

Recap on Model Checking

- Inputs:
- A finite state transition system M
- A "temporal" property φ
- Check M|= φ
- Output
- True if M |= φ
- Counter-example evidence, otherwise

More on the big picture

- Explaining counter-example
- Counter-example points to an actual violation of property φ in program.
- How to locate the bug from the counterexample - SW Engineering activity
- It was introduced owing to the abstractions
- Refine the abstraction and run model checking on the model derived by refined abstraction
- Abstract \rightarrow Model Check \rightarrow Refine loop.

The approach (1)

- Reasoning techniques over finite-state models well-understood.
- Search based procedures (Model Checking)
- Need to generate models from code
- Typically finitely many control locations
- Infinitely many data states (memory store)
- How to abstract the memory store ?
- This can give a finite state model

Model Generation Projects

- Source Language \rightarrow Modeling Language
- E.g. C \rightarrow PROMELA (FeaVer tool)
- \quad C \rightarrow Boolean Pgm (SLAM toolkit)
- Various choices in Bandera toolkit
- In this lecture, we consider a
- source language with sequential programs
- Properties are locational invariants - $A G((p c=34) \Rightarrow(v=0))$

Predicate Abs. (once more)

- Input :
- A C program P1
- A set of predicates containing vars of P1
- Output
- A boolean program P2
- Only data type of P2 is "boolean"
- P2 contains more execution paths than P1 i.e.
- All paths of P1 are captured in P2, not vice-versa
- P2 is being used for invariant verification of P1.

The Language of Predicates

- Boolean expressions containing program variables,
- No function calls
- Pointer referencing is allowed
- P \rightarrow val > Var
- Of course Bool. Exp contains
- $B=B \wedge B|B \vee B| \neg B \mid A$ Relop A
- $A=A+A|A-A| A * A|A / A| \operatorname{Var} \mid$ Int
- Relop $=<|>|\leq|\geq|\neq|=$

Simple Examples

- Source Code - Var := 0	- Abstracted Code - [Var = 0] := true - [Var = 1] := false
- Var := Var1	- [Var = 0]:= unknown - (no preds. about Var1) - OR- - [Var= 0] := [Var1= 0] - (Var1=0 is another pred)
	$0-11$ by Abhik

Control constructs

- Abstraction scheme will be developed for - Within a procedure
- Assignments
- Branches
- All other constructs can be represented by these
- Across procedures
- Formal and actual parameters
- Local variables
- Return variables

Assignments

- Predicate abstraction of pgm. P w.r.t.
$\left\{b_{1}, \ldots, b_{k}\right\}$
- Effect of $X:=e$ on b_{1}, \ldots, b_{k}
- Variable b_{i} denotes expression φ_{i}
- If $\varphi_{i}[\mathrm{x} \rightarrow \mathrm{e}]$ holds before $\mathrm{X}:=\mathrm{e}$ then set - $b_{i}:=$ true
- If $\neg \varphi_{i}[\mathrm{X} \rightarrow \mathrm{e}]$ holds before $\mathrm{X}:=\mathrm{e}$ then set - b_{i} := false

Simple Ex. of Assignments

- $b 1 \equiv X>2 \quad b 2 \equiv Y>2$
- Assignment $X:=Y$
- Transform it to
- b1 := b2
- $\mathrm{b} 1 \equiv \mathrm{X}>2 \mathrm{~b} 2 \equiv \mathrm{Y}>2 \mathrm{~b} 3 \equiv \mathrm{X}<3 \mathrm{~b} 4 \equiv \mathrm{Y}<3$
- Transform $\mathrm{X}:=\mathrm{Y}$ to the parallel assignment
- b1, b3 := b2, b4

Assignments - (2)

- But $\varphi_{i}[\mathrm{x} \rightarrow \mathrm{e}]$ may not be representable as a boolean formula over b_{1}, \ldots, b_{k}
- Examples:
- Predicates: $\mathrm{X}<5, \mathrm{X}=2$
- Assignment stmt: $X:=X+1$
- $\mathrm{X}<5[\mathrm{X} \rightarrow \mathrm{X}+1]$ equivalent to $\mathrm{X}+1<5$ equivalent to $X<4$
- $X=2[X \rightarrow X+1]$ equivalent to $X+1=2$ equivalent to $X=1$

Assignments - (3)

- Define predicate b1 as $\mathrm{X}<5$
- b2 as $\mathrm{X}=2$
- What is the weakest formula over b1 and b2 which implies $\mathrm{X}<4$?
- If this formula is true, we can conclude
- $X<4$ before $X:=X+1$ is executed
- $X<5$ after $X:=X+1$ is executed
- b1 = true after $\mathrm{X}:=\mathrm{X}+1$ is executed

