
1

CS5219 2007-08 by Abhik 1

Software Abstractions (II)

CS 5219
Abhik Roychoudhury

National University of Singapore

CS5219 2007-08 by Abhik 2

MC

Model checking is a search based procedure
applicable to only finite state systems.
Extension to infinite state systems (arising
out of infinite data domains) handled by
abstraction of memory store.
Requires human ingenuity in choice of the
abstract predicates.

CS5219 2007-08 by Abhik 3

Abstraction Refinement

Given a program P and a property f, very
difficult to get the “right” abstraction which
will be able to prove f (even if f is true).
Instead start with a very coarse abstraction
and model check the resultant abstract
model.
Counter-example generated may not
correspond to any concrete trace of P.

Refine the abstract model.

CS5219 2007-08 by Abhik 4

Program
P

Model

Extraction

Finite state

Model M

Model Checker

Temporal
Property ϕ

M |= ϕ ?

YES,

Proved.

NO,

Counter-
example

Software Model Checking
without Refinement

User provided

Predicate store

CS5219 2007-08 by Abhik 5

Program
P

Model
Extraction Finite state

Model M

Model Checker

Temporal
Property ϕ

M |= ϕ ?

YES,

ϕ Proved.

Counter-
example

… and with Refinement

In practice,

provides preds.

Spurious, Refine

Additional preds

Real Counter-example, ϕ disproved
CS5219 2007-08 by Abhik 6

2

CS5219 2007-08 by Abhik 7 CS5219 2007-08 by Abhik 8

An example program

L0: x = 5
L1: y = x
L2
Property G (pc = L2 ⇒ y = 5)

Suppose we abstract with (y = 5)

CS5219 2007-08 by Abhik 9

L0, y = 5

x = 5
L0, y = 5, x = 4

L1, x = 5, y = 5 L1, x = 4, y = 5………………..

L2, x = 4, y = 4
L2, x= 5, y = 5

Unreachable

In actual

executions

Fragment of Concrete
Transition System

CS5219 2007-08 by Abhik 10

Abstract Transition System

L0, p L0, not p

L1, p

L2, p

L1, not p

Property not proved !

L2, not p

p ≡ (y == 5)

CS5219 2007-08 by Abhik 11

Abstract counter-example

The following can be a counter-example trace
returned by model checking

<L0,p>, <L1, p>, <L2, not p>
But this does not correspond to any execution
of the concrete program.
This is a spurious counter-example
Need to input new predicates for abstraction.

CS5219 2007-08 by Abhik 12

Abstraction refinement

Generate the new predicates by
analyzing the counter-example trace.
A more informative view of the
program’s memory store is thus
obtained.
But how to establish a correspondence
between the abstract counter-example
and the concrete program ?

3

CS5219 2007-08 by Abhik 13

An Example

Initially x == 0
L0: while (1) {
L1: x++;
L2: while (x > 0) x - - ;
L3 }

Property: AG(pc == L2 ⇒ x == 1)

A locational invariant

CS5219 2007-08 by Abhik 14

Initial Abstraction
W.r.t. Predicate p = (x == 1)

L0, not p L1, not p

L2, p L2, not p

x++

x++

while(1)

No need to traverse further, counter-example trace found.

CS5219 2007-08 by Abhik 15

Counter-example
Property AG (pc == L2 => p == true)

L0, not p L1, not p

L2, p L2, not p

x++

x++

while(1)

The predicate p denotes (x == 1)

CS5219 2007-08 by Abhik 16

Counter-example verification

The counter-example may be spurious because our
abstraction was too coarse.

The sequence of statements in the control-flow graph
constitute an infeasible path in Control Flow Graph.
Not part of any concrete execution trace in the program.

How to check whether the produced counter-example
trace is spurious ?

Backwards or forwards exact reasoning on the counter-
example trace.
Backwards reasoning shown now, forwards reasoning later
in the lecture.

CS5219 2007-08 by Abhik 17

Exact reasoning

L0, not p L1, not p

L2, p L2, not p

x++

x++

while(1)

(L2, x ≠1) ← (L1, x ≠ 0) ← (L0, x ≠ 0) ← Initially (x ≠ 0 ∧ x = 0)

-- the constraint to hold initially is unsatisfiable.

CS5219 2007-08 by Abhik 18

One step of exact reasoning

L2, x ≠1
x++

L1, x ≠ 0

What is the weakest constraint on data states that should hold at L1, such

that when control moves to L2 (by executing x++), the data state at L2 is
guaranteed to satisfy x ≠ 1 ?

-- Weakest pre-condition (WP) computation.

-- We repeat the WP computation until we reach the end of the trace OR

the constraint accumulated becomes unsatisfiable.

-- Corresponds to Real counter-example OR spurious counter-example.

4

CS5219 2007-08 by Abhik 19 CS5219 2007-08 by Abhik 20

CS5219 2007-08 by Abhik 21

So, what do we know ?
We are verifying an invariant ϕ against an infinite
state system M.
We abstracted (the data states of) M w.r.t. p1,…,pk
to get M1

For every trace c1,c2,…,cn (statement sequences)
in M, there is a trace c1,c2…,cn in M1 (not vice-
versa)

Model check M1 |= ϕ to
Case 1: Success. We have proved M |= ϕ
Case 2: We get a counter-example trace σ1

Need to check whether σ1 is “spurious”
CS5219 2007-08 by Abhik 22

What is “spurious” ?

Each trace in M (concrete system) has a
corresponding trace with same statement
sequence in M1 (abstract system).
A trace in M1 may not have a corresponding
trace with same statement sequence in M.
Does the counter-example trace σ1 in M1
have a corresponding trace σ with same
statement sequence in M ?

