Background Questions

1. Which year are you in, and what is your major?

Year 4 Campuﬁr&f E——\“\%Cne.&ﬂﬁ

2 Rate your knowledge about Java language.

{a) Never used it.
(b) Beginner (c.g. have taken an introductory course)

(¢) Medium (e.g. have done some small projects with Java)
@ Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language are you most ckillful at?

Tav-a_

4. Rate your knowledge about the language you answered above if it is different from Java.

{a) Never used it.
(b} Beginner (e.g. have taken an introductory course)

(¢) Medium (e.g. have done some small projects with it)

(d) Proficient (e.g. have experience in developing real-life programs with it)

5. Select the ways you specify your program (multiple answers possible).

(a) 1 write comments that explain my program.
@ 1 write assert statements to express my assnmption.

(¢) I write formal specification.

6. Rate your knowledge about program contract.

@ Never heard of it.
(b} Heard of it, but bas not used it

(¢) Have written some prograin contracts.

7. Rate your knowledge about JML (Java Modeling Language).
Newr heard of it befure this course.
() Heard of it, but has not used it.

(¢} Have used it.

Part 1

1. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list,

| "“}"' E*L i [o = =

is,

The head and rear are instances of class Head and Rear, respectively. That
Head head = new Head(): Rear rear = new Rear();

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, ie., Head, Rear
and NormalNode, are subclasses of Node, That is, the following is the class hierarchy for them:

MNode

N

Head MormalNode Rear

Only Normallode has a value field of the integer type as shown in the following:

public class MNormalNode extends Node {
Node next; // points to the next node and is not null
int value;

public boolean hasCOnseCUtiveEerns[} {

if (value = 0) {
if (({NormalNode) next). value = 0) { // may throw ClassCastException

return true;

t
}

return next.hasConsecutiveZeros ();

/# the rest of the code is omitted «f
|_}
We are mterested in whether or not two consecutive nodes of a linked list contain zeros, and the

hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
nade2 of the above figure have zeros as their values (i.e., nodel.value == 0 and node2 value == 0), then

nodel.hasConsecutiveZeros() returns true.

However, the above hasConsecutiveZeros methad has a bug. For example, if node3.hasConsecutiveZeros()
i5 called for node3 of the above figure, ClassCastException is thrown because node3.next is cast to

NormalNode despite that node3.next is an instance of Rear.

Q. Suppose that we now want to throw a NonNormalNodeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceof expressions in the change contract.

51‘5\'\9._!11?.51,(_;[‘135 C&.& Excth’cr;r) | Cnext ms’fml‘.é: of Mﬂmww:l‘
51‘3*\1{&, (_ Uoss Cagh \E{ch:)‘}-faqj ‘fqt_ki‘; '
stgmals (NonNovnal Bxecepiion) | (next tnstunte of Nomdiil

2. Consider the linked list used in the previous question again. We now want to add an additional
method tailList() to class Node. This new taillist() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the Previous question as an example, nodel.tailList()
should return a list consisting of node2, node3, and rear.

Each subclass of Node, ie., Head, NormalNode and Rear, should override the ta;I‘FList{j method. For
cxample, the fﬂllﬂwiug shows the taillist() of NormalNode,

public class NormalNode extends Node {
BPrivate Node next; /f not nujl
Private jnpt value ;

Public List taillist() {
List list = new List(); // make a fresh list
Head head = pew Head(): // make a fresh head
list . head = head: /[set the head
head . next = this naxt: 1} the new list starts with the next node
return list

}

/# the rest of the code is omitted ¥/

Similarly, taillist() is overridden in Rear as well:

Public class Rear extends Node {
public Lisy taillist() {
return null;

/* the rest of the code jc omitted «f

However, the above taillist() of Rear turns out to be buggy causing NullPointerException. So, we wrote

a change contract ag follows:
-—
ensured \resylt — null;

ensures (% resylt instanceof List) Bd {'\,resu]t.isEmpty{} = true);

Note that class List has method isEmpty(} that returns true if the current List instance represents an
cmpty list, Also note that an empty list is constructed by calling “new List()",

Q1. Now, explain in English what the above change contract means:

e oo convacs g fnems that Fhe. Jur [Lést () £\
Overiden Lu'j Fhe Fe sy class wsed E?_J_,-mu_a:!:i-f_ veduyn

MUl an e wesuy ,dﬁwmxmum%@m
e Lut™ ps . mwm‘*%ﬁ&kb-

s L B

Q2. Fill in the ollowing blank with « modified statcment that respects the given change contract.