Assignments - Summary

- Find the weakest formula over b1,...,bk which implies $\varphi_{i}[X \rightarrow e]$ and check whether it is true before $X:=e$
- If yes, set $b_{i}=$ true as an effect of $X:=e$ in the abstracted program
- Set $b_{i}=$ false in the abstracted pgm if the weakest formula over b1,...,bk which implies $\neg \varphi_{i}[\mathrm{X} \rightarrow \mathrm{e}]$ holds
- If none of this is possible, $b_{i}=$ unknown

Assignments - Summary

- Predicates: $\left\{b_{1}, \ldots, b_{k}\right\}$
- Predicate b_{i} represents expression φ_{i}
- $\mathrm{X}:=\mathrm{e}$ is an assignment statement in the pgm. being abstracted.
- We can conclude $b_{i}=$ true after $X:=e$ iff $\varphi_{i}[X \rightarrow e]$ before $X:=e$ is executed.

Assignments - Example

- Predicates: b1 is $\mathrm{X}<5, \mathrm{~b} 2$ is $\mathrm{X}=2$
- Assignment: $X:=X+1$
- Weakest pre-condition for b1 to hold, denoted as WP(X:=X+1, b1)
- $\mathrm{X}<4$
- Weakest formula over $\{\mathrm{b} 1, \mathrm{~b} 2\}$ to imply $\mathrm{WP}(\mathrm{X}:=$
$\mathrm{X}+1, \mathrm{~b} 1)$, denoted as $\mathrm{F}(\mathrm{WP}(\mathrm{X}:=\mathrm{X}+1)$, b1))
- $X=2$, that is, the formula b2

Exercise

- $\mathrm{b} 1 \equiv \mathrm{X}<5, \mathrm{~b} 2 \equiv \mathrm{X}=2$
- Assignment in the program
- $\mathrm{X}:=\mathrm{X}+1$
- What will it be substituted with in our "boolean" program?
- Let us do it now

Aliasing via pointers

- To compute the effect of $X:=3$ on b1
- We compute $\mathrm{F}(\mathrm{WP}(\mathrm{X}:=3, \mathrm{~b} 1))$
- Suppose b1 is $* p>5, p$ is a pointer
- Effect of $X:=3$ depends on whether
- X and p are aliases
- Use a "points-to" analysis to determine this.
- Typically flow insensitive
- Aliasing analysis sharpens information about program states and hence the abstraction.

Effect of aliasing

- WP($X:=3, * p>5)$ is
- $(\& x=p \wedge 3>5) \vee(\& x \neq p \wedge * p>5)$
- Thus, $\operatorname{WP}(X:=e, \varphi(Y))$ is
- $(\& X=\& Y \wedge \varphi[Y \rightarrow e]) \vee(\& X \neq \& Y \wedge \varphi(Y)$
- If X and Y are aliases replace Y by e in φ
- Otherwise, the assignment has no effect
- If φ refers to several locations, each of them may/may not alias to X.

Another exponential blowup

- If φ refers to k locations
- Each may/not alias to X
- 2^k possibilities
- WP is a disjunction of $2 \wedge k$ minterms
- In practice, accurate static not-points-to analysis is feasible
- Removes conjuncts corresponding to confirmed non-aliases (in any control loc.)

Control constructs

- Abstraction scheme will be developed for
- Within a procedure
- Assignments
- Branches
- All other constructs can be represented by these
- Across procedures
- Formal and actual parameters
- Local variables
- Return variables

Control branches

- So far, considered straight-line code.
- Consider the effect of conditional branch instructions as in if-then-else statements.
- Loops are conditional branch instructions with one branch executing a goto.
- Sufficient to consider
- Abstract(If (c) \{S1\} else \{S2\})

Abstracting Branches

- Abstract(If (c) \{S1\} else $\{\mathrm{S} 2\}$) is
- If (*) \{ assume G(c); Abstract(S1) \}
- else \{ assume G($\neg \mathrm{c}$); Abstract(S2)\}
- Predicates: b_{1}, \ldots, b_{k}
- $\mathrm{G}(\mathrm{c})$ is the strongest formula over b_{1}, \ldots, b_{k} which is implied by c
- Formal definition in next slide.

Abstracting Branches

- $\mathrm{G}(\mathrm{c})=\neg \mathrm{F}(\neg \mathrm{c})$
- Dual of the F operator studied earlier
- CAUTION: G and F operators of this lecture different from temporal ops
- Exercise: Why choose the G operator for abstracting branches, why not F ?

