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MC

Model checking is a search based procedure 
applicable to only finite state systems.
Extension to infinite state systems (arising 
out of infinite data domains) handled by 
abstraction of memory store.
Requires human ingenuity in choice of the 
abstract predicates.
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Abstraction Refinement

Given a program P and a property f, very 
difficult to get the “right” abstraction which 
will be able to prove f (even if f is true).
Instead start with a very coarse abstraction 
and model check the resultant abstract 
model.
Counter-example generated may not 
correspond to any concrete trace of P.

Refine the abstract model.
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Program 
P

Model

Extraction

Finite state

Model M

Model Checker

Temporal 
Property  ϕ

M |= ϕ ?

YES,

Proved.

NO,

Counter-
example

Software Model Checking 
without Refinement

User provided

Predicate store 
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Program 
P

Model 
Extraction Finite state

Model M

Model Checker

Temporal 
Property  ϕ

M |= ϕ ?

YES, 

ϕ Proved.

Counter-
example

… and with  Refinement

In practice,

provides preds.

Spurious, Refine

Additional preds

Real Counter-example, ϕ disproved
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An example program

L0: x = 5
L1: y = x
L2 
Property  G (pc = L2 ⇒ y = 5)

Suppose we abstract with (y = 5)
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L0,  y = 5

x = 5
L0, y = 5, x = 4

L1, x = 5, y = 5 L1, x = 4, y = 5………………..

L2, x = 4, y = 4
L2, x= 5, y = 5

Unreachable

In actual

executions

Fragment of Concrete 
Transition System
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Abstract Transition System

L0, p L0, not p

L1, p

L2, p

L1, not p

Property not proved !

L2, not p

p ≡ (y == 5)
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Abstract counter-example

The following can be a counter-example trace 
returned by model checking

<L0,p>, <L1,  p>, <L2, not p>
But this does not correspond to any execution 
of the concrete program.
This is a spurious counter-example 
Need to input new predicates for abstraction.
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Abstraction refinement

Generate the new predicates by 
analyzing the counter-example trace.
A more informative view of the 
program’s memory store is thus 
obtained.
But how to establish a correspondence 
between the abstract counter-example 
and the concrete program ?
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An Example

Initially x == 0
L0:  while (1) {
L1:      x++;
L2:      while (x > 0) x - - ;
L3   } 

Property:   AG( pc == L2  ⇒ x == 1)

A  locational invariant
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Initial Abstraction
W.r.t.  Predicate  p =  (x == 1)

L0, not p L1, not p

L2, p L2,  not p

x++

x++

while(1)

No need to traverse further, counter-example trace found.
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Counter-example
Property AG (pc == L2 => p == true)

L0, not p L1, not p

L2, p L2,  not p

x++

x++

while(1)

The predicate p denotes (x == 1)
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Counter-example verification

The counter-example may be spurious because our 
abstraction was too coarse.

The sequence of statements in the control-flow graph 
constitute an infeasible path in Control Flow Graph.
Not part of any concrete execution trace in the program.

How to check whether the produced counter-example 
trace is spurious ?

Backwards or forwards exact reasoning on the counter-
example trace.
Backwards reasoning shown now, forwards reasoning later 
in the lecture.
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Exact reasoning

L0, not p L1, not p

L2, p L2,  not p

x++

x++

while(1)

(L2, x ≠1) ← (L1, x ≠ 0) ← (L0, x ≠ 0) ← Initially (x ≠ 0 ∧ x = 0)

-- the constraint to hold initially is unsatisfiable.
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One step of exact reasoning

L2, x ≠1
x++

L1, x ≠ 0

What is the weakest constraint on data states that should hold at L1, such 

that when control moves to L2 (by executing x++), the data state at L2 is 
guaranteed to satisfy  x ≠ 1 ?

-- Weakest pre-condition (WP) computation. 

-- We repeat the WP computation until we reach the end of the trace OR

the constraint accumulated becomes unsatisfiable.

-- Corresponds to Real counter-example OR spurious counter-example. 
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So, what do we know ?
We are verifying an invariant ϕ against an infinite 
state system M.
We abstracted (the data states of) M w.r.t. p1,…,pk
to get M1

For every trace c1,c2,…,cn (statement sequences) 
in M, there is a trace c1,c2…,cn in M1 (not vice-
versa)

Model check M1 |= ϕ to 
Case 1: Success. We have proved M |= ϕ
Case 2:  We get a counter-example trace σ1

Need to check whether σ1 is “spurious”
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What is “spurious” ?

Each trace in M (concrete system) has a 
corresponding trace with same statement 
sequence in M1 (abstract system).
A trace in M1 may not have a corresponding 
trace with same statement sequence in M.
Does the counter-example trace σ1 in M1 
have a corresponding trace σ with same 
statement sequence in M ?

If not , then σ1 is a spurious counter-example
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What if spurious ?
So, we discussed how to check whether an obtained 
counter-example is spurious.
If σ1 is not spurious, then we have proved that M 
(concrete sys.) does not satisfy ϕ
If σ1 is spurious, we need to refine the abstraction of 
M

Original abs: Predicates p_1,…,p_k
New abs: Preds p_1,…,p_k, p_(k+1),…,p_n
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But how do we …
… compute the new preds p_(k+1),…,p_n ?