Public class Rear extends MNode {
public List taillist () {

| vehor new Lst Oy]

3. We are now going to extend the previous linked list to a doubly linked Lst like the following.

next next next next
head nodel node? node3 rear

pred pred pred pred

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now eontains an extra field pred to pomt o the preceding node.

public class MormalNede extends MNode {
private Node pred; [/ points to the preceding node.
private Mode next;
private int wvalue;

public boolean hasConsecutiveZeros (boolean forward) {
// should extend it
}

/= the rest of the code is omitted =/

}

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
hoolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a ficld and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

(1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

new field prcd:Node; .
new pararm forward : boolean; g
matches pred = null && forward = EE& 1:

Q2. Also, explain in English what the above change contract means:

We fowe tnbyoduced o new field prcd of ype Medle
and a new’ ﬁma.mm ﬁgfu,n:wc:@ of type looe| emp .
I e val of- {ﬁ,lteL p"r’cc:Q =zl and feruard
= Hue, Then fhe old Uwgnbﬂ@{-ﬁwrfmjec,wﬁ%
' eneyr L He Savne Fmt‘-" CovduHon - P

4. The following shows a class that implements lterator. Any lterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get(currentindex)).

import java.util,NoSuchElementException;

public class CustomIterator implements Iterator {
private int currentIndex, size;
pPrivate NonNullList items; // a list with no null item

public Object next() {
if (currentIndex < size) {
Object result = items.get(currentIndex);
currentIndex++;
return result; // return a non-null value
} else {
return null:;
¥
iF

/* the rest of the code is omitted #*/

Now, we want to modify the above next method according to the following change contract.

ensured ‘\result == null:
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

I wreamas fhold ‘Ed!-f code uvch wsee 10 vetunm

Al on @ yesull G @Jm&vﬁowcﬂw&fﬁu%
¥ %’DM oo Neo SuchBEleneinl=

v

AL W o
ﬁ?ﬂ‘f—q?h‘ow GMT o Lomne Cond {h o

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change .
contract. You can use the following AP if necessary.

— NoSuchElementException() of class NoSuchElementException:
e This is the default constructor of class NoSuchElementException.

public class Customlterator implements Iterator i
private int currentIndex, size;
private NonNulllist items: // a list with no null item

public Object mext () {
if (currentIndex < size) {
Object result = items.get{currentIndex);
currentIndex++;
return result: f/ return a non-null value
} else {

Wrevoe new NolathtlerentEreeaiml): A

} L
}
}

5. The following shows the Person class that holds information about the first name, the last name, and
. g0 on. We assume that none of these strings is null.

public class Personm {
private String firstWame; // non-null
private String lastName; // non-null
private Nationality nationality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastName.equals(last);

¥ ek

public String getFirstName() { return this.firstName; }
public String getlastName() { return this.lastName; }
f* the rest of the code is omitted #/

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastMName, respectively, We assume that those two parameters,

first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be nwll.

public boolean hasSameName (Ferson persom) {
return person.getFirstName().equals{firstHame)
ki person.getlastlame().equals{lastName);

i

When we shorten the parameter list, an accompanying tool generated the [ollowing change contract
template:

old_param first:String, last:35tring;)

new_param person:Person;
matches P@(S = Ta q%ﬁﬁ%”c’mﬂjz =Npven f—iw&‘fj £ \}/
PENEON - geX La st Neunel)= =\prev(iast) ’

Q1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

I yneant thad™ e howe (cted oloh W
givst and lact of Pe S0ey Guitsle, 8 "
Pwm.bmw adke p o t}{— pap&mﬂ~ B ;
= L draiinse 2EON- o) et RivefNeme
%fm T R ol e oK Pty
- ik persen - Logtieume (O ol ke ea[m‘uni_p,,_g—

