
1

Software Abstractions

CS 5219 2010-11 by Abhik 1

Abhik Roychoudhury
CS 5219

National University of Singapore

CodeTests Coverage

Testing

Programmer

No model may be available

CS 5219 2010-11 by Abhik 2

Testing

Debug
Abstract model

(Boolean pgm.)

Desirable
properties

Verify

Today’s
lecture

Recap on Model Checking

Inputs:
A finite state transition system M
A “temporal” property ϕ

CS 5219 2010-11 by Abhik 3

A temporal property ϕ

Check M |= ϕ
Output

True if M |= ϕ
Counter-example evidence, otherwise

Model Checking for SW Verif.
The steps:

Generate transition system-like models
from code

CS 5219 2010-11 by Abhik 4

Typically involves at least data abstractions

Exhaustive search through the model
For time/space efficiency, the model may not
be explicitly represented and searched.

Explaining counter-examples

More on the big picture

Explaining counter-example
Counter-example points to an actual
violation of property ϕ in program.

CS 5219 2010-11 by Abhik 5

p p y ϕ p g
How to locate the bug from the counter-
example – SW Engineering activity

It was introduced owing to the abstractions
Refine the abstraction and run model checking
on the model derived by refined abstraction
Abstract → Model Check →Refine loop.

Abst -> MC -> Refine

Program
P

Model
Extraction Finite state

Model M

Temporal

In practice,

provides preds.

Additional preds

CS 5219 2010-11 by Abhik 6

Model Checker

Temporal
Property ϕ

M |= ϕ ?

YES,

ϕ Proved.

Counter-
example

Spurious, Refine

Real Counter-example, ϕ disproved

2

The approach (1)

Reasoning techniques over finite-state
models well-understood.

Search based procedures (Model Checking)

CS 5219 2010-11 by Abhik 7

Search based procedures (Model Checking)

Need to generate models from code
Typically finitely many control locations
Infinitely many data states (memory store)

How to abstract the memory store ?
This can give a finite state model

The approach (2)
Boolean abstraction used on memory store

State of memory captured by finitely many
boolean variables which answer queries about its
contents

CS 5219 2010-11 by Abhik 8

Check all possible behaviors of a program
Translate program to a finite state model and
employ model checking (this lecture)
OR Modify the state space search algorithm in
model checking to directly verify programs

e.g. Verisoft checker from Bell Labs (not
covered in this course)

Model Generation Projects

Source Language → Modeling Language
E.g. C → PROMELA (FeaVer tool)

C → Boolean Pgm (SLAM toolkit)

CS 5219 2010-11 by Abhik 9

C → Boolean Pgm (SLAM toolkit)
Various choices in Bandera toolkit

In this lecture, we consider a
source language with sequential programs
Properties are locational invariants

AG((pc = 34) ⇒ (v = 0))

Predicate Abstraction

Input
Source Program P
SP Set of Predicates about variables in P

CS 5219 2010-11 by Abhik 10

SP, Set of Predicates about variables in P

Output
Abstracted program P1
Data states in P1 correspond to valuations
of predicates in SP

Predicate Abs. (once more)

Input :
A C program P1
A set of predicates containing vars of P1

CS 5219 2010-11 by Abhik 11

Output
A boolean program P2

Only data type of P2 is “boolean”
P2 contains more execution paths than P1 i.e.

All paths of P1 are captured in P2, not vice-versa
P2 is being used for invariant verification of P1.

The Language of Predicates
Boolean expressions containing program variables,

No function calls
Pointer referencing is allowed

CS 5219 2010-11 by Abhik 12

P→val > Var
Of course Bool. Exp contains

B = B ∧ B | B ∨ B | ¬ B | A Relop A
A = A + A | A – A | A*A | A/A | Var | Int
Relop = < | > | ≤ | ≥ | ≠ | =

3

Simple Examples

Source Code
Var := 0

Abstracted Code
[Var = 0] := true
[Var = 1] := false

CS 5219 2010-11 by Abhik 13

Var := Var1
[Var = 0] := unknown
(no preds. about Var1)
OR-
[Var= 0] := [Var1= 0]
(Var1=0 is another
pred)

Control constructs

Abstraction scheme will be developed for
Within a procedure

Assignments
B h

CS 5219 2010-11 by Abhik 14

Branches
All other constructs can be represented by these

Across procedures
Formal and actual parameters
Local variables
Return variables

Assignments to predicates
We are converting a C program to a
“boolean” program where the only type is
boolean.

The boolean program will not be executed

CS 5219 2010-11 by Abhik 15

The boolean program will not be executed.

