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KripkeKripke StructureStructure

Model for reactive systems/software
◦ M = (S, S0, R, L)
◦ S is the set of states
◦ S0 ⊆ S is the set of initial states⊆
◦ R ⊆ is the transition relation

Set of (source-state, destination-state) pairs

◦ L: S → 2AP is the labeling function
Maps each state s to a subset of AP
These are the atomic prop. which are true in s.
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An ExampleAn Example

ext ext,,

malfn

A simplified model of a spring.

AP = {ext, malfn}

ext stands for “the spring is extended”

malfn stands for “the spring is malfunctioning”
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PropertiesProperties

Does the spring always remain extended ?
Does the spring remain extended 
infinitely often ?
How to specify such properties and How to specify such properties and 
reason about them ?
◦ This Lecture !
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OrganizationOrganization

General Introduction
LTL
CTL*
CTL A fragment of CTL*CTL – A fragment of CTL*
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Atomic propositionsAtomic propositions
All of our logics will contain atomic props. 
◦ These atomic props. will appear in the labeling 

function of the Kripke Structure you verify.
◦ Kripke structure is only a model of your design.
◦ Thus the atomic props  represent some relationships ◦ Thus the atomic props. represent some relationships 

among variables in the design that you verify.
◦ Atomic props in the previous example

ext, malfn
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Why study new logics ?Why study new logics ?
Need a formalism to specify properties to be checked
Our properties refer to dynamic system behaviors
◦ Eventually, the system reaches a stable state

◦ Never a deadlock can occur

We want to maintain more than input-output We want to maintain more than input output 
properties (which are typical for transformational 
systems).
◦ Input-output property: for input > 0, output should be > 0
◦ No notion of output or end-state in reactive systems.
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Why study new logics ?Why study new logics ?
Our properties express constraints on dynamic 
evolution of states.
Propositional/first-order logics can only express 
properties of states, not properties of traces
We study behaviors by looking at all execution traces of y y g
the system.
◦ Linear-time Temporal Logic (LTL) is interpreted over execution 

traces.
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Temporal LogicsTemporal Logics
The temporal logics that we study today build on a 
“static” logic like propositional/first-order logic.
◦ We work with propositional logic.
◦ Used to describe properties of states.

Temporal operators describe properties on execution p p p p
traces / trees.
Time is not explicitly mentioned in the formulae
◦ Rather the properties describe how the system should evolve 

over time.
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ExampleExample
Does not capture exact timing of events, but rather the 
relative order of events
We capture properties of the following form.
◦ Whenever event  e occurs,  eventually event e’ must occur.

We do not capture properties of the following form.
◦ At t =2 e occurs followed by e’ occurring at t =4.
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OrganizationOrganization

General Introduction
LTL
CTL*
CTL a fragment of CTL*CTL - a fragment of CTL*
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LTLLTL
An LTL formula ϕ is interpreted over and infinite 
sequence of states π = s0,s1, …
◦ Use M,π |= ϕ to denote that formula ϕ holds in path π of Kripke 

Structure M.

Define semantics of LTL formulae w.r.t. a Kripke 
Structure M.
◦ An LTL property ϕ is true of a program model 

iff all its traces satisfy ϕ
◦ M |=ϕ iff M,π |= ϕ for all path π in Kripke Structure M
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LTL syntaxLTL syntax
Propositional Linear-time Temporal logic

ϕ = Xϕ | Gϕ | Fϕ | ϕ U ϕ | ϕ R ϕ | 
¬ϕ | ϕ ∧ ϕ | Prop

Prop is the set of atomic propositions
Temporal operators
◦ X (next – state)
◦ F (eventually), G (globally)
◦ U (until), R (release)
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Semantics of LTL Semantics of LTL -- notationsnotations
M,π |= ϕ
◦ Path π = s0,s1,s2,…  in model M satisfies property ϕ
M,πk |= ϕ
◦ Path sk , sk+1 , … in model M satisfies property ϕ

We now use these notations to define the 
semantics of LTL operators
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Semantics of LTLSemantics of LTL
M,π |= p iff s0 |= p i.e. p ∈ L(s0) where L is the labeling 
function of Kripke Structure M 

M, π |= ¬ ϕ iff  ¬ (M, π |= ϕ)

M, π |= ϕ1 ∧ ϕ2  iff M, π |= ϕ1 and M, π |= ϕ2
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Semantics of LTLSemantics of LTL
M,π |= Xϕ iff M,π1 |= ϕ
◦ Path starting from next state satisfies ϕ
M,π |= Fϕ iff  ∃k ≥ 0 M,πk |= ϕ
◦ Path starting from an eventually reached state 

f  satisfies ϕ
M,π |= Gϕ iff ∀k ≥ 0 M,πk |= ϕ
◦ Path always satisfies ϕ (all suffixes of the path 

satisfy ϕ
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neXtneXt--statestate operator in LTLoperator in LTL

Satisfies ϕ

…..

