Background Questions

1. Which year are you in, and what is your major?

/ ; B{dlg,_daf .5\'&4“6{@!'*

2. Rate vour knowledge abont Java language.

(a) Never used it
(b) Beginner (e.g. have taken an introductory course)

@Medium {e.g, have done some small projects with Java)
(d) Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language arve you most skillful at?

C

4. Rate your knowledge about the language you answered above if it is different from Java.

fa) Never used it.
(b) Beginner {e.g. have taken an introductory course)
Medium (c.g. have done some small projects with it)
{d) Proficient {e.g. have experience in developing real-life programs with it)

5. Select the ways you specify your program (multiple answers possible).
@ I write comments that explain my program.
(b) I write assert statements to express my assumption.

(¢) T write formal specification.

G. Rate vouwr knowledge about program contract.

MNever heard of it.

(b) Heard of it, but has not used it.

{¢) Have written some program contracts.

7. Rate vour knowledge about JML {Java Modeling Language).

@va*r heard of it bhefore Lhis course.
(b) Heard of it, but has not used it.

{c} Have used it.

Part 1

estion is the same as the one used in the sample question.]

1. |The linked list used in this qu
ed [rom the

Consider the following linked list where the head and the rear of the list are distinguish

rest of the list.
t ext
head ﬂt‘{ nodel L node? I node3 }ﬂ—’ rear J

The head and rear are instances of class Head and Rear, respectively. That is,

Head head = new Head(); Rear rear = new Rear(};

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, i.e., Head, Rear

and NormalNode, are subclasses of Node. That is, the following is the class hierarchy for them:

Node

Head MormalMode Rear

Only NormalNode has a value field of the integer type as shown in the following:

public class NormalNode extends Node {
Mode next; // points to the next node and is not null

int wvalue:

public beoelean hasConsecutiveZeros() {
if (value = 0] {)
if (({MormalNode) next).value = 0} { // may throw ClassCastException

return true;

i
3

return next.hasConsecutiveZeros(};

}

/+ the rest of the code is omitted +/

} -

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node2 of the above figure have zeros as their values (ie.. nodel.value == 0 and node? value == 0], then
nodel hasConsecutiveZeros() refturns true.

However, the above hasConsecutiveZeros method has a bug. For example, if node3 hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because node3.next is cast to

MormalNade despite that node3.next is an instance of Rear.

Q. Suppose that we now want to throw a MonMaormalModeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, usc “next instanceof Rear”
or similar instanceof expressions in the change contract.

‘&%mc-%d (ﬂam GM[FEWW) ardr uwt'm&ef Ré'aﬂ}'
s;‘y,«aﬂs (homs Novml Wods Em;lww) bt

9 Consider the linked list used in the previous question again. We now want to add an additional
method taillist() to class Node. This new taillist{) method is expected to retumn a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel. taillist()
should return a list consisting of node2, node3, and rear.

Each subclass of Node, i.e.. Head, NormalNode and Rear, should override the tailList() method. For
example, the following shows the taillist() of MormalNode.

public class NormalNode extends Mode {
private MNode next; f/ mot null
private int value;

public List tailList() {
List list = new List(): [/ make a fresh list
Head head = new Head(); [/ make a fresh head
list .head = head: [/ set the head
head . next = this.next: J/ the new list starts with the next node

return list;

}

/+ the rest of the code is omitted «f

}

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node {
public List tailList() {
return null;

}

/+ the rest of the code is omitted =/

¥

However, the above tailList(} of Rear turns out to be buggy causing NullPointerException. So, we wrote
a change contract as follows:

ensured Yresult = null;
ensures (\result instanceof List) && (\result. isEmpty() = true);

Note that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List{)".

Q1. Now, explain in English what the above change contract means:

ji-‘*\ﬁfrﬁwaqf Conkwadr; He vl refimed s MK
Nnew we S thd the vefee dened hos H‘LL%&L‘P

o- Qf;‘r amdh ’?wef ¢l Me mehod &Ic Emfd-{f on theh E'fl’:

[¥ gl\queii HE(‘U-«W % Lmt - A

2. Fill in the following blank with a modified statement that respects the given change contract.

public class Rear extends Node {
public List tailList() { i

3

H’.wa FEAUL\SK} i \ L
] v

3. We are now going to extend the previous linked list to a doubly linked list like the following,

next next next next

head | nodel [node2 |, noded |, rear
prod prod prod pred

Classes should be extended and modified accordingly. For example, the following shows that class
MNermalMode now contains an extra field pred to point to the preceding node.

public class NormalNode extends Mode {
private Node pred; // points te the preceding node.
private Node next:
private int value;

public boolean hasConsecutiveZeros(boolean forward) {
// should extend it

[+ the rest of the code is omitted «/

}

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

new _field pred:Node;
new param forward:boolean;

matches pred = null &% forward =— IEJ: \/

Q2. Also, explain in English what the above change contract means:

We pdd o MY S:EQJJK P cd sNode amd rew PMJMI.‘E&

?Mu.ﬂ,u}-: Lm?i’w 7

Prhe. vehauier bely el H’LL prviewns Ve el amd e new

Vearion eme is e Same _ig l':rc._ri: n,,u.Q? m'lat fmwmi-
\.,.-r/'

4. The following shows a class that implements Iterator. Any Iterator class must have a next method that
relurns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get(currentindex)).

import java.util.NeSuchElementEx ception;

public class Customlterator implements Iterator {
Private int currentIndex, size;
Private NonNullList items; // a list with no null item

public Dbject next() {
if (currentIndex < size) {
Object result = items.get (currentIndex) ;
currentIndex++;
return result; // return a non-nuwll value
} else {
return nul]l;

¥

}

/% the rest of the code is omitted =/

Now. we want to modify the above next method according to the following change contract.

ensured ‘\result == pull;
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

a LBPS e B
i) e pat
!Q lrh r{nu%r] {?ti‘u.aﬂ }'ﬂ MQQ {rﬂa e lﬁm] P\-ﬂw

Mowien , n Hhe mouw vedon | e throw am c@cﬂfh&'\'
* Mok Bl Gaghion v

. L

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following API if necessary.

— NoSuchElementException() of class NeSuchElementException:
s This iz the default constructor of class NoSuchElementException.

public class Customlterator implements Iterator 1
private int currentlndex, size;
private NonNullList items; // a list with no null item

public Object mext() {
if (currentIndex < size) {
Object result = items.get(currentlndex);

currentIndex++;
return result: // return a non-null value

} else {

Boio d Noodn Pk e L)
F J

;- v

5. The following shows the Person class that holds information about the first name, the last name, and
50 on. We assume that none of these strings is null.

public class Person {
private String firstWame; // non-null
private String lastName; // non-null
private Nationality nationality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastName.equals(last);

}
——] public String getFirstName()} { return this.firstName; }
_.__x"“'\/ public String getLastName() { return this.lastName; }
/* the rest of the code is omitted */
}

The above elass has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastName, respectively. We assume that those two parameters,

first and last, cannot he null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null,

public boolean hasSameName (Person person) {
return person.getFirstName().eguals(firstName)
k& person.getlastName().equals(lastName);

}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

old_param first:String, last:String;
nev_param person: Ferson H

maLeles pesen . %éf ﬁr&f."‘d’ﬂrm‘i == \prev {_:l?fr-&"') / m \/
meﬁm e \II}M/{}-MP)} y

Q1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

[we omde bl that M belneuier bebuween W Pnauicru-'la

omd te now fre 8 e same ‘SCM .
i Efd‘f:fﬂ"r@wrt‘wm the sume 3 = the ok

'

Pazrt 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod;

public MethodBinding getAccessMethod() {
return syntheticMethod;
}

/+ the rest of the code is omitted +/

I

[Change contract for getAccessMethod]

}

new field postDispatchMethod: MethodBinding ;
new param staticReference:boolean;
matches staticReference =— false;

l

[The new version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod;
private MethodBinding postDispatchMethod;

public MethodBinding getAccessMethod(boolean staticReference] {
if (staticReference) return pustDispatch_Mer.hod:

else return | S-%ﬁ\tj'tp‘d'kali : \//
}

/+ the rest of the code is omitted =/

-

}

Q1. Explain in English what the above change contract means:

e add zre ?& and EME nﬂw{;mwme\-{m
r-r -y

%'behmiwmwbm Hae previow and. P new Ve N 1S
e Some i raic RES‘%(EYILE 15 YUE’EE .

Q2. Also, fill in the blank of the new version.

2.

(=R N - - ST, TR U S

Ll T
L Ry e

13
16
17
18
19

21

Consider the following LazyMethodGen constructor.

public LazyMethodGen{Methad m, LazyClassGen enclosingClass) {

this_enclosingClass = enclosingClass;
if (Im.isAbstract() && m.getCode() = null) {

throw new RuntimeException("bad non—abstract method with no code: " +

m+ " on " + enclosingClass);

}
MethodGen gen = new MethodGen{m, enclosingClass . getMame().

enclosingClass. getConstantPoolGen ());
this.memberView = new BeelMethod({enclosingClass . getType(). m);
this.accessFlags = gen.getAccessFlags(); this.returnType = gen. getReturn Type();
this.name = gen.getName(); this.argumentTypes = gen.getArgumentTypes();
this.declaredExceptions = gen.getExceptions(); this.attributes = gen.getAttributes(};
this. maxlocals = gen. getMaxLocals();

if (gen_ isAbstract() || gen.isNative()) {
body = null;
} else {

body = gen. getlnstructionlist