Assignment to our predicate variables
can assign

true / false / unknown
If “unknown” is assigned, both possibilities should
be explored during model checking

Assignments

Predicate abstraction of pgm. P w.r.t.
{ b1,…,bk }
Effect of X := e on b1,…,bk

CS 5219 2010-11 by Abhik 16

1 k

Variable bi denotes expression ϕi

If ϕi[x →e] holds before X := e then set
bi := true

If ¬ϕi[x →e] holds before X := e then set
bi := false

Simple Ex. of Assignments
b1 ≡ X > 2 b2 ≡ Y > 2
Assignment X := Y
Transform it to

CS 5219 2010-11 by Abhik 17

b1 := b2

b1 ≡ X > 2 b2 ≡ Y > 2 b3 ≡ X < 3 b4 ≡ Y < 3
Transform X := Y to the parallel assignment

b1, b3 := b2, b4

Assignments – (2)

 But ϕi[x →e] may not be representable
as a boolean formula over b1,…,bk

Examples:

CS 5219 2010-11 by Abhik 18

p
Predicates: X < 5, X = 2
Assignment stmt: X := X + 1
X < 5 [X →X+1] equivalent to X +1 < 5
equivalent to X < 4
X = 2 [X →X+1] equivalent to X + 1 = 2
equivalent to X = 1

4

Assignments – (3)

Define predicate b1 as X < 5
b2 as X = 2

What is the weakest formula over b1

CS 5219 2010-11 by Abhik 19

What is the weakest formula over b1
and b2 which implies X < 4 ?
If this formula is true, we can conclude

X < 4 before X := X +1 is executed
X < 5 after X := X + 1 is executed
b1 = true after X := X + 1 is executed

Assignments - Summary

Predicates: {b1,…,bk}
Predicate bi represents expression ϕi

X : e is an assignment statement in

CS 5219 2010-11 by Abhik 20

X := e is an assignment statement in
the pgm. being abstracted.
We can conclude bi = true after X := e
iff ϕi[X →e] before X :=e is executed.

Assignments - Summary
Find the weakest formula over b1,…,bk which implies
ϕi[X →e] and check whether it is true before X := e
If yes, set bi = true as an effect of X := e in the
abstracted program

CS 5219 2010-11 by Abhik 21

abstracted program
Set bi = false in the abstracted pgm if the weakest
formula over b1,…,bk which implies ¬ϕi[X →e]
holds
If none of this is possible, bi = unknown

Assignments - Example
Predicates: b1 is X < 5, b2 is X =2
Assignment: X := X + 1
Weakest pre-condition for b1 to hold, denoted as
WP(X X+1 b1)

CS 5219 2010-11 by Abhik 22

WP(X:= X+1, b1)
X < 4

Weakest formula over {b1, b2} to imply WP(X:=
X+1, b1), denoted as F(WP(X := X +1), b1))

X = 2, that is, the formula b2

Assignments Example

Predicates: b1 is X < 5, b2 is X =2
WP(X:= X+1, ¬b1) equivalent to X + 1
≥ 5 equivalent to X ≥ 4

CS 5219 2010-11 by Abhik 23

≥ 5 equivalent to X ≥ 4
F(WP(X:= X+1, ¬b1)) = F(X ≥ 4) is

X ≥ 5, that is, the formula ¬b1 itself

Computation of the F function is in
general exponential, Why ??

Computation of F(ϕ)

Consider all minterms of b1,…,bk
¬b1 ∧ ¬b2
¬b1 ∧ b2

CS 5219 2010-11 by Abhik 24

¬b1 ∧ b2
b1 ∧ ¬b2
b1 ∧ b2

Which of them imply ϕ ?
Take the disjunction of all such minterms and
simplify. Improvements to this algo. possible.

5

Exercise

b1 ≡ X < 5 , b2 ≡ X = 2
Assignment in the program

X := X + 1

CS 5219 2010-11 by Abhik 25

X := X + 1

What will it be substituted with in our
“boolean” program ?

Let us do it now

Aliasing via pointers
To compute the effect of X := 3 on b1

We compute F(WP(X := 3, b1))
Suppose b1 is *p > 5, p is a pointer

CS 5219 2010-11 by Abhik 26

Effect of X := 3 depends on whether
X and p are aliases
Use a “points-to” analysis to determine this.

Typically flow insensitive

Aliasing analysis sharpens information about
program states and hence the abstraction.

Effect of aliasing

WP(X := 3, *p > 5) is
(&x = p ∧ 3 > 5) ∨ (&x ≠ p ∧ *p > 5)

Thus WP(X := e ϕ(Y)) is

CS 5219 2010-11 by Abhik 27

Thus, WP(X := e, ϕ(Y)) is
(&X = &Y ∧ ϕ[Y→e]) ∨ (&x ≠ & Y ∧ ϕ(Y)
If X and Y are aliases replace Y by e in ϕ
Otherwise, the assignment has no effect

If ϕ refers to several locations, each of
them may/may not alias to X.