Satisfies Xϕ
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FinallyFinally operator in LTLoperator in LTL

Satisfies ϕ

…..

Satisfies Fϕ

…..
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GloballyGlobally operatoroperator

Satisfies ϕ

Satisfies ϕ

…..

…..

Satisfies ϕ

Satisfies Gϕ
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Semantics of LTLSemantics of LTL

M,π |= ϕ1 U ϕ2 iff ∃k ≥ 0 such that
◦ M,πk |= ϕ2, and
◦ ∀0≤ j < k M, πj |= ϕ1

p p p p p q

A trace satisfying  pU q, where p,q ∈ Prop
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UntilUntil

…..

Satisfies 
ϕ1

Satisfies ϕ1

Satisfies ϕ1
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….. …..
Satisfies ϕ2

Satisfies ϕ1 U ϕ2 

Semantics of LTLSemantics of LTL
M,π |= ϕ1 R ϕ2 iff
◦ Either  ∀k ≥ 0 M,πk |= ϕ2
◦ OR both of the following hold

∃k ≥ 0 M,πk |= ϕ1
∀0≤ j ≤ k  M πj |= ϕ2∀0≤ j ≤ k  M,πj |= ϕ2

ϕ1 releases the req. for ϕ2 to hold.

q q q q q p,q
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ReleaseRelease (1)(1)

Satisfies ϕ2

Satisfies ϕ2

…..
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…..

Satisfies ϕ2

Satisfies ϕ1 R ϕ2

24
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ReleaseRelease (2)(2)
Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ2
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…..

Satisfies ϕ1 R ϕ2

…..

…..

Satisfies ϕ1 ∧ϕ2

Revisiting the Spring ExampleRevisiting the Spring Example

ext ext,

s0 s1 s2
,

malfn

What are the traces of this spring model ?

Does this model satisfy the formula  “The spring always remain 
extended” ? How to write it in LTL and check its correctness in 
this model ?
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Revisiting the Spring ExampleRevisiting the Spring Example

ext ext,

s0 s1 s2
,

malfn

What do the properties FG ext and GF ext denote ?

Are they true in this spring model ? If not how many traces 
violating each property can you find ?

What about the property ¬ ext U malfn ? 
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OrganizationOrganization

General Introduction
LTL
CTL*
CTL a fragment of CTL*CTL - a fragment of CTL*
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CTL* IntroductionCTL* Introduction
LTL formulae describe properties of computation 
traces.
CTL* formulae describe properties of computation 
trees.
Given a Kripke Structure M, computation tree formed p , p
by starting at initial state and unfolding M to construct 
an infinite tree.
A CTL* formula then describes properties that this 
infinite tree should satisfy.
◦ LTL is contained within CTL*
◦ All LTL properties are CTL* properties.
◦ All CTL* properties are not LTL properties.
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Example computation treeExample computation tree

s0 s1 s2

s0

s0 s1

s2
s0

s0

s0

s1

s1

s1

s2

s2

s2

s2

Trace
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Traces vs. Tree (IMPORTANT)Traces vs. Tree (IMPORTANT)
LTL formulae describe properties of computation traces 
of a Kripke Structure
CTL* formulae describe properties of computation tree 
of a Kripke Structure.

Given a Kripke Structure M
a LTL formula ϕ is true iff it is true for all the traces 
of M
a CTL* formula ϕ is true iff it is true for the 
computation tree of M
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Traces vs. Tree (IMPORTANT)Traces vs. Tree (IMPORTANT)
Given a Kripke Structure M

a LTL formula ϕ is true iff it is true for all the traces 
of M
a CTL* formula ϕ is true iff it is true for the 
computation tree of Mp

Associate states with computation tree rooted there.
Interpret a CTL* formula to be true in a state s iff it 
is true in the computation tree rooted at s
Thus a CTL* formula is true in a Kripke structure M, 
iff it is true in the initial states of M.
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CTL* formulaeCTL* formulae
Once again choose propositional logic as the underlying 
static logic.
We need to consider two flavors of formulae:
◦ State formula: Property of a state

