12/1/2010

SPIN Model Checker & LTL Model
Checking

Abhik Roychoudhury
CS 5219
National University of Singapore

Model Checking

LTL System
Property Model
/
Model
Checking

OR

Model Checking

LTL System
Property ¢ Model M
7
Model Checking
Check M |= @

Describe Model Checking as a general
verification procedure.
It proceeds by search.

/
OR A\
N\

\

Yes No, with
Counter-example trace
y

$5219 2010-11 by Abhik

LTL Model Checking - steps

1. Consider —@. None of the exec. traces of M
should satisfy —¢.

2. Construct a finite-state automata A _ such that

* Language(A_,) = Traces satisfying —¢

3. Construct the synch product M x A _

4. Check whether any exec trace ¢ of M is an exec
trace of the product M x A _ i.e. check
Language(M x A _) = empty-set?

¢ Yes: Violation of ¢ found, report counterexample
* No: Property ¢ holds for all exec traces of M.

55219 2010-11 by Abhik

Recap: finite-state automata
* A=(Q, %, Qy >, F)
— Qs a finite set of states
— 2 is a finite alphabet
—Q, < Qs the set of initial states
— = < Q x2x Qis the transition relation
— F < Qis the set of final states.

¢ What is the Language of such an automaton?

Recap: finite-state automata

¢ Regular languages:
— Accept any finite-length string ¢ €2.* which ends
in a final state.
* o-regular languages:
— Accept any infinite-length string ¢ €2, which
visits a final state infinitely many times.

¢ Set of strings accepted = Language of the
automata.

12/1/2010

LTL properties to automata

* Given a LTL property p
— we want to convert p to an automata A, s.t.
— Language(A,) = strings / traces satisfying p

e LTL properties are checked over infinite traces.

— Given an infinite trace ¢ and a LTL property p, we
can check whetherc |=p

* To convert LTL properties to finite-state
automata, consider automata accepting inf.-
length traces.

— Language(A,) is w-regular, not regular.

€55219 2010-11 by Abhik

LTL properties to automata

b

e

* Meaning as a regular language
— (a+b)*b*
— All finite length strings ending with b
¢ Meaning as a o-regular language
— All infinite length strings with finitely many a

LTL properties to automata

* Given a LTL property ¢
— We convert it to a o-regular automata A(p

* Language(A,) ={c| ceX®A o |= @}

— Language(A,) is defined as per the o-regular
notion of string acceptance. It accepts inf. length
strings.

— All infinite length strings satisfying ¢ form the
language of A,

— Whether an infinite length string satisfies ¢ (or
not) is defined as per LTL semantics.

$5219 2010-11 by Abhik

Example: LTL property to automata

Represents negation of the LTL
true

Recall: LTL Model Checking

1. Consider —¢. None of the exec. traces of M
should satisfy —¢.

2. Construct a finite-state automata A _, such that

 Llanguage(A_,) = Traces satisfying —¢

3. Construct the synch product M x A _

4. Check whether any exec trace ¢ of M is an exec
trace of the product M x A_ i.e. check
Language(M x A _) = empty-set?

¢ Yes: Violation of ¢ found, report counterexample ¢
* No: Property ¢ holds for all exec traces of M.

property
G(p=(p Ua))
p &&!q
Ip && Iq 'q
true
Example: Verify GFp

* Construct negation of the property
- —‘GFp = FG—|p

¢ Construct automata accepting infinite
length traces satisfying FG—p

true

12/1/2010

Product Automata

\ —P
(- F&qz

(i) System Model M (i) Property Automata A

(s1,q1) (s1,q2)

M |=GFp N -

true | | true

(s2,91) (s2,92)

(iii) Product Automata M x A

€55219 2010-11 by Abhik

Product Automata Construction

N -p
o 88

true

(i) System Model M (ii) Property Automata A

(s1,q2)
Note that s1 |= —p (sta1)

true
true

(s2,62)
M |= GFp 20

5219 2010-11 by Abhik

(iii) Product Automata M x A

Product Automata

—P
\ —p
sl 52 ql q2
true

(i) System Model M

M |#GF p

(s2,q2)
tszm)Q)tme @
(iii) Product Automata M x A

55219 2010-11 by Abhik

Recall: LTL Model Checking

1. Consider —@. None of the exec. traces of M
should satisfy —¢.

2. Construct a finite-state automata A _ such that

* Language(A_,) = Traces satisfying —¢

3. Construct the synch product M x A _

4. Check whether any exec trace ¢ of M is an exec
trace of the product M x A _ i.e. check
Language(M x A _) = empty-set?

* Yes: Violation of ¢ found, report counterexample ¢
* No: Property ¢ holds for all exec traces of M.