4 Lack . fFov Hud pott corplutthne
:}ml z;’.‘."‘."}ﬁ e fo match (e s 55 qut_J : \./

<

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

—

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod() {
return syntheticMethod;

i

f+ the rest of the code is omitted #/f

}

|Change contract for getAccessMethod|

new field postDispatchMethod: MethodBinding ;
new param staticReference:boolean;
matches staticReference = false;

I

[The new mrsion]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod;
private MethodBinding postDispatchMethod;

public MethodBinding getAccessMethod({boolean staticReference) {
if (staticReference) return postDispatchMethod;

else return' sqﬁﬂ-\.gj-\t_me,—m_@d : \/
) -

/* the rest of the code is omitted =/

Q1. Explain in English what the above change contract means:
[A e 'F\QJL(ﬁ\- p;gt—hipa‘f&uMam& of ?ﬁﬁﬁﬂf&;ﬂh

ol oL P {FW gmﬁlﬁzfufh ce, Y Pe mf%I
e beiviey (nfTD duted - Tt The valuwe of Chutie ﬁefﬁremg

G fat&a : =

Lebore war_,"ri\lj tilee oleh Code - \/,

Q2. Also, fill in the blank of the new version,

2

Lo B TR - T R O P

e
D et

13
14
15
16
Ir
18
19
20
21

. Consider the following LazyMethodGen constructor.

public LazyMethodGen{Method m, LazyClassGen enclosingClass) {
this.enclosingClass = enclosingClass;
if (lm_isAbstract() & m.getCode() — null) {
throw new RuntimeException{®"bad non—abstract method with no code: * +
m+4+ " on " + enclosingClass }; :
K
MethodGen gen = new MethedGen(m, enclosingClass.getName(),
enclosingClass. getConstantPoolGen ()
this.memberView = new BeelMethod{enclosingClass . getType(), m);
this.accessFlags = gen_getfccessFlags(); this_returnType = gen.getReturnTypel):
this.name = gen.getName(); this.argumentTypes = gen.getArgumentTypes();
this.declaredExceptions = gen.getExceptions({); this, attributes = gen.getAttributes();
this.maxLocals = gen_ getMaxlocals();
if (gen.isAbstract() || gen.isMative()) {
body = null;
} else
body = gen.getinstructionList{); unpackHandlers{gen);
unpackLineMumbers({gen); unpacklocals{gen);

}
assertGoodBody [);
}

I

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4 5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null® at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods.

public abstract void foo()};
public native wvoid bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
becanse a native method does not have to have body code. Thus, instead of raising a RuntimeException,

' the construetor should create an ohject successfully. In other words, a RuntimeException should not
be thrown.

Q. Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.

— boolean isMative() of class Method, i.e., the class of the first formal parameter of the LazyMethodGen

constructor:
This method determines whether the method is declared as native or not.

. %@biﬁed e()= :WLJ 7

i

cigreled (Rwntine Exception’) (| m-isAosicact O 8@ m.aetale()=
Qif)mlﬁ Q&mﬂﬂ%ffﬁﬁ?ﬁm)Cl (. CsPashact O Il mels Naﬂ'ﬁc{))t

ﬂ,LLU.)

®

3. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle. Notice that the new version

has an additional field droppingBackToFullBuild.

[The previous version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new Arraylist();
private hoclean reportedErrors;

public void beforeCompiling(ICompilationUnit[] sourceUnits) {
resultsPendingWeave = new Arraylist():
reportedErrors = false;

}

[+ the rest of the code is omitted #f

h

|Change contract for beforeCompiling and the other methods]

new field droppingBackToFullBuild: boolean;
matches droppingBackToFullBuild z| ’?Cilfbﬁ |;

J

[The new version)|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private booclean reportedErrors;
private boolean droppingBackToFullBuild; [/ a new field

public void beforeCompiling{lCompilationUnit[] sourceUnits) {
resultsPendingWeave = new Arraylist();
reportedErrors = false;
droppingBackToFullBuild = false; // a new statement

[+ the rest of the code is omitted #/

¥

Depending on the boolean value of the new field droppingBackToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does

). Fill in the blank of the abowve change contract.