◦ Path formula: a property of a computation pathp p y p p

All LTL formulae are path formulae
Are the state formulae same as the formulae in the 
underlying static logic ?
◦ NO, refers to system evolution from a state.
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Operators in CTL*Operators in CTL*

Path Quantifiers
◦ Describe properties on the branching structure of 

the computation tree
A :  for all computation paths, …
E   h  i   i  h  E  : there exists a computation path, …

Temporal Operators
◦ Same as LTL operators. Describe properties of a 

trace in the computation tree.
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CTL* SyntaxCTL* Syntax
State = Prop | ¬State | State ∧ State | 

A Path | E Path
Path = State | ¬Path | Path∧ Path |

X Path | F Path| G Path || | |
Path U Path | Path R Path

◦ State denotes formulae interpreted over states
◦ Path denotes formulae interpreted over paths
◦ CTL* is the set of all state formulae above.
◦ AFp is a state formula not expressed in prop. Logic

(Assume p is an atomic proposition.)
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ExamplesExamples

State formulae
◦ AG ext
◦ AG (ext ⇒ EF malfn )
◦ AG (ext ⇒ F malfn)( )

Path formulae
◦ G ext
◦ G (ext ⇒ F malfn)
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Path formulaePath formulae

Same as LTL formulae
Furthermore, any state formula is a path 
formula.
How to interpret a state formula over a How to interpret a state formula over a 
path ?
◦ Coming soon …
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Path QuantifiersPath Quantifiers

A, E
◦ Denote universal/existential quantification over all 

computation paths starting from a state.
◦ A ϕ holds in a state s if for all computation paths 

starting from s  the path formula ϕ holdsstarting from s, the path formula ϕ holds.
◦ E ϕ holds in a state s if there exists a computation 

path starting from s, for which the path formula ϕ
holds.
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Semantics of CTL*Semantics of CTL*
Define semantics of a formula w.r.t. a Kripke Structure 
M
A state formula ϕ holds in a state s of M denoted as
◦ M, s |= ϕ

A path formula ϕ holds in a path π of M denoted asp ϕ p
◦ M, π |= ϕ

Recall that syntax of path formulae are

◦ Path = State | ¬Path | Path∧ Path |
◦ X Path | F Path| G Path |
◦ Path U Path | Path R Path
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Semantics of path formulaeSemantics of path formulae

Defined as before (all LTL formulae)
◦ M,π|= Xϕ
◦ M,π |= Gϕ M,π |= Fϕ
◦ M,π |= ϕ1 U ϕ2         M, π |= ϕ1 R ϕ2 , | ϕ ϕ , | ϕ ϕ
◦ M, π |= ϕ1 ∧ ϕ2        M, π |= ¬ϕ

M, π |= ϕ (a state formula) holds if ϕ
holds in the first state of π
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Semantics of Semantics of CTL* CTL* state formulastate formula
Syntax
◦ State = Prop | ¬State | State ∧ State |  
◦ A Path | E Path
Ingredients:

A i  i i◦ Atomic propositions
◦ Negation
◦ Conjunction
◦ Universal Path Quantifier
◦ Existential Path Quantifier

Using our intuitive understanding of each, can we give 
the formal semantics ?
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Semantics of CTL* State FormulaeSemantics of CTL* State Formulae

M,s |= p  iff
◦ p ∈ L(s) where M = (S,S0,R,L)
M,s |= ¬ϕ iff
◦ not  M,s |= ϕ
M,s |= ϕ1 ∧ ϕ2

◦ M,s |= ϕ1   and M,s |= ϕ2

M,s |= Aϕ iff
for every path π starting from s  s.t. M, π |= ϕ

M,s |= Eϕ iff
there exists a path  π starting from s  s.t. M, π |= ϕ
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LTL and CTL*LTL and CTL*
LTL is strictly less expressive than CTL*
All LTL formulae are path formulae and not state 
formulae
They can be converted to CTL* formulae by quantifying 
over all paths using Ap g
◦ Implicit in the semantics of LTL formulae
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LTL and CTL*LTL and CTL*
LTL formula  G( ext ⇒ F malfn )
◦ Equivalent to CTL* formula 

A(G ext ⇒ F malfn )
Example of a CTL* formula not expressible in LTL
◦ AG(ext ⇒ EF malfn)◦ AG(ext ⇒ EF malfn)
◦ CTL* is a strictly more powerful logic.
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OrganizationOrganization

General Introduction
LTL
CTL*
CTL a fragment of CTL*CTL - a fragment of CTL*
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CTLCTL