55219 2010-11 by Abhik

Emptiness Check

* Language(M x A_) = empty-set?

— Is there any trace which visits one of the accepting
states of the product automata infinitely many
times?

— Look for accepting cycles.

So bj\/ :
SaCC

Emptiness Check

e Perform DFS from initial state until you reach an
accepting state s,

* When you reach s, ., remember s, in a global
var. and start a nested DFS from s
— Stop the nested DFS if you can reach s,

* If no accepting cycles are found, report yes.

* If accepting cycles are found

— Concatenate the two DFS stacks and report it as
counter-example trace of the LTL property.

e This algo. is implemented in SPIN model checker.

12/1/2010

Nested DFS —step 1

¢ procedure dfs1(s)
— push s to Stackl
add {s} to Statesl
if accepting(s) then
- States2 := empty; seed :=s; dfs2(s)
endif
for each transition s — s’ do
- ifs’ ¢ Statesl then dfi(s’)

Nested DFS — step 2

¢ procedure dfs2(s)
— push s to Stack2
— add {s} to States2
— for each transition s — s’ do
- if s’ =seed then report acceptance cycle
- else if s” ¢ States2 then df2(s’)
- endif
— endfor
— pop s from Stack2
e end

— endfor
— pop s from Stackl
e end
Organization
* So Far

— Temporal logics
¢ LTL, CTL, CTL*
— General method for LTL Model Checking
* Now
— Model checking in SPIN
— SPIN’s modeling language (briefly)

* Promela

SPIN

¢ A tool for modeling complex concurrent and
distributed systems.
* Provides:
— Promela, a protocol meta language
— A model checker
— A random simulator for system simulation

— Promela models can be automatically generated
from a safe subset of C.

Our Usage
¢ Learn Promela, a low-level modeling language.

¢ Use it to model simple concurrent system protocols and
interactions.

¢ Gain experience in verifying such concurrent software using
the SPIN model checker.

¢ Gives a feel (at a small scale)
— What are hard-to-find errors ?

— How to find the bug in the code, once model checking has
produced a counter-example ?

Our Usage

e
Requirements (English)
Manual step
\Manual step

“Desirable
Properties

Alternate models??
Sequence Diag. Promela

Verification

> ? N
S eI Automated “\\Only use as guide
Testing Code
Debug

12/1/2010

Features of Promela
Concurrency
— Multiple processes in a system description.
Asynchronous Composition
— At any point one of the processes active.
— Interleaving semantics
e Communication
— Shared variables
— Message passing
* Handshake (synchronous message passing)
« Buffers (asynchronous message passing)

Features of Promela
* Within a process

— Non-determinism : supports the situation where
all details of a process may not be captured in
Promela model.

— Standard C-like syntax

¢ Assignment

* Switch statement
¢ While loop

¢ Guarded command

— Guard and body may not evaluated together, that is,
atomically.

SPIN’s process scheduling

« All processes execute concurrently
¢ Interleaving semantics

— At each time step, only one of the “active” processes will execute
(non-deterministic choice here)

— Aprocess is active, if it has been created, and its “next” statement is
not blocked.

— Each statement in each process executed atomically.

— Within the chosen process, if several statements are enabled, one of
them executed non-deterministically.

* We have not seen such an example yet !

SPIN Execution Semantics

¢ Select an enabled transition of any thread,
and execute it.
* Atransition corresponds to one statement in a
thread.
— Handshakes must be executed together.
e chan x = [0] of {...};
o x!1 || x?data

SPIN Execution Engine

* while ((E = executable(s)) !={})

. for some (p,t) € E

. { s =apply(t.effect, s); /* execute the chosen statement */
. if (handshake == 0)

. { s=5;

. p.curstate = t.target

. }

. else{ ...