Another exponential blowup

If ϕ refers to k locations
Each may/not alias to X
2^k possibilities

CS 5219 2010-11 by Abhik 28

2 k possibilities
WP is a disjunction of 2^k minterms

In practice, accurate static not-points-to
analysis is feasible

Removes conjuncts corresponding to
confirmed non-aliases (in any control loc.)

Control constructs

Abstraction scheme will be developed for
Within a procedure

Assignments
B h

CS 5219 2010-11 by Abhik 29

Branches
All other constructs can be represented by these

Across procedures
Formal and actual parameters
Local variables
Return variables

Control branches
So far, considered straight-line code.
Consider the effect of conditional branch instructions
as in if-then-else statements.
L diti l b h i t ti ith

CS 5219 2010-11 by Abhik 30

Loops are conditional branch instructions with one
branch executing a goto.
Sufficient to consider

Abstract(If (c) {S1} else {S2})

6

Control Branches

If (c) {S1} else {S2}
⇑⇓

If (*) { assume (c) ; S1 } else

Different from the

assert statement

CS 5219 2010-11 by Abhik 31

If (*) { assume (c) ; S1 } else
{ assume (¬c); S2 }

(*) denotes non-deterministic choice
assume(ϕ) terminates exec. if ϕ is false

Otherwise, the statement has no effect.

Abstracting Branches

Abstract(If (c) {S1} else {S2}) is
If (*) { assume G(c); Abstract(S1) }
else { assume G(¬c); Abstract(S2)}

CS 5219 2010-11 by Abhik 32

else { assume G(¬c); Abstract(S2)}

Predicates: b1,…,bk

G(c) is the strongest formula over
b1,…,bk which is implied by c

Formal definition in next slide.

Abstracting Branches

G(c) = ¬ F (¬ c)
Dual of the F operator studied earlier

CAUTION: G and F operators of this

CS 5219 2010-11 by Abhik 33

CAUTION: G and F operators of this
lecture different from temporal ops

Exercise: Why choose the G operator
for abstracting branches, why not F ?

Questions

Abstract(if (c) {S1} else {S2})
⇑⇓

If G(c) { Abstract(S1)} else

CS 5219 2010-11 by Abhik 34

If G(c) { Abstract(S1)} else
{Abstract(S2)}

Was the assume statement necessary
Does the assume statement introduce
new paths ?

Abstracting Branches-
Example

If (*p <= x) {*p := x} else {*p := *p +
x}
Predicates

CS 5219 2010-11 by Abhik 35

Predicates
b1 is *p <= 0
b2 is x = 0

G(*p <= x) = ¬ F (*p > x)
To compute F (*p > x) consider all
minterms of b1 and b2

Abstracting Branches-
Example

Minterms of b1, b2
¬b1 ∧ ¬b2 is *p > 0 ∧ x ≠ 0
b1 ∧ ¬b2 is *p <= 0 ∧ x ≠ 0

CS 5219 2010-11 by Abhik 36

b1 ∧ ¬b2 is p <= 0 ∧ x ≠ 0
¬b1 ∧ b2 is *p >0 ∧ x = 0
b1 ∧ b2 is *p <= 0 ∧ x = 0

F(*p > x) = ¬b1 ∧ b2
&x and p are considered to be non-aliases

7

Abstracting Branches-
Example

G(*p <= x) = ¬ F(*p > x)= ¬(b2∧¬b1)
= ¬b2 \/ b1 = b2 ⇒ b1
= (x = 0) ⇒ (*p <= 0)

CS 5219 2010-11 by Abhik 37

 (x 0) ⇒ (p 0)
Similarly compute G(¬(*p <= x))
Abstracted template

If (*) { assume (x = 0 ⇒ (*p <= 0)) ; …
}
else { assume (x=0 ⇒ ¬(*p <=0)); … }

Control constructs

Abstraction scheme will be developed for
Within a procedure

Assignments
B h

CS 5219 2010-11 by Abhik 38

Branches
All other constructs can be represented by these

Across procedures
Formal parameter, Local variables, Return variables
Procedure calls and returns

Inter-procedural Abstraction
One-to-one mapping of procedure

Each proc. to an abstract one
No inlining introduced by abstraction.

CS 5219 2010-11 by Abhik 39

Given predicates: b1,…,bk
Each pred. is marked global (refers to global vars.)
or local to a specific procedure.
Does not allow capturing relationships of variables
across procedures. Will Revisit this!

Abstracted procedures ?
Given

A concrete procedure R
A set ER of predicates b1,…,bj specific to R

CS 5219 2010-11 by Abhik 40

ER can refer to parameters of R

Need to define an abstract procedure R1
Formal Parameters of R1
Return Vars. of R1

Example
int procedure(int* q, int y)

{

int l1, l2;

Predicates:

b1 is y >= 0

b2 is *q <= y

CS 5219 2010-11 by Abhik 41

…..