If not , then σ1 is a spurious counter-example

CS5219 2007-08 by Abhik 23

What if spurious ?
So, we discussed how to check whether an obtained
counter-example is spurious.
If σ1 is not spurious, then we have proved that M
(concrete sys.) does not satisfy ϕ
If σ1 is spurious, we need to refine the abstraction of
M

Original abs: Predicates p_1,…,p_k
New abs: Preds p_1,…,p_k, p_(k+1),…,p_n

CS5219 2007-08 by Abhik 24

But how do we …
… compute the new preds p_(k+1),…,p_n ?

No satisfactory answer, active topic of research in
the verification community.
All existing approaches are based on analysis of
the spurious counter-example trace σ1
Concretize the abstract states of σ1 to get
constraints on concrete data states.
But several ways to glean the new predicates from
these constraints.

We will just look at some possible heuristics.

5

CS5219 2007-08 by Abhik 25

Our example
Pc = L0, p = false

Pc = L1, p = false

Pc = L2, p =
false

pc = L0, p = false

pc = L1, p = false

pc = L2, p =
false

While(1){

x++

pc = L2 /\ x ≠ 1

pc = L1 /\ x ≠ 0

pc = L1 /\ x ≠ 0

Clearly, such states
should be
unreachable in the
concrete system.

CS5219 2007-08 by Abhik 26

New predicates
Based on the spurious trace, we choose another
predicate q = (x = 0)

No clear answer why, different research papers
give different heuristic ‘justifications’.

Again abstract the concrete program w.r.t. the
predicates

p = (x = 1)
q = (x = 0)

CS5219 2007-08 by Abhik 27

New abstract transition
system

pc = L0, not p, q pc =L1,not p, q

Pc = L2, p, not q
Pc =L3, not p, q

While(1) {

x++

If x > 0 then x - - else ….

p⇒ x >0

End of while loop

CS5219 2007-08 by Abhik 28

Final result
Model checking the new abstract transition system
w.r.t.

AG(pc == L2 ⇒ x == 1)
… yields no counter-example trace.
Constitutes a proof of
M |= AG(pc == L2 ⇒ x == 1)
Where M is the transition system corresponding to
original program.

CS5219 2007-08 by Abhik 29

Constructing Explanations
Start from the end (or beginning of the trace)

Strongest post condition (SP), [next slide]
Or Weakest Pre condition (WP) [discussed]

Perform exact reasoning at each step until
you hit unsatisfiability
Greedily remove one constraint at a time
from the unsatisfiable constraint store until it
becomes satisfiable

Is that sufficient ?

CS5219 2007-08 by Abhik 30

SP along a trace
assume(b> 0) b > 0
c := 2*b b > 0, c = 2b
a := b b > 0, c = 2b, a = b
a := a – 1 b> 0, c = 2b, a = b-1
assume (a < b) b>0, c = 2b, a = b-1, a<b
assume (a = c) b>0, c = 2b, a = b-1, a<b, a = c

Conjunction shown with comma.

6

CS5219 2007-08 by Abhik 31

Choosing predicates
b>0, c = 2b, a = b-1, a<b, a = c

Removing a = b-1 makes the constraint satisfiable
Should we choose it?

Is it sufficient to choose predicates from the formula
which is unsatisfiable?

Exercise: Try to work out the backwards traversal
and investigate choices of predicates.

CS5219 2007-08 by Abhik 32

Choosing predicates
a := b ; a = b
a := a – 1; a = b – 1
assume(a ≥ b) a = b-1, a ≥ b

If we choose a = b-1, a ≥ b as new refinement it may
not suffice.
The effect of a := b can only be accurately captured
by the pred (a = b)
So, we need all predicates whose transformation
leads to one of the predicates causing unsatisfiability.

CS5219 2007-08 by Abhik 33

Exercise

Try verifying absence of error in
a := b; a := a - 1; if (a ≥ b) { error}

Using the predicates
{a ≥ b}
{ a ≥ b, a = b – 1}

Feel free to use forwards or backwards
counter-example analysis …

CS5219 2007-08 by Abhik 34

Additional: Dealing with pointers
int *p, *q;
void main(){

if (*p == 3){
*q = 2;
if (*p == 2){

*p = 3;
if (*q == 2){

ERROR
}

}
}

}

p may or may not
be aliased to q

Is the ERROR state
ever reachable ?

CS5219 2007-08 by Abhik 35

Use pointer analysis

Can p ever alias to q
Static analysis, flow insensitive.

If yes, then need to consider both the aliased
and non-aliased cases

Corresponding to truth of p=q which is
also maintained as a predicate.
Infeasible constraint store has disjunction

(p =q /\ … /\ …) \/ (¬(p = q) /\ … /\ …)

CS5219 2007-08 by Abhik 36

Other stuff

Counter-example guided Abstraction
refinement (additional reading)

- by Edmund Clarke et. Al, CAV 2000.
http://www-2.cs.cmu.edu/~emc/papers.htm

One of the first papers to develop
abstraction refinement. Try summarizing it
if you are interested.

Regular reading appears in Lesson Plan.

7

CS5219 2007-08 by Abhik 37

Try it out – (1)
Consider the program
x = 0; x = x + 1; x = x + 1;
if (x > 2){ error }

Suppose we want to prove that the ``error'' location
is never reached, that is, any trace reaching ``error''
is a counter-example. Show that the predicate
abstraction x > 2 is insufficient to prove this
property. You need to construct the abstract
transition system for this purpose.

CS5219 2007-08 by Abhik 38

Try it out – (2)
Refine your abstraction { x > 2 }
by traversing the counter-example obtained.
Show and explain all steps. Your refined abstraction
should be sufficient to prove the unreachability of the
``error'' location – i.e. all spurious counter-examples
should have been explained by the refined predicate
abstraction.