SPIN Execution Engine

. /* try to complete the handshake */

- E’ = executable(s’); /* E’ ={}= s unchanged */

- for some (p’, ') € E

- { s=apply(teffect, s’);
- p.curstate = t.target;
- p’.curstate = t'target;
- }

- handshake = 0

- } /* else */

- }/* for some (p,t) € E*/

— } /* while ((E = executable(s)) ... */

— while (stutter) {s=s}

12/1/2010

Model Checking in SPIN
s (PL||P2[|P3) |=9¢
— P1, P2, P3 are Promela processes
— @isa LTL formula
¢ Construct a state machine via
— M, asynchronous composition of processes P1, P2, P3
— A_,, representing —¢
* Show that “language” of M x A_ is empty
— No accepting cycles.

¢ All these steps have been studied by us !!

Specifying properties in SPIN
Invariants
— Local: via assert statement insertion
— Global: assert statement in a monitor process
Deadlocks
Arbitrary Temporal Properties (entered by user)
— SPIN is a LTL model checker.

Why Verify, not Test?

— “I'have been fishing all day, | have found a number of fish
since the morning, | cannot find any more now, | am pretty
sure, there aren’t any left!”

— Bug finding techniques will ensure worse coverage than
fishing in a small pond.

Connect system & property in SPIN

* System model * Property
« int x =100; * GF(x=1)
« active proctype A() * Insert into code
«{ do o #define q (x==1)
. i):dx #2zx= e * Now try to verify GF q

}
active proctype B()
{ do

1 1(x%2) -> x = x/2
od

}

Model Checking in SPIN

SPIN does not use SCC detection for detecting acceptance cycles (and
hence model checking)

The nested DFS algorithm used in SPIN is more space efficient in practice.

— SCC detection maintains two integer numbers per node. (dfs and
lowlink numbers)

— Nested DFS maintains only one integer.
 This optimization is important due to the huge size of
the product graph being traversed on-the-fly by model
checker.
Find acceptance states reachable from initial states (DFS).
Find all such acceptance states which are reachable from itself (DFS).

Counter-example evidence (if any) obtained by simply concatenating the
two DFS stacks.

Organization

e So Far

— Temporal logics
« LTL, CTL, CTL*
— General method for LTL Model Checking

* Now

— Model checking in SPIN
— SPIN’s modeling language
¢ Promela manual ©
¢ Go through this material a bit on your own ©

Example O

byte state = 0; state : Global Variable

|

tmp : Local Variable

proctype A() (state==0) -> tmp = state is a
{ byte tmp; guarded command (blocked if the
guard is false).

(state==0) -> tmp = state; Only one process created.

Final value of state is 1

12/1/2010

Example 1
/ byte state = 0; \
We need to define how processes are
e A scheduled.
{ byte tmp;

(state==0) -> tmp = state;
tmp =tmp+1;
state = tmp;

init {run A() ; run AQ); }

tmp = tmp+1;
state = tmp; But SPIN allows multiple processes to be
} created.
\dnit {runA(); } /
€55219 2010-11 by Abhi
Example 2

bit flag; init {
byte sem; atomic{

proctype myprocess(bit i)
{ (flag!=1)->flag = 1;

sem =sem +1;

run myprocess(0));
run myprocess(1));

run observer();

sem =sem —1;
flag = 0;
}

All three processes
proctype observer() {

Instantiated together
assert(sem !=2);

€55219 2010-11 by Abhik

Issues
¢ Initial values of sem, flag not given
— All possible init. values used for model checking.

* The system being verified is the asynchronous
composition

— myprocess(0) || myprocess(1)
* The property is the invariant
—Gsem=#2

¢ Local & global invariants can be specified inside code
via assert statements.

