Background Questions

1. Which year are you in, and what is your major?

24 P e ow w,m&_____._._-

2. Rate your knowledge about Java language.

(a) Never used it.
(b) Beginner (e.g. have taken an introductory course)

'iadium (e.g. have done some small projects with Java)
(d) Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language are you most skillful at?

(4+

4. Raie your knowledge about the language you answered above if it is different from Java.
{a) Never used it.
(b) Beginner (e.g. have taken an introductory course)
(¢} Medium (e.g. have done some small projects with it)
@‘mﬁci{:m (e.g. have experience in developing real-life programs with it)

5 Select the ways you specily your prograin (multiple answers possible).
I write comments that explain my program.
(b) I write assert statements Lo eXpress my assumption.

@ [write formal specification.

6. Rate your knowledge about program contract,

@ Never heard of it.
(h) Heard of it, but has not used it

(¢) Have written some program contracts.

7. Rate your knowledge about JML (Java Modeling Language).

{5;}’ MNever heard of it before this course.

(b) Heard of it, but has not used it.

(g} Have used it.

1e same as the one used in the sample question.]

1. [The linked list used in this question is t
list are distinguished from the

Consider the following linked list where the head and the rear of the

rest. of the list.
t
head _‘]_'EE{ nodel -E% node? }iﬂ» noded M rear

The head and rear are instances of class Head and Rear, respectively. Thalt is,

Head head = new Head(); Rear rear = new Rear();

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, ¢, Head, Rear
and NormalNode, are subelasses of Node. That is. the following is the class hierarchy for them:

Node\
] s

Head MNarmalMNode Rear

Only NormalNode has a value field of the integer type as shown in the following:

public class NormalNode extends MNode {
Node next; f/ points to the next nede and is pot null

int value:

public boolean hasConsecutiveZeros() {
if {value = 0} {
if (({NormalNode) next).value =
return true;
¥

}

return next.hasConsecutiveZeros();

}

[+ the rest of the code is omitted #/

0) { // may throw ClassCastException

¥

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node? of the above figure have zeros as their values {1e., nodel.value ==10 and node?.value == 0], then
nodel hasConsecutiveZeros() refurns true.

However, the above hasConsecutiveZeros method has a bug. For example, if node3.hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because node3.next is cast Lo
MormalNode despite that node3.next is an instance of Rear.

now want to throw a NenMNormalModeException instead of a ClassCastException

Q. Suppose that we
). Write a change contract accordingly. If necessary, use “next instanceof Rear”

from hasConsecutiveZeros(
or similar instanceof expressions in the change contract.

STS ralled (Non Nov maf Node Euefh"ﬂ) Nt ncroonest Rear
(Nﬂnwﬁvwl-wﬂolt, @-C—QPM) ’F‘-ﬂ,&-ﬁ . /’
';“Trjmf,; = >{\

2. Consider the linked list used in the previous question again. We now want to add an additional
method taillist() to class Node. This new taillist{) method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist()
should return a list consisting of node?, node3, and rear.

Each subclass of Node, i.e., Head, Normallode and Rear, should override the taillist{) method. For
example, the following shows the tailList{) of NormalMode.

public class NormalMode extends Node {
private Node next; // not null
private int wvalue;

public List taillist() {
List list = new List(); f/ make a fresh list

Head head = new Head()}; [/ make a fresh head

list .head = head; [/ set the head

head . next = this.next; // the new list starts with the next node
return list;

}

[+ the rest of the code is omitted »/

}

Similarly, taillist{) is overridden in Rear as well:

public class Rear extends Node {
public List tailList() {
return null:

}

/* the rest of the code is omitted #/

}

However, the above tailList() of Rear turns out to be buggy causing NullPointerException. So, we wrote
a change contract as follows:

ensured ‘result = null;

ensures (Yresult instanceof List) && (\result.isEmpty() = true);

Note that elass List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()™

Q1. Now, explain in English what the above change contract means:

The ahve dhange con snsretd of ‘rch"meiﬂ mc,ﬂ-ﬂ"ro*"*'l-ﬂ‘i’}

Wil dhecdC Mok vesuld 1S an jncdaae of LH}-PHF&,de'
Yoo isBmptgl) i b bue | Thirwey & Wil avad e et

Noll fiinter Byegytion evvoy

The i M coidrtd weans i F e previves concdifen | guaswel
s ot e il ensuve dhat A o now candihns coe moh {ahe
rew Vigfan | Jonsrecd of V!F{u’d‘nfMj vuld| pui b T will cpedre g e Lt -

v

Q2. Fill in the following blank with a modified statement that respects the given change contracl.

public class Rear extends Node {
public List tailList() {

et re—ta ’f"kg,.s; s gt O) y
=

3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next - next]next‘_
head [nodel | node2 noded rear
prod pred pred prod

Classes should be extended and modified accordingly. For example, the following shows that class
NermalNode now contains an extra field pred to point to the preceding node.

public class NeormalNode extends Node {
private Nede prcd; // points to the preceding node.
private Node next:
private int value;

public boolean hasConsecutiveZeros(boolean forward) {
// should extend it

}

/# the rest of the code is omitted «/

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect. the extended hasConsecutiveZeros to be
able to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

new _field prcd:Nede;
new param forward:boolean:

matches pred = null L& forward =— Fvug r; N

Q2. Also, explain in English what the above change contract means:

The abwe conhuckt means Yhat T Mo mw —Ei:lalulﬂ-b\-t-rf-vw—' preck

He progrom be haves Llackfy Yo old vargon |

0

4. The following shows a class that, implements Iterator. Any lterator class must have a next methnd}ha,t
returns the next item to iterate over. The next method in the below returns either null if there is no

more item to iterate over or a non-null value otherwise (i.e., items.get{currentindex)).

import java.util.NeSuchElementException;

public class Customlterator implements Iterater {
private int currentIndex, size;
private NonNullList items; // a list with no null item

public DObject next(} {
if (currentIndex < size) {
Object result = items.get(currentIndex);
currentIndex++;
return result: // return a non-null value
} else {
return null;
1
1
/* the rest of the code iz omitted */
}

Mow, we want to modify the above next method according to the following change contract.

ensured ‘result == null;
gignals (NoSuchElementException) true;

(31. Explain in English what the above change contract means:

The akove covdvudk WL; g % e next() beturvy uu.'lﬂ}
e progam wi vl How o No o € lemod Becegption . 1 s et
indicars Kk P progean ha veaded Mo gnd ok M TAerdt

X

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following API if necessary.

MNoSuchElementException() of class NoSuchElementException:
& This is the default constructor of class NMoSuchElementException.

public class CustomIterator implements Iterator {
private int currentIndex, size;
Private NonNullList items; // a list with nmo null item

public Object next() {
if {currentlIndex < size) {
Object result = items.get{currentIndex);
currentIndex++;
return result; // return a non-null value
} elsa {

Hovew wew’ No Sl Elemend E*C'C(afjﬁlﬁ {-};

5. The following shows the Person class that holds information about the first name, the last name, and
50 on. We assume that none of these strings is null,

public class Person {
private String firstName:; // non-null
private String lastName; // non-null
private Nationality naticmality; // mon-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) L& lastName.equals(last);

3

public String getFirstName() { return this.firstName; }
public String getLastName() { return this.lastName; }
/% the rest of the code is omitted =/

|}

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastMame, respectively. We assume that those two parameters,

first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannotl be null.

public boolean hasSameName(Person persom) {
return person.getFirstName().equals(firstName)
k& person.getLastName().equals(lastlName);

}

When we shorten the parameter list, an accompanying tool generated the following change contract

template:

old _param first:S5tring, last:String;
nev_param person:Person;

matches | fgovron . cjv’; Fir(rNawd () = = Fwrk 5% MM'TA’L"%‘M!}# = 'ﬂ.uj-’rj

Q1. Fillin the above blank.
2. Also, explain in English what the above change contract means:

The chwe &a.v-cﬂ, cafrath poans ingrepd of Wy & fernwmehurg g
L I.MQ% need. A lwww-m PO Tt Ve haves Wk@! a(
Yo Ll vorsien iF pevon s comtons bkl Lreek pome cunde

ok neme Wit cwe ¥ gume as 2 rdﬂlmﬁ ok frevieig
VI T e \/'

P

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

The previous version
P

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod() {
raturn syntheticMethod:

¥

/= the rest of the code is omitted +/

}

I

[Change contract for getAccessMethod]

new field postDispatchMethod : MethodBinding ;
new param staticReference:boolean;
matches staticReference — false:

l

[The new version|

public class InterTypeMethodBinding extends MethodBinding {
private MethedBinding syntheticMethod;
private MethodBinding postDispatchMethod;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethaod:

else return !_ 5'3-\%#&“&!’%#4-" ; \/

[+ the rest of the code is omitted =/

}

Q1. Explain in English what the above change contract means:

N T above carbped mans Had™ Ko progenmn waill vekeve exadly
L 'I-:{"‘“” Sam~t- al mﬂ:ﬂL ViEh e i’?%ﬂw PM.-‘C#‘ S}aﬁt%rm,
o Salse | Oevrwitey B unll betan pobtl new Red PaskDisptd. Medbt

X

e

Q2. Also, fill in the blank of the new version.

19

2. Consider the following LazyMethodGen constructor,
L [public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
2 this.enclosingClass = enclosingClass;
3 if (Im.isAbstract() & m. getCode() = null) {
4 throw new RuntimeException("bad non-abstract methad with no code: " 4
5 m+"on " enclosingClass);
&l 3
7 MethodGen gen = new MethodGen (m, enclosingClass . getName(),
8 enclusingCJass.get[onstantPuolGen{}}:
g this.memberView = new BeelMethod(enclosingClass . getType(), m);
10 this. accessFlags = gen.getAccessFlags(): this. returnType = gen. getReturnType();
11 this.name = gen.getName(): this.argumentTypes = gen. getArgument Types(J;
12 this.declaredExceptions = gen. getExceptions(); this.attributes = gen. getAttributes();
13 this_maxlocals = gen.getMaxLocals();
14 if [gen.fs.ﬁ.bstract{} |l gen.isMative()) {
15 body = null:
16 ¥ oelse {
17 body = gen. getlnstructionList(): unpackHandlers{gen);
18 unpackLineNumbers(gen); unpackLocals(gen);
20 assertGoodBody ()
21 |}

==

The above constructor creates a custom object representing a Java method. This constructor raises
& RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at Jine 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native

method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods,

public abstract void foo ();

public native void har (}):

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy

because a native method does not have to have body code. Thus, instead of raising a RuntimeException,

the constructor should create an object successfully. In other words, a RuntimeException should not
be thrown.

Q. Based on the above description, write a change contract for the above constructor. You can
use the following APIs if NECESSAry.

— boolean isNative() of class Method. Le., the class of the first formal parameter of the LazyMethodGen
constructonr:

¢ This method determines whether the method is declared as native or not.,

Siﬂr‘“ﬂ‘l"’!" (.M“’*’Eﬁtﬁihﬁ) P\..HSN,.;HQL{,J:IFMGE& ﬂ,@f{ﬂ&ﬂ] =F
Sighalls (RuouncE, cophen) Faim;

3. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle. Notice that the new version

has an additional field droppingBack ToFullBuild.

[The previous version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private boolean reportedErrors:

public void beforeCompiling(lCompilationUnit][] sourcelnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

}

[+ the rest of the code is omitted +/

I

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild: boolean:
matches droppingBackToFullBuild =| Falce —|.\

l

|The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();

private boolean reportedErrors;
private boolean droppingBackToFullBuild; // a new field

public void beforeCompiling(ICompilationUnit[] sourceUnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false;
droppingBackToFullBuild = false; // a new statement

[+ the rest of the code is omitted +/

Depending on the boolean value of the new field droppingBackToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the ahove change contract.

