
12/1/2010

1

Software TestingSoftware Testing

Abhik Roychoudhury
National University of Singapore
abhik@comp nus edu sgabhik@comp.nus.edu.sg
http://www.comp.nus.edu.sg/~abhik

1CS5219 2010-11 by Abhik

TestingTesting

Most common form of SW checking.
◦ Run program on selected inputs.
◦ Observe outputs.
◦ Match outputs against expectation.p g p

Programmer’s expectation of outputs.
◦ May not capture program as a mathematical

function.
Requires very deep understanding in the first place

◦ But expected o/p for specific i/p

CS5219 2010-11 by Abhik 2

The trivial exampleThe trivial example
int factorial(int n)
{

if (n == 1) return 1;
else return n* fact(n-1);

}

Could capture programmer’s expectation as

CS5219 2010-11 by Abhik 3

factorial(n) = n! for all n

Now find suitable n, and test the output of the factorial function against the
expected output given by n!

Most of the times, this is not possible since the programmer does not have
such a deep understanding of the program he/she is writing.

Programmer’s expectationProgrammer’s expectation

Often of the form
◦ For input i==0, expect output o == 5, or
◦ For input i == 0, expect output o > 0 , or
◦ … in real-life, can be even of the form,

Run program against input I == 0
Observe output

What is the observed output
Observed output o == 0
Doesn’t look right, investigate

Debug program for its execution with input i==0

CS5219 2010-11 by Abhik 4

Why test software?Why test software?
Quote by Knuth
(http://en.wikipedia.org/wiki/Donald_Knuth)
◦ “Beware of bugs in this program. I have only

proved it correct, not tried it.”

Quote by Dijkstra
◦ “Testing only shows the presence of bugs, not

their absence”.
Which SW will you put in your mother’s car?
◦ Verified based on a model, but not tested.
◦ ``Thoroughly” tested, but not verified.

CS5219 2010-11 by Abhik 5

A Trivial Exercise in TestingA Trivial Exercise in Testing

Function triangle takes three integers
a,b,c which are the length of triangle sides;
calculates whether the triangle is ca cu ates w et e t e t a g e s
equilateral, isosceles, or scalene.
Try to write down test cases for this
function (due to Myers)

CS5219 2010-11 by Abhik 6

12/1/2010

2

How thorough can we be?How thorough can we be?
Do you have a test case for an equilateral triangle?

Do you have a test case for an isosceles triangle?

Do you have at least three test cases for isosceles triangles, where all permutations
are considered? (e.g. (x,x,y), (x,y,x), (y,x,x))

Do you have a test case for an admissible scalene triangle?

Do you have a test case with one side zero?

Do you have the test case (0,0,0)?

Do you have a test case with negative values? o you have a test case with negative values?

Do you have a test case where the sum of two sides equals the third one?

Do you have at least three test cases for such non-triangles, where all permutations
of sides are considered?

Do you have a test case where the sum of the two smaller inputs is greater than the
third one?

Do you have at least three such test cases, considering all permutations?

Do you have test cases with very large integers (exceeding MAXINT) ?

Do you have a test case with non-integer values but numbers?

Do you have a test case with non-numbers e.g. strings, characters …

Do you have a test case where 2 or 4 inputs are provided?
CS5219 2010-11 by Abhik 7

Testing isn’t so trivial!Testing isn’t so trivial!

Myers 1979: this example should
demonstrate that testing even a trivial
program is not an easy task. Consider the p og a s ot a easy tas . Co s e t e
problem of testing an air traffic guidance
system with 100.000 instructions, a
compiler or just a payroll program.

Windows Vista is 50 MLoC.

CS5219 2010-11 by Abhik 8

Why is testing important?Why is testing important?

As SW grows more complex
◦ Less % of time in initial coding, modeling,

requirements.
◦ Greater % of time in testing & maintenance

Maintaining the SW as SW ages
Regression testing: testing a SW after changes, and
see if any previously working functionality breaks.
Crucial in any large SW development project.