No satisfactory answer, active topic of research in 
the verification community.
All existing approaches are based on analysis of 
the spurious counter-example trace σ1 
Concretize the abstract states of σ1 to get 
constraints on concrete data states.
But several ways to glean the new predicates from 
these constraints.

We will just look at some possible heuristics.
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Our example
Pc = L0,  p = false

Pc = L1, p = false

Pc = L2, p = 
false

pc = L0,  p = false

pc = L1, p = false

pc = L2, p = 
false

While(1){

x++

pc = L2 /\ x ≠ 1

pc = L1  /\ x ≠ 0

pc = L1 /\ x ≠ 0

Clearly, such states 
should be 
unreachable in the 
concrete system.
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New predicates
Based on the spurious trace, we choose another 
predicate q = (x = 0)

No clear answer why, different research papers 
give different heuristic ‘justifications’.

Again abstract the concrete program w.r.t. the 
predicates

p = (x = 1)
q = (x = 0)
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New abstract transition 
system

pc = L0, not p, q pc =L1,not p, q 

Pc = L2, p, not q
Pc =L3, not p, q

While(1) {

x++

If x > 0 then x - - else ….

p⇒ x >0

End of while loop
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Final result
Model checking the new abstract transition system 
w.r.t.

AG( pc == L2 ⇒ x == 1)
… yields no counter-example trace.
Constitutes a proof of 
M |= AG( pc == L2 ⇒ x == 1)
Where M is the transition system corresponding to 
original program.
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Constructing Explanations
Start from the end (or beginning of the trace)

Strongest post condition (SP),  [ next slide ]
Or Weakest Pre condition (WP) [discussed]

Perform exact reasoning at each step until 
you hit unsatisfiability
Greedily remove one constraint at a time 
from the unsatisfiable constraint store until it 
becomes satisfiable

Is that sufficient ?
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SP along a trace
assume(b> 0)           b > 0 
c := 2*b                   b > 0, c = 2b   
a := b                       b > 0, c = 2b, a = b
a := a – 1                 b> 0, c = 2b, a = b-1
assume (a < b)         b>0, c = 2b, a = b-1, a<b 
assume ( a = c)      b>0, c = 2b, a = b-1, a<b, a = c

Conjunction shown with comma.
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Choosing predicates
b>0, c = 2b, a = b-1, a<b, a = c

Removing a = b-1 makes the constraint satisfiable
Should we choose it?

Is it sufficient to choose predicates from the formula 
which is unsatisfiable?

Exercise: Try to work out the backwards traversal 
and investigate choices of predicates.
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Choosing predicates
a := b ;                  a = b
a := a – 1;             a = b – 1
assume(a ≥ b)        a = b-1, a ≥ b

If we choose a = b-1, a ≥ b as new refinement it may 
not suffice.
The effect of a := b can only be accurately captured 
by the pred (a = b)
So, we need all predicates whose transformation
leads to one of the predicates causing unsatisfiability.
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Exercise

Try verifying absence of error in 
a := b; a := a - 1; if (a ≥ b) { error}

Using the predicates
{a ≥ b}
{ a ≥ b, a = b – 1}

Feel free to use forwards or backwards 
counter-example analysis …
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Additional: Dealing with pointers
int *p, *q;
void main(){

if (*p == 3){
*q = 2;
if (*p == 2){

*p = 3;
if (*q == 2){

ERROR
}

}
}

}

p may or may not 
be aliased to q

Is the ERROR state 
ever reachable ?
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Use pointer analysis

Can p ever alias to q 
Static analysis, flow insensitive.

If yes, then need to consider both the aliased 
and non-aliased cases

Corresponding to truth of p=q which is 
also maintained as a predicate.
Infeasible constraint store has disjunction

(p =q /\ … /\ …)  \/ (¬(p = q) /\ … /\ … )
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Other stuff

Counter-example guided Abstraction 
refinement (additional reading)

- by Edmund Clarke et. Al, CAV 2000.
http://www-2.cs.cmu.edu/~emc/papers.htm

One of the first papers to develop 
abstraction refinement. Try summarizing it 
if you are interested.

Regular reading appears in Lesson Plan.
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Try it out – (1)
Consider the program
x = 0; x = x + 1; x = x + 1;
if (x > 2){ error }

Suppose we want to prove that the ``error'' location 
is never reached, that is, any trace reaching ``error'' 
is a counter-example. Show that the predicate 
abstraction  x > 2 is insufficient to prove this 
property. You need to construct the abstract 
transition system for this purpose.
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Try it out – (2)
Refine your abstraction { x > 2 }
by traversing the counter-example obtained.
Show and explain all steps. Your refined abstraction 
should be sufficient to prove the unreachability of the 
``error'' location – i.e. all spurious counter-examples 
should have been explained by the refined predicate 
abstraction.