Questions

- Abstract(if (c) \{S1\} else \{S2\})
- 介iل
- If G(c) \{ Abstract(S1) \} else \{Abstract(S2)\}
- Was the assume statement necessary Does the assume statement introduce new paths ?

Abstracting Branches-
Example

- If (*p <= x) $\left\{{ }^{*} \mathrm{p}:=\mathrm{x}\right\}$ else $\{* \mathrm{p}:=$ *p + x\}
- Predicates
- b1 is *p $<=0$
- b 2 is $\mathrm{x}=0$
- $\mathrm{G}(* \mathrm{p}<=\mathrm{x})=\neg \mathrm{F}\left({ }^{*} \mathrm{p}>\mathrm{x}\right)$
- To compute $F(* p>x)$ consider all minterms of b1 and b2

Abstracting Branches-
 Example

- Minterms of b1, b2
- $\neg \mathrm{b} 1 \wedge \neg \mathrm{~b} 2$ is $* p>0 \wedge x \neq 0$
- b1 $\wedge \neg \mathrm{b} 2$ is $* p<=0 \wedge x \neq 0$
- $\neg \mathrm{b} 1 \wedge \mathrm{~b} 2$ is $* \mathrm{p}>0 \wedge \mathrm{x}=0$
- b1 $\wedge b 2$ is ${ }^{p}<=0 \wedge x=0$
- $F(* p>x)=\neg b 1 \wedge b 2$
- \&x and p are considered to be non-aliases

Inter-procedural Abstraction

- One-to-one mapping of procedure
- Each proc. to an abstract one
- No inlining introduced by abstraction.
- Given predicates: b1,...,bk
- Each pred. is marked global (refers to global vars.) or local to a specific procedure.
- Does not allow capturing relationships of variables across procedures. Will Revisit this!

Parameters, Local Vars

- Formal parameters of R1
- All predicates in E_{R} which do not refer to local variables of R
- All other preds. in E_{R} are local vars. of R1.
- Natural notion of input context for R1.
- Example:
- Concrete Parameters: q, y
- Abstract Parameters: $\mathrm{y}>=0, * \mathrm{q}<=\mathrm{y}$

Return Variables

- Natural notion of output context for R1. Pass information to callers about
- Return value of R
- Global Vars
- Call-by-reference parameters ...
- Info. about return value captured by those preds in E_{R} which refer to return var. of R, but no other local variable (return var. can be a local var.)

Control constructs

- Abstraction scheme will be developed for
- Within a procedure
- Assignments
- Branches
- All other constructs can be represented by these
- Across procedures
- Formal parameter, Local variables, Return variables
- Procedure calls and returns

Procedure Calls

- So far, abstraction of a single procedure
- Assignments (with aliasing)
- Branches (if-then-else, loops)
- Formal Parameters
- Local and global variables
- Return variables
- Use input/output contexts in procedure call/return in inter-procedural abstraction.

Passing Parameters

- Take any formal parameter predicate b of R1 Void main()

Passing Parameters

- Replace formals by actuals in b .
- $\mathrm{y}>=0$ is a formal parameter pred.
- After replacement, it becomes $x>=0$
- If $\mathrm{F}(\mathrm{b}[$ formals \rightarrow actuals) $)$ holds during procedure invocation of the boolean pgm, then pass true to the parameter b
- If $\mathrm{F}(\neg \mathrm{b}[$ formals \rightarrow actuals) $)$ holds, then pass false to parameter b
- Otherwise, pass unknown.

Exercise

- Work out the boolean expressions passed to the two parameters of procedure in our example shown before
- Use the definition of the F operator given earlier and the abst. predicates given.

Procedure Returns

- If procedure S calls procedure R, and - S1/R1 are abstractions of S/R - b1,...,bj are abstract ret. Vars of R1
- Then S1 has j corresponding local boolean vars. which will be updated by call to R1.
- Do the local preds. in S need to be updated? YES

Procedure returns

- These local preds. of S can refer to
- Concrete Return var. for R
- Global Vars (along with other local vars)
- For each such pred b, again compute $F(b)$ and $F(\neg b)$ to decide the value of b.
- The function F is computed w.r.t
- Set of abstraction preds (under the carpet ©

Reading(s)

- Automatic Predicate Abstraction of C Programs
- Ball, Majumdar, Millstein, Rajamani
- PLDI 2001.
- Also useful: Polymorphic Predicate Abstraction
- MSR Tech Rep. by same set of authors.

Reading Exercise

- Currently, the predicates used for abstraction can only contain program variables. Is this a restriction ?
- What about values returned by procedures and/or passed by parameters ?
- Can we track such values by introducing new names ? We can have preds like

$$
\text { - Ret_value_of_v = Passed_value_of_v + } 1
$$