CS5219 2010-11 by Abhik 9

The highThe high--level viewlevel view
Unit testing (we focus more on this now!)
◦ Structural or Functional approaches
◦ A unit can be a function or in the case of O-O

programs, say a class
◦ We will discuss control flow coverage criteria in We will discuss control flow coverage criteria in

details.
Testing full programs
◦ Integration testing
◦ Regression testing (Check that the program still

works after a feature is added to a tested program)
Discuss more in 3rd lecture

◦ Stress testing (e.g. web-service with many users)
CS5219 2010-11 by Abhik 10

Common terminologyCommon terminology
Test case
◦ A test input (or its execution trace)
Test suite
◦ Set of test cases
Test purposep p
◦ A formal specification to guide testing

e.g. a regular expression which the test case should satisfy
Coverage criterion
◦ A guide to exhaustively cover program structure.

e.g. Statement coverage, Cond. coverage, Path coverage.

CS5219 2010-11 by Abhik 11

Structural vs. Functional TestingStructural vs. Functional Testing

Functional (Black Box)
◦ Boundary Value Testing
◦ Equivalence Class Testing
◦ Decision Table based Testingg

Structural (Glass Box or White Box)
◦ Control flow Coverage Criteria
◦ Data flow Coverage Criteria

CS5219 2010-11 by Abhik 12

12/1/2010

3

Boundary valueBoundary value

Checking a “month” input variable for
boundary values 0, 13

Can check for simple errors like
if (month >= 0) && (month < 13)if (month >= 0) && (month < 13)

Need to get the boundary values by
equivalence partitioning, or by general
intuition (e.g. in the case of ``month”
variable)

CS5219 2010-11 by Abhik 13

Equivalence PartitioningEquivalence Partitioning

Name is suggestive
◦ “month” variable --- <= 0, 1..12, > 12
◦ Can have different handling for diff. values

if (month >= 0) && (month < 13)
if (h 4) {if (month < 4) { ...
}

else{ /* different financial year */ …
}

◦ Partitions < =0, 1..3, 4..12, > 12
Strictly speaking, a white box testing method

CS5219 2010-11 by Abhik 14

Decision Table based testingDecision Table based testing

CS5219 2010-11 by Abhik 15

Create such a decision table to check complex conditions.
Based on the tester’s knowledge of what the program should do,
rather than the structure of the program.

Now …Now …

Structural (White Box) Testing
◦ Look inside the code

Discussion of control flow coverage criteria
Statement coverage
B h Branch coverage
…

16CS5219 2010-11 by Abhik

Statement coverageStatement coverage

Y = Y +1
Make the branch condition true

〈X = 1, Y = 1, Z = 2, W = 1〉

CS5219 2010-11 by Abhik 17

X = X ‐1

true false
X = Y ∧ Z > W

Edge coverageEdge coverage

Y = Y +1

Make the branch condition true/false

〈X = 1, Y = 1, Z = 2, W = 1〉

〈X = 1, Y = 1, Z = 2, W = 2〉

CS5219 2010-11 by Abhik 18

X = X ‐1

true false
X = Y ∧ Z > W

12/1/2010

4

Condition coverageCondition coverage

For each executable condition c
Check whether it can be both true or false

c could be unsatisfiable or valid in all pgm. executions
For all such conditions c, c should be true in at least
one test in the test suite and c should be false in at

CS5219 2010-11 by Abhik 19

one test in the test suite, and c should be false in at
least one test in the test suite.

Condition coverageCondition coverage

Y = Y +1

〈X = 1, Y = 1, Z = 2, W = 1〉

〈X = 1, Y = 1, Z = 2, W = 2〉

X == Y is true in both the test cases

CS5219 2010-11 by Abhik 20

X = X ‐1

true false
X == Y ∧ Z > W

Condition coverageCondition coverage

Y = Y +1

〈X = 1, Y = 1, Z = 2, W = 1〉

〈X = 1, Y = 1, Z = 2, W = 2〉

〈X = 3, Y = 4, Z = 7, W = 5〉

CS5219 2010-11 by Abhik 21

X = X ‐1

true false
X == Y ∧ Z > W

Path coveragePath coverage
Cover all paths in the program
◦ Unboundedly many, unless loops can be bounded.
◦ Lot of infeasible paths i.e. paths which do not form

execution trace for any input.
Infeasible path detection will help test-suite construction.

