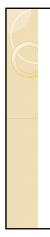


Organization • General Introduction • LTL • CTL* • CTL – A fragment of CTL*



Atomic propositions

- All of our logics will contain atomic props.
 These atomic props. will appear in the labeling function of the Kripke Structure you verify.
 - Kripke structure is only a model of your design.
 - Thus the atomic props. represent some relationships among variables in the design that you verify.
 - Atomic props in the previous example
 ext, malfn

Why study new logics ?

- Need a formalism to specify properties to be checked
- Our properties refer to dynamic system behaviors
 - Eventually, the system reaches a stable state
 - Never a deadlock can occur
- We want to maintain more than input-output properties (which are typical for transformational systems).
- $^\circ~$ Input-output property: for input > 0, output should be > 0
- $^{\circ}~$ No notion of output or end-state in reactive systems.

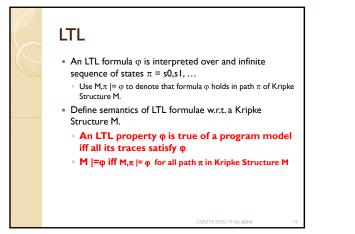
Why study new logics ?

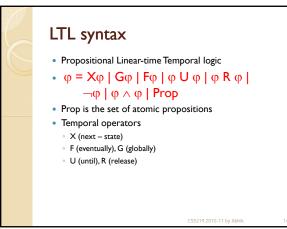
- Our properties express constraints on dynamic evolution of states.
- Propositional/first-order logics can only express properties of states, not properties of traces
- We study behaviors by looking at all execution traces of the system.
 - Linear-time Temporal Logic (LTL) is interpreted over execution traces.

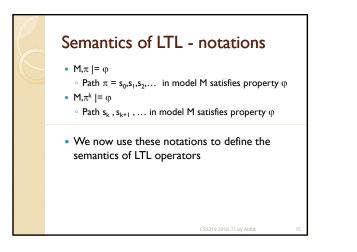
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

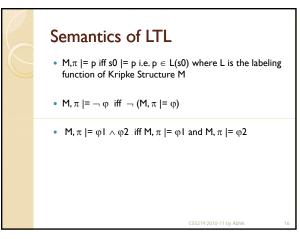
Example

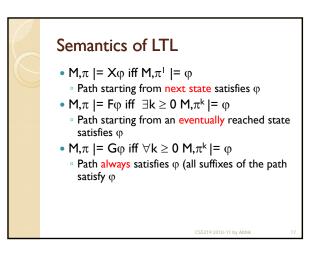
- Does not capture exact timing of events, but rather the relative order of events
- We capture properties of the following form.
- $\,\circ\,$ Whenever event $\,e$ occurs, eventually event e' must occur.
- We do not capture properties of the following form.
 At t = 2 e occurs followed by e' occurring at t = 4.