A sublogic of CTL*
◦ Temporal operators in CTL*:  X,F,G,U,R
◦ Path Quantifiers:  A, E
◦ CTL enforces the occurrence of a temporal p

operator to be immediately preceded by a 
path quantifier
◦ AGFϕ is not allowed
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ExpressivityExpressivity

CTL*

CTL LTL
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CTL* and CTL syntaxCTL* and CTL syntax

CTL*
◦ State = Prop | ¬State | State ∧ State | A Path | E Path
◦ Path = State | ¬Path | Path ∧ Path | X Path | 
◦ F Path | G Path | Path U Path | Path R Path

CTL
◦ State =  Prop |¬ State |State /\ State | A Path | E Path
◦ Path =  X State | G State | F State | 
◦ State U State | State R State

This leads to:
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Syntax of CTLSyntax of CTL

ϕ = true | false | Prop | ¬ ϕ | ϕ /\ ϕ |
AX ϕ | EX ϕ |
AG ϕ | EG ϕ |
AF ϕ | EF ϕ |AF ϕ | EF ϕ |
A(ϕ U ϕ) |  E(ϕ U ϕ) |
A(ϕ R ϕ)  |  E (ϕ R ϕ) 
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Interpreting CTL formulaeInterpreting CTL formulae
Similar to CTL* formulae
◦ Again CTL formulae are property of computation trees.

Given a Kripke Structure M
a CTL formula ϕ is true iff it is true for the 
computation tree of Mp

Associate states with computation tree rooted there.
Interpret a CTL formula to be true in a state s iff it 
is true in the computation tree rooted at s
Thus a CTL formula is true in a Kripke structure M, 
iff it is true in the initial states of M.
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ExerciseExercise

s0 s1 s2

p p

Suppose we want to check 

M |= AGEF p

Show all the state and path proof 
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p p
obligations that will be encountered 
by following through the semantic 
rules of Computation Tree Logic 
(CTL).

Model M

Relationship to other logicsRelationship to other logics

Sublogic of CTL*
◦ AGFext not in CTL

Incomparable to LTL
◦ AGEFext not expressible in LTLAGEFext not expressible in LTL
◦ LTL formula FGext not expressible in CTL

Not equivalent to the CTL formula AFAGext
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Relationship of CTL and LTLRelationship of CTL and LTL

ext ext
s1 s2

s3

Satisfies the LTL formula  FG ext

What about the CTL formula  AFAG ext  ?

Starting from initial state

Along all outgoing paths, eventually we reach a state s.t.

along all outgoing paths globally ext holds
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CTL operatorsCTL operators
Most common operators
◦ AF, EF, AG, EG
◦ Pictorial description of each now !

We only show a finite part of an inf. Computation tree

Oth  t  AU EU AR ER  AX EXOther operators: AU, EU, AR, ER, AX, EX
EX, EG,EU can express all the ten operators 
(along with ¬ and ∧)
◦ This will be exploited in CTL model checking 

algorithm (to be discussed later !)
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EFp, AFpEFp, AFp

Shaded nodes satisfy p, white nodes do not satisfy p.
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EGp, AGpEGp, AGp

Shaded nodes satisfy p, white nodes do not satisfy p.
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Some common CTL formulaeSome common CTL formulae
AG p 
◦ Invariant: always p.

EF p   
◦ Reachability: of a state where p holds.

AF p  
◦ Inevatibility of reaching a state where p holds.

AG EF p 
◦ Recovery: from any state we can reach a state where p holds.

AG (p ⇒AF q)   
◦ Non-starvation : p request is always provided a q response.
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Recursive characterization of CTL Recursive characterization of CTL 
formulaeformulae

Take a formula EGϕ
M,s0 |= EG ϕ iff
◦ There exists a path s0, s1,s2,s3, …
◦ Such that si |= ϕ for all  i ≥ 0Such that si |  ϕ for all  i ≥ 0

Instead think of it as follows:
◦ EG ϕ holds iff

ϕ holds in the current state, and 
EG ϕ holds in one of the successor states of the 
current state.
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Recursive characterization of EGRecursive characterization of EG

EGϕ = ϕ ∧ EX EG ϕ
Note that
◦ EX ϕ holds in a state s, if there exists s’ s.t.  

(s,s’) ∈ R and ϕ holds in state s’( , ) ϕ
R is the transition relation.