A technique to help exercise new paths with
new tests
◦ Attempts to achieve path coverage
◦ Basic idea: concrete and symbolic execution at the

same time.

CS5219 2010-11 by Abhik 22

Directed Automated Random TestingDirected Automated Random Testing
Start with a random input I.
Execute program P with I
◦ Suppose I executes path p in program P.
◦ While executing p, collect a symbolic formula f

which captures the set of all inputs which execute
path p in program P.

Minimally change f, to produce a formula f1
◦ Solve f1 to get a new input I1 which executes a

path p1 different from path p.

CS5219 2010-11 by Abhik 23

Example programExample program
if (Climb)
◦ separation = Up;
else
◦ separation = Up + 100; Start with random input

if (separation > 150) (Climb == 0, Up == 457)
◦ upward = 1;

else
◦ upward = 0;

if (upward >0)
◦ printf(“Upward”);

else
◦ printf(“Downward);

CS5219 2010-11 by Abhik 24

12/1/2010

5

Example programExample program
if (Climb)
◦ separation = Up;

else Climb == 0 ∧
◦ separation = Up + 100;

if (separation > 150) (Up + 100 > 150) ∧
d 1 ◦ upward = 1;

else
◦ upward = 0;

if (upward >0) upward > 0
◦ printf(“Upward”);

else
◦ printf(“Downward);

CS5219 2010-11 by Abhik 25

Generating new testsGenerating new tests
The path condition calculated
◦ Climb ==0 ∧ Up + 100 > 150 ∧ upward > 0

Minimally modify the condition
◦ Climb ==0 ∧ Up + 100 > 150 ∧ ¬(upward > 0)

Corresponding to the path …

CS5219 2010-11 by Abhik 26

Infeasible path!!Infeasible path!!
if (Climb)
◦ separation = Up;

else Climb == 0 ∧
◦ separation = Up + 100;

if (separation > 150) (Up + 100 > 150) ∧
d 1 ◦ upward = 1;

else
◦ upward = 0;

if (upward >0)
◦ printf(“Upward”);

else ¬ upward > 0
◦ printf(“Downward);

CS5219 2010-11 by Abhik 27

Generating new testsGenerating new tests
The path condition calculated
◦ Climb ==0 ∧ Up + 100 > 150 ∧ upward > 0

Minimally modify the condition
◦ Climb ==0 ∧ Up + 100 > 150 ∧ ¬(upward > 0)
◦ Corresponding to infeasible path!

Modify a bit more
◦ Climb == 0 ∧ ¬ (Up + 100 > 150)
◦ Corresponding to the path …

CS5219 2010-11 by Abhik 28

Feasible pathFeasible path
if (Climb)
◦ separation = Up;

else Climb == 0 ∧
◦ separation = Up + 100;

if (separation > 150) ¬ (Up + 100 > 150)
◦ upward = 1; ◦ upward = 1;

else
◦ upward = 0;

if (upward >0)
◦ printf(“Upward”);

else
◦ printf(“Downward);

CS5219 2010-11 by Abhik 29

Generating new testsGenerating new tests
The path condition calculated
◦ Climb ==0 ∧ Up + 100 > 150 ∧ upward > 0
Minimally modify the condition
◦ Climb ==0 ∧ Up + 100 > 150 ∧ ¬(upward > 0)

C di t i f ibl th!◦ Corresponding to infeasible path!
Modify a bit more
◦ Climb == 0 ∧ ¬ (Up + 100 > 150)
◦ Solve to get another test input

Climb == 0, Up == 0

Continue in this fashion.
CS5219 2010-11 by Abhik 30

12/1/2010

6

Structural Testing (continued)Structural Testing (continued)
Coverage Criteria
◦ Control flow based

Statement, Edge, Condition, Path

◦ Data flow based
All defs, All uses etc
Why need it?