) 2010-11 by Abhik

assert

¢ Of the form assert B
— Bis a boolean expression
— If B then no-op else abort (with error).
¢ Can be used inside a process (local invariants)
— proctype P(...){ x=..; assert(x!=2); ...}
¢ Or as a separate observer process (global invariants)
— proctype observer(){ assert(x !=2);}

€55219 2010-1

Example 3
bit flags[2]; init() {
byte sem, turn; atomic{

proctype myprocess(bit id) { run myprocess(0);

flags[id] = 1; run myprocess(1);
turn =1 -id; run observer(); }
flags[1-id] == 0 || turn ==id; }

sem++; proctype observer() {

sem--; assert(sem !=2);
flags[id] = 0; }

Issues

¢ Can you use SPIN to prove mutual exclusion ?
— What purpose does turn serve ?
¢ Arrays have been used in this example.

— Flags is global, but each element is updated by only one
process in the protocol

— Not enforced by the language features.
¢ Processes could alternatively be started as:
— active proctype myprocess(...) {
— Alternative to dynamic creation via run statement

€55219 2010-11 by Abhik

Will this loop terminate?

byte count;
proctype counter()

do
;count=count+1
;count=count-1
2 (count == 0) -> break
od;

}

Enumerate the reasons for non-termination in this example

€55219 2010-11 by Abhik

12/1/2010

So far, in SPIN

Process creation and interleaving.

Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.

NOW ...

— Guarded IF and DO statements

— Channel Communication between processes
— Model checking of LTL properties

This loop will not terminate

active proctype TrafficLightController() {
byte color = green;
do
:: (color == green) -> color = yellow;
:: (color == yellow) -> color = red;
:: (color == red) -> color = green;
od;

Channels

* SPIN processes can communicate by exchanging messages
across channels

¢ Channels are typed.
¢ Any channel is a FIFO buffer.
¢ Handshakes supported when buffer is null.
¢ chan ch =[2] of bit;
— A buffer of length 2, each element is a bit.
¢ Array of channels also possible.
— Talking to diff. processes via dedicated channels.

€55219 2010-11 by Abhik

Example with channels

chan data, ack = [1] of bit;

node2
=

proctype nodel() { proctype node2() { nodel
do do B
:: datall; :rack!l; data
:rack?1; :data?l;
od od ack
} t data
init{ atomic{ ack
run nodel(); run node2();

}

} - -

55219 2010-11 by Abhik

12/1/2010

Example with channels

nodel
chan data, ack = [1] of bit;]

proctype nodel() { proctype node2() {
do

do

:: datall; :rack!l;
:rack?1; i data?1;
od od

} }

init{ atomic{

run nodel(); run node2();

€55219 2010-11 by Abhik

node2

More Involved Example

¢ Alternating Bit Protocol

— Reliable channel communication between sender
and receiver.

— Exchanging msg and ack.
— Channels are lossy
— Attach a bit with each msg/ack.

— Proceed with next message if the received bit
matches your expectation.

55219 2010-11 by Abhik

ABP Architecture

Implemented as SPIN processes

datachan
receiver

ackchan

€55219 2010-11 by Abhik

Sender & Receiver code

¢ chan datachan = [2] of { bit };
¢ chan ackchan = [2] of { bit };

active proctype Sender()
{ bitout, in;
do
:: datachan!out ->
ackchan?in;
if

active proctype Receiver()
{ bitin;
do

:: datachan?in -> ackchan!in
:: timeout -> ack i
od

1in == out -> out = 1- out;
i else fi

55219 2010-11 by Abhik

Timeouts

¢ Special feature of the language

— Time independent feature.

* Do not specify a time as if you are programming.

— True if and only if there are no executable
statements in any of the currently active
processes.

— True modeling of deadlocks in concurrent systems
(and the resultant recovery).

€55219 2010-11 by Abhik

Readings (many sources)

¢ http://spinroot.com/spin/Man/Manual.html
— SPIN manual (start with this !1)
¢ The model checker SPIN (Holzmann)
— IEEE transactions on software engineering, 23(5), 1997.
¢ http://spinroot.com/spin/Doc/SpinTutorial.pdf
— SPIN beginner’s tutorial (Theo Ruys)
¢ Summer school Lecture notes on Software MC
— (See Section 2 only),
— http://spinroot.com/gerard/pdf/marktoberdorf.pdf

55219 2010-11 by Abhik