…..

return l1;

}

b3 is y = l1

b4 is y > l2

Parameters, Local Vars
Formal parameters of R1

All predicates in ER which do not refer to local
variables of R

All th d i E l l f R1

CS 5219 2010-11 by Abhik 42

All other preds. in ER are local vars. of R1.
Natural notion of input context for R1.
Example:

Concrete Parameters: q, y
Abstract Parameters: y>=0, *q <= y

8

Return Variables

Natural notion of output context for R1. Pass
information to callers about

Return value of R

CS 5219 2010-11 by Abhik 43

Global Vars
Call-by-reference parameters …

Info. about return value captured by those
preds in ER which refer to return var. of R,
but no other local variable (return var. can be
a local var.)

Return Variables
Info about global var/reference parameters

Preds. in ER which were computed to be formal
parameters of R1, AND
R f t l b l i bl d f

CS 5219 2010-11 by Abhik 44

Refer to global variables, dereferences
ER = { y>=0, *q <=y, y = l1, y > l2 }

Concrete ret. Var. : l1
Concrete Parameters: q, y
Abst. Ret. Vars: y =l1, *q <= y

Control constructs

Abstraction scheme will be developed for
Within a procedure

Assignments
B h

CS 5219 2010-11 by Abhik 45

Branches
All other constructs can be represented by these

Across procedures
Formal parameter, Local variables, Return variables
Procedure calls and returns

Procedure Calls
So far, abstraction of a single procedure

Assignments (with aliasing)
Branches (if-then-else, loops)

CS 5219 2010-11 by Abhik 46

Formal Parameters
Local and global variables
Return variables

Use input/output contexts in procedure call/return in
inter-procedural abstraction.

Passing Parameters
Take any formal parameter predicate b of R1

Void main()

{
int procedure(int *q, int y){

int l1, l2;

All predicates of

“procedure” :

CS 5219 2010-11 by Abhik 47

…

r = procedure(p, x);

}

, ;

…

return l1;

}

Formal parameter preds. of procedure

-y >= 0

-*q < = y

p

- y >= 0

-*q <= y

-y= l1

-y > l2

Passing Parameters

Replace formals by actuals in b.
y >= 0 is a formal parameter pred.
After replacement, it becomes x >= 0

CS 5219 2010-11 by Abhik 48

After replacement, it becomes x > 0
If F(b[formals →actuals)) holds during
procedure invocation of the boolean pgm,
then pass true to the parameter b
If F(¬b[formals →actuals)) holds, then pass
false to parameter b
Otherwise, pass unknown.

9

Exercise

Work out the boolean expressions
passed to the two parameters of
procedure in our example shown before

CS 5219 2010-11 by Abhik 49

procedure in our example shown before
Use the definition of the F operator
given earlier and the abst. predicates
given.

Procedure Returns

If procedure S calls procedure R, and
S1/R1 are abstractions of S/R
b1 bj are abstract ret Vars of R1

CS 5219 2010-11 by Abhik 50

b1,…,bj are abstract ret. Vars of R1

Then S1 has j corresponding local
boolean vars. which will be updated by
call to R1.
Do the local preds. in S need to be
updated ? YES

Procedure returns

These local preds. of S can refer to
Concrete Return var. for R
Global Vars (along with other local vars)

CS 5219 2010-11 by Abhik 51

Global Vars (along with other local vars)

For each such pred b, again compute
F(b) and F(¬b) to decide the value of b.
The function F is computed w.r.t

Set of abstraction preds (under the carpet ☺

Procedure returns
To compute the effect of return from R into S (calling
procedure), compute F w.r.t.

Return predicates of R
(C t ff t l b l / t / f)

CS 5219 2010-11 by Abhik 52

(Capture effect on global vars/return vars/ref.)
Predicates of S which do not need to be updated.

An implicit partitioning of the preds of S !!
Self Study: This portion in the reading.

Reading(s)

Automatic Predicate Abstraction of C
Programs

Ball, Majumdar, Millstein, Rajamani

CS 5219 2010-11 by Abhik 53

Ball, Majumdar, Millstein, Rajamani
PLDI 2001.

Also useful: Polymorphic Predicate
Abstraction

MSR Tech Rep. by same set of authors.

Reading Exercise

Currently, the predicates used for
abstraction can only contain program
variables. Is this a restriction ?

CS 5219 2010-11 by Abhik 54

variables. Is this a restriction ?
What about values returned by procedures
and/or passed by parameters ?
Can we track such values by introducing
new names ? We can have preds like

Ret_value_of_v = Passed_value_of_v + 1