Control flow criteria (except path coverage) do not
exercise the use of a variable definition and the data flow.

CS5219 2010-11 by Abhik 31

x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

int P1(int flag) {
int x, y, z;

if(x > 3)
z = z + 1;

else
x = flag;

if(y == 4)
y = y + 1;

else
x = 1;

B
1

B2 B3

B4

B5 B6

B7

N

N

CS5219 2010-11 by Abhik 32

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

x = 1;
if(x < 2)

z = z / 2;
else

z = z - 1;
y = x − z;
if(y > 0)

z = x + y;
else

z = −1;
return z;

}

B7

B8 B9

B10

B11 B12

B13

N

N

def(x)def(x)
x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

B
1

B2 B3

B4

B5 B6

B7

N

NNodes where variable x is
assigned

CS5219 2010-11 by Abhik 33

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

B7

B8 B9

B10

B11 B12

B13

N

N

pp--use(x)use(x)
x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

B
1

B2 B3

B4

B5 B6

B7

N

NNodes where variable x is
used in a predicate.

CS5219 2010-11 by Abhik 34

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

B7

B8 B9

B10

B11 B12

B13

N

N

cc--use(x)use(x)
x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

B
1

B2 B3

B4

B5 B6

B7

N

NNodes where variable x is used in
any expression other than a
predicate (say rhs of assignment)

CS5219 2010-11 by Abhik 35

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

B7

B8 B9

B10

B11 B12

B13

N

N

defdef--clear(x)clear(x)
x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

B
1

B2 B3

B4

B5 B6

B7

N

NSet of paths which do not contain
any node in def(x)

CS5219 2010-11 by Abhik 36

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

B7

B8 B9

B10

B11 B12

B13

N

N

Typically consider acyclic paths

12/1/2010

7

dpu(s,x)dpu(s,x)
x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

B
1

B2 B3

B4

B5 B6

B7

N

NGiven variable x, and s ∈ def(x)

dpu(s,x) =

{ s’ | ∃ def-clear(x) path from s to s’

CS5219 2010-11 by Abhik 37

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

B7

B8 B9

B10

B11 B12

B13

N

N

and s’ ∈ p-use(x)

}

dcu(s,x)dcu(s,x)
x > 3

z = z+1 x = flag

y == 4

y = y+1 x =1

x < 2

Y

Y

B
1

B2 B3

B4

B5 B6

B7

N

NGiven variable x, and s ∈ def(x)

dcu(s,x) =

{ s’ | ∃ def-clear(x) path from s to s’

CS5219 2010-11 by Abhik 38

x < 2

z = z/2 z = z-1

y = x-z
y > 0

z = x+y z = -1

return z

Y

Y

B7

B8 B9

B10

B11 B12

B13

N

N

and s’ ∈ c-use(x)

}

Coverage criteriaCoverage criteria
All defs
◦ For each variable x, and def. s ∈ def(x)

Include at least one def-clear(x) path from s to at
least one node in dpu(s,x) ∪ dcu(s,x).

All uses
◦ For each variable x, and def. s ∈ def(x)

Include at least one def-clear(x) path from s to
each node in dpu(s,x) and to each node in
dcu(s,x).

CS5219 2010-11 by Abhik 39

Coverage criteriaCoverage criteria
All du-paths
◦ For each variable x, and def. s ∈ def(x)

Include all def-clear(x) path from s to each node in dpu(s,x)
and to each node in dcu(s,x).

In terms of power
◦ All du-paths > All uses > All defs

CS5219 2010-11 by Abhik 40

ReadingReading

Most of the basic stuff is folklore.
For a recent work on symbolic execution
based testing see
◦ http://srl.cs.berkeley.edu/~ksen/papers/dart.pdfp y p p p
◦ http://srl.cs.berkeley.edu/~ksen/slides/dart-fm.ppt
◦ This covers the portion on “Directed Automated

Random Testing”.

CS5219 2010-11 by Abhik 41