◦ EG ϕ holds in a state s, if there exists s’ s.t.  
(s,s’) ∈ R and EGϕ holds in state s’
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Recursive characterization of EGRecursive characterization of EG

Satisfies ϕ

Satisfies EG ϕ
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Recursive characterization of CTLRecursive characterization of CTL

It is possible to develop such 
characterizations of other CTL operators
Online Exercise: Do it now !
◦ Recursive characterization of EFϕRecursive characterization of EFϕ
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Sanity Check Sanity Check 
Give a CTL formula which can be 
expressed in LTL.
Give a CTL formula which cannot be 
expressed in LTL.
Give a LTL formula which cannot be 
expressed in CTL.
Give a CTL* formula which cannot be 
expressed in CTL.
Give a CTL* formula which cannot be 
expressed in LTL.
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Wrapping up: SatisfactionWrapping up: Satisfaction

A CTL formula is satisfiable if some 
Kripke structure satisfies it.
◦ Otherwise unsatisfiable. Examples ??
◦ Similarly for LTL formula .y

A CTL formula is valid if all Kripke 
structures satisfy it.

63CS5219 2010-11 by Abhik

Wrapping up: Equivalent Wrapping up: Equivalent formulaeformulae

Two temporal properties are equivalent iff 
they are satisified by exactly the same 
Kripke structures.
◦ EF p  and E(true U p)p ( p)

Where does model checking stand ??
◦ Is it checking for satisfiability of a temporal 

property ? Is  it checking for validity ?
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Wrapping upWrapping up
Model Checking
◦ … is not checking for satisfiability / validity.
◦ It is checking for satisfaction of a temporal property for a given

Kripke structure.
This is a very different problem from traditional satisfiability 
checking !!checking !!

In the next lecture!
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ExerciseExercise
Assume that p is an atomic proposition. What can you 
say about the equivalence of the following pairs of 
temporal formulae? If they are equivalent, then provide a 
formal proof. If not construct an example Kripke
Structure to show that they are not equivalent.

the LTL formula GFp and the CTL* formula AGFp
the CTL formulae AGAFp and the CTL formula AGEFp
the LTL formula GFp and the CTL formula AGAFp
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ReadingsReadings
Chapter 3 of “Model Checking”
◦ Clarke, Grumberg, Peled

See IVLE E-reserves (1 download only)
QA76.76 Ver.C in Central Library

[More advanced] [ ]
◦ Chapter 3.9 of ``Logic in Computer Science” 

◦ (Huth and Ryan) 
Again, see IVLE E-reserves (1 download only)

QA76.9 Log.Hu in Central Library
Chapter 3.9 contains additional discussion on fixed 
point characterizations.
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Exercise (1)Exercise (1)

Consider a resource allocation protocol where n processes 
P1,…,Pn are contending for exclusive access of a shared 
resource. Access to the shared resource is controlled by 
an arbiter process. The atomic proposition reqi is true only 
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when Pi explicitly sends an access request to the arbiter.  
The atomic proposition gnti is true only when the arbiter 
grants access to P i. Now suppose that the following LTL 
formula holds for our resource allocation protocol.

◦ G (reqi ⇒ (reqi U gnt i  ) )

Exercises (1)Exercises (1)
Explain in English what the property means.
Is this a desirable property of the protocol ?
Suppose that the resource allocation protocol 
has a distributed implementation so that each 
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process is implemented in a different site. Does 
the LTL property affect the communication 
overheads among the processes in any way ?

Exercises (2)Exercises (2)
Express each of the following properties (stated 
in English) as  an LTL formula. Assume that p, q 
and r are atomic propositions.
◦ Always if p occurs, then eventually q occurs followed 

immediately  by r
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immediately  by r.
◦ Any occurrence of p is followed eventually by an 

occurrence of q. Furthermore, r never occurs 
between p and q.

Exercises (3)Exercises (3)
Consider the LTL formula GFp and the CTL formula 
AGEFp where p is an atomic proposition. Give an 
example of a Kripke Structure which satisfies AGEFp
but does not satisfy GFp. You may assume that p is the 
only atomic proposition for constructing the labeling 
f i
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function.

Are the following LTL formulae equivalent
◦ G( p ⇒ X p)
◦ G( p ⇒ G p)

Exercises (4)Exercises (4)

Assume that p is an atomic proposition. What can you say 
about the equivalence of the following pairs of temporal 
formulae? If they are equivalent, then provide a formal 
proof. If not construct an example Kripke Structure to 
h h h i l
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show that they are not equivalent.

(a) the LTL formula GFp and the CTL formula AGFp

(b) the CTL formulae AGAFp and the CTL formula AGEFp

(c) the LTL formula GFp and the CTL formula AGAFp