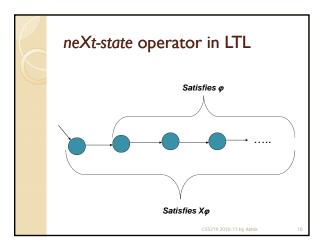


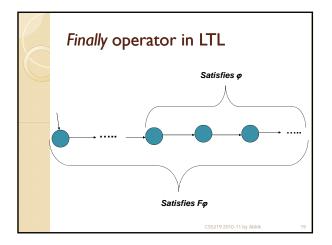


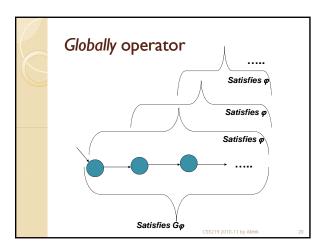


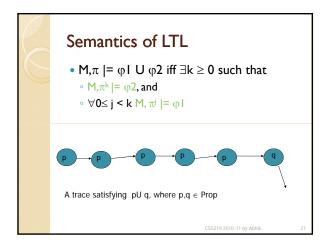


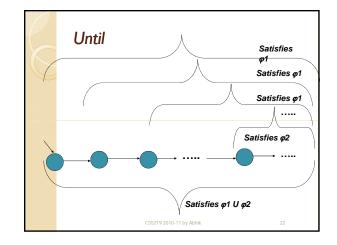


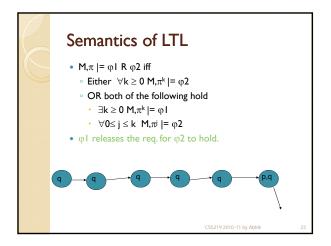


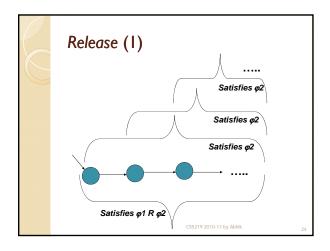


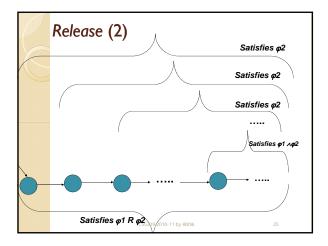


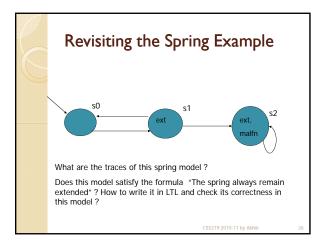


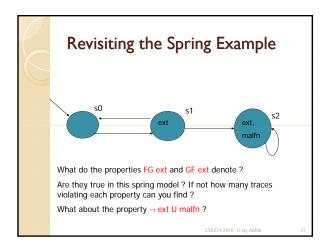


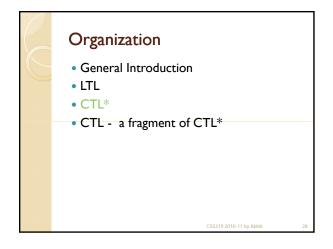


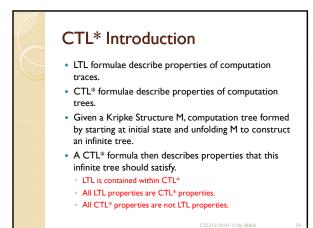


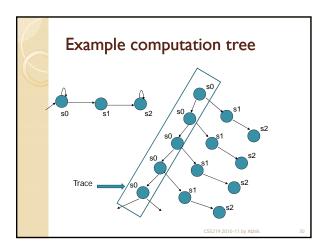


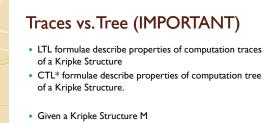










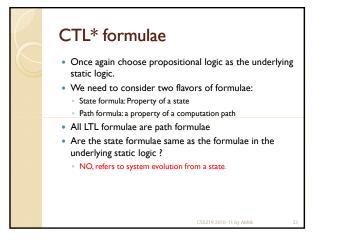


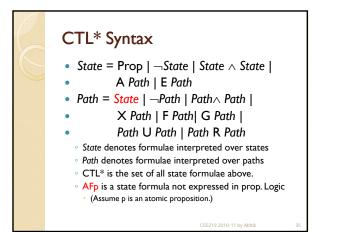
- a LTL formula ϕ is true iff it is true for all the traces of M
- a CTL* formula ϕ is true iff it is true for the computation tree of M

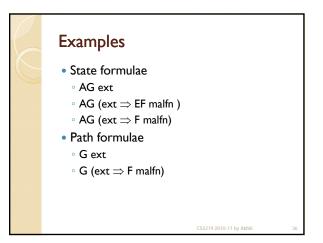
Traces vs. Tree (IMPORTANT)

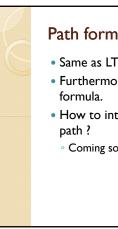
Given a Kripke Structure M

- a LTL formula ϕ is true iff it is true for all the traces of M
- a CTL* formula ϕ is true iff it is true for the computation tree of M
- Associate states with computation tree rooted there.
 - Interpret a CTL* formula to be true in a state s iff it is true in the computation tree rooted at s
 - Thus a CTL* formula is true in a Kripke structure M, iff it is true in the initial states of M.









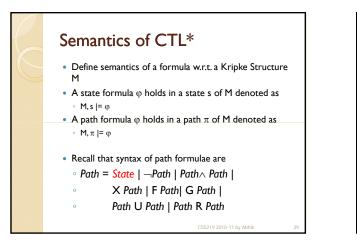
Path formulae

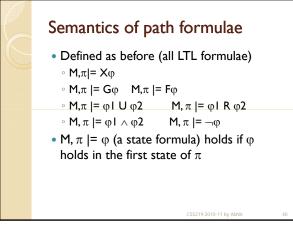
- Same as LTL formulae
- Furthermore, any state formula is a path
- How to interpret a state formula over a
 - Coming soon ...

