest pre-condition

Along a program path.

input x, y;

X=X+1; z-1<0 A X+1+y>0

if (x+y>0) z-1<0A x+y>0

z=z-1; z-1<0

}

print z; z<0
z<0

12/1/2010 CS5219 2010-11 by Abhik 28

WP along a path

¢ Along a path
— Start with a primitive constraint

* You are seeking to explain under what situations it will
hold at the end of the program path.

— Proceed along the path from the end.
* For every branch, conjoin the branch condition.

* For every assignment, replace occurrences of the lhs by
rhs in the existing formula.

— Stop when you reach the beginning of the path.
¢ What kind of a constraint will you end up with?

2/1/2010 C€S5219 2010-11 by Abhik 29

Entire failing trace is not needed

1. .../l input inpl, inp2

2. if (inp1 > 0)

3. x=fl(inpl); // bug

4. else x = g1(inpl);

5. if (inp2 > 0)

6. y=1f2(inp2)

7. else y = g2(inp2);

8..../outputx,y observe unexpected x < 0 for inpl == inp2 == 1

Observable error: x<0 at line 8.
WP along the trace of inpl ==inp2 == 1 gives us
inp2>0 A inpl>0 Afl(inpl) <0
Points to lines { 2, 3,5}
Line 5 is clearly not relevant since inp2 does not contribute to computing x.

12/1/2010 €S5219 2010-11 by Abhik 30

What is the issue?

* Inherent parallelism exists in sequential programs
— inp1 helps compute x
— inp2 helps compute y
» Exploit the inherent parallelism to project the “relevant”
part of the trace.
— Dynamic slicing (from last lecture!)

— Symbolic execution (WP computation) along the
dynamic slice only.

» Crucial for scalability of our method!

2/1/2010 €S5219 2010-11 by Abhik

12/1/2010

Approach 2 —in action (simplified)
ﬁ...ilinp}inpl, inp2

2. if (inpl > 0) f1(inp1) < 0 A inp1 > 0 (control dep.)

fl(inpl)< 0 Ainpl>0

3. x=fi(inp1); /I bug fi(inpl) <0 (data dep.)

6. y=1f2(ing2)

Q /loutput x, y observe unexpected x < 0 for inpl == inp2 ::y

12/1/2010 €S5219 2010-11 by Abhik 32

Approach 2 - summary

* Set observable error: x<0
¢ Set slicing criterion: value of x at line 8
¢ Simultaneously perform
— Dynamic slicing — Control and Data dependencies

— Symbolic execution — along the slice
* WP computation along the slice

e The above is performed on both P, P’
— Produces WP, WP’ — conjunction of constraints
— Find differing constraints in WP, WP’

— Map differing constraints to contributing LOC — this is
the bug-report.

12/1/2010 €S5219 2010-11 by Abhik

Comparing WP, WP’

* WP = (0;AQA ... AQ,)
e WP’ = (0" 1A Q'3 A A)
e Check
-WP=¢'; ..
-WP'= 0o, ..
— Solver may choke!
¢ Instead, we can perform pair-wise comparison
— Too costly ??

Comparing WP, WP’

© WP = (Q;AQ,A ... AQ,)

o WP = (@ 1A @5 A ng')

¢ Pair-wise comparison of constraints can blow-up.
* Tautology elimination — more than 90% reduction!

WP computation along slice:
X=1 1>0AY <0 //due to assignment of X

if (X>0){ X>0 AY <0 //due to the branch

printf(“%d”, Y); Y <0 //the constraint we start with

2/1/2010 C€S5219 2010-11 by Abhik

12/1/2010 Css2

So, what do we do then?

¢ WP = Conjunction of n constraints

— Remove tautologies
— WP = (@;AQA ... AQ,) Xx<n

¢ WP’ =conjunction of m constraints

— Remove tautologies
= WP =(¢";A@"A . AQ)) y<m

* For each ¢’ checkiif thereis a ¢, s.t. ¢; = ¢
* For each @; checkif there is a ¢’; s.t. ¢"; = o

A glimpse inside the ARP bug

Shaws all comput

GNU Coreutils

Crash identified as NULL pointer access at crash site

hw_type unexpectedly set as NULL at crash site

12/1/2010 CS5219 2010-11 by Abhik

12/1/2010

Approach 2 in action

Trace Collection with —Ainet for
buggy and stable ARP

Identify variable responsible for
crash and map it to stable ARP

name != NULL P
WP on net-tools
trace along slice

Map back to source to
Generate bug report EB

12/1/2010 CS52

WP comparison

name == NULL

WP on busyBox
trace along slice

9 2010-11 by Abhik 38

Summarizing

¢ Debugging evolving programs (code evolution)
— Program Versions
— Embedded SW against non-embedded version

— Two implementations of same specification
* Web-servers implementing http protocol

¢ Use of formal techniques into debugging
— Beyond a “black art”.

12/1/2010 €S5219 2010-11 by Abhik 39

For more ...

[FSE09] DARWIN: An Approach for Debugging Evolving Programs Dawei Qj,
Abhik Roychoudhury, Zhenkai Liang, Kapil Vaswani, ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), ESEC-FSE

— http://www.comp.nus.edu.sg/~abhik/pdf/fse09.pdf

Also see:

Yesterday my program worked. Today it does not. Why?
Andreas Zeller, [ESEC-FSE 1999].

[FSE10] Golden Implementation Driven Software Debugging Ansuman
Banerjee, Abhik Roychoudhury, Johannes A. Harlie, Zhenkai Liang, ACM
SIGSOFT Symposium on Foundations of Software Engineering (FSE) 2010.

— http://www.comp.nus.edu.sg/~abhik/pdf/fse10.pdf

12/1/2010 €S5219 2010-11 by Abhik