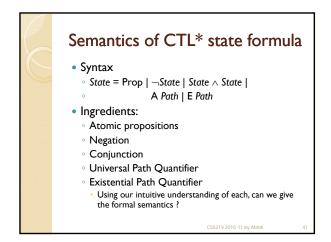
Path Quantifiers

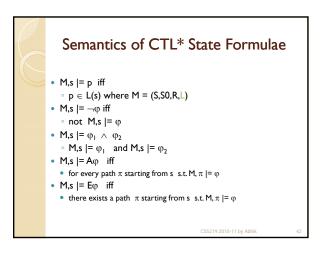
• A, E

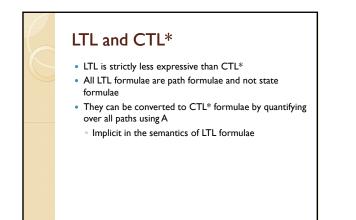
- Denote universal/existential quantification over all computation paths starting from a state.
- \circ A ϕ holds in a state s if for all computation paths starting from s, the path formula $\boldsymbol{\phi}$ holds.
- $\circ\,$ E ϕ holds in a state s if there exists a computation path starting from s, for which the path formula $\boldsymbol{\phi}$ holds.





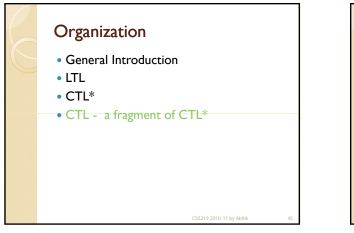


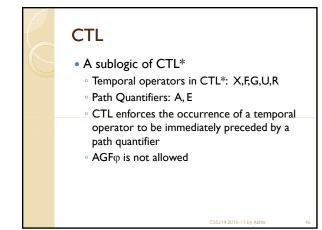


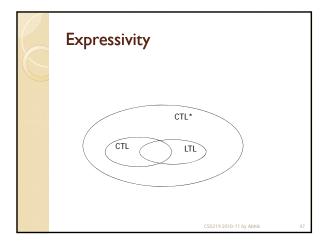


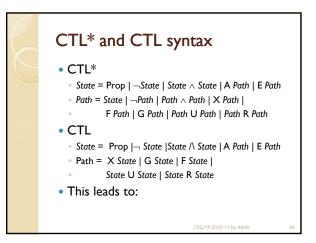
LTL and CTL*

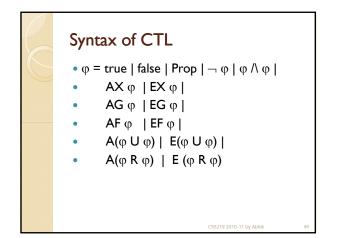
- LTL formula G(ext ⇒ F malfn)
 Equivalent to CTL* formula
 - · A(G ext \Rightarrow F malfn)
- Example of a CTL* formula not expressible in LTL ${}_{\circ}$ AG(ext \Rightarrow EF malfn)
 - CTL* is a strictly more powerful logic.

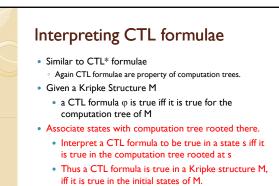


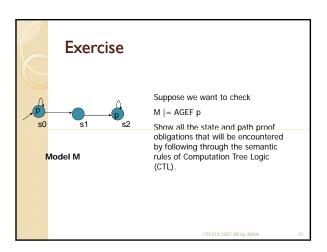


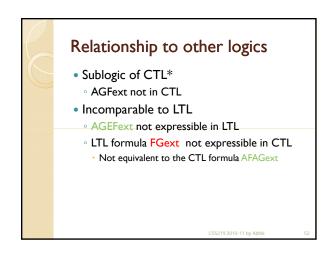


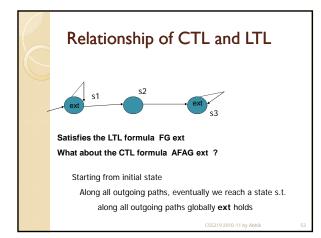


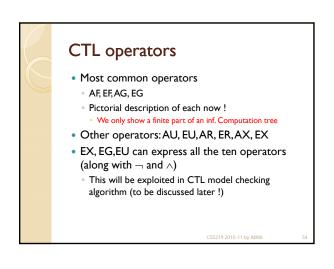


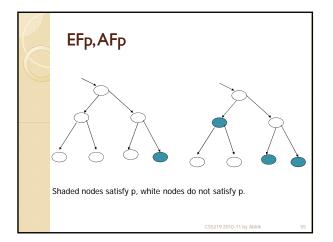


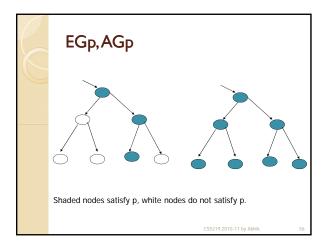


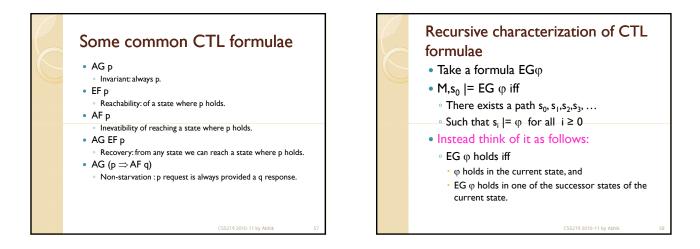


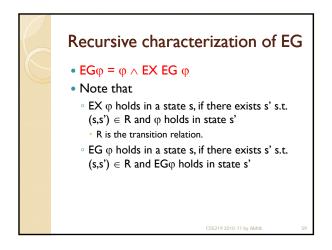


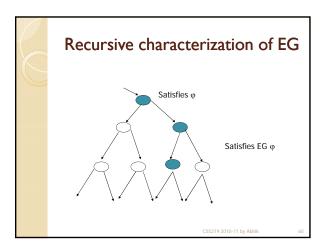


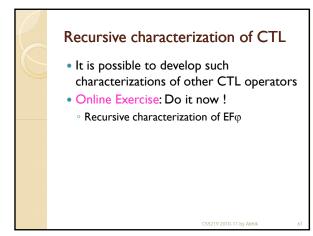






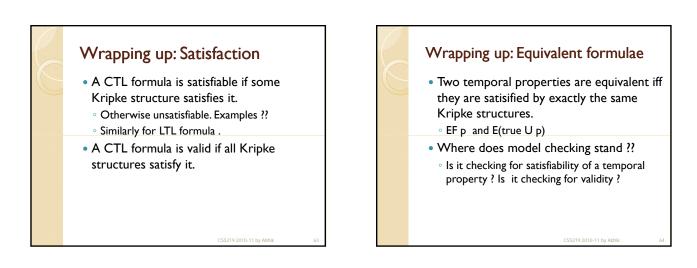






Sanity Check

- Give a CTL formula which can be expressed in LTL.
- Give a CTL formula which cannot be expressed in LTL.
- Give a LTL formula which cannot be expressed in CTL.
- Give a CTL* formula which cannot be expressed in CTL.
- Give a CTL* formula which cannot be expressed in LTL.



Wrapping up

Model Checking

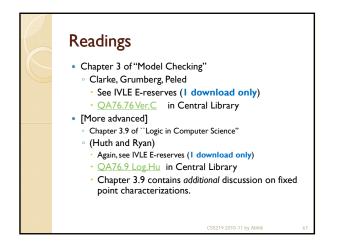
- ... is not checking for satisfiability / validity.
- It is checking for satisfaction of a temporal property for a given Kripke structure.
- This is a very different problem from traditional satisfiability checking !!

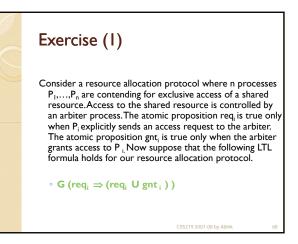
In the next lecture!

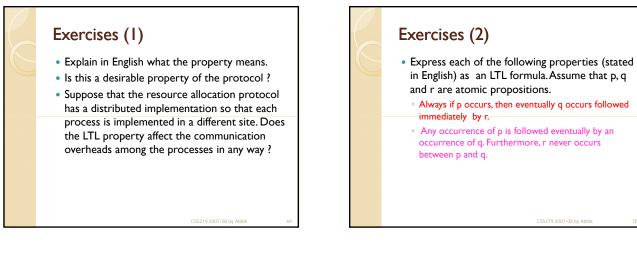
Exercise

- Assume that p is an atomic proposition. What can you say about the equivalence of the following pairs of temporal formulae? If they are equivalent, then provide a formal proof. If not construct an example Kripke Structure to show that they are not equivalent.
- the LTL formula GFp and the CTL* formula AGFp
- the CTL formulae AGAFp and the CTL formula AGEFp
- the LTL formula GFp and the CTL formula AGAFp

CS5219 2010-11 by Abhik







Exercises (3)

- Consider the LTL formula GFp and the CTL formula AGEFp where p is an atomic proposition. Give an example of a Kripke Structure which satisfies AGEFp but does not satisfy GFp. You may assume that p is the only atomic proposition for constructing the labeling function.
- Are the following LTL formulae equivalent
 - ∘ G(p ⇒ X p)
 - ∘ G(p⇒Gp)

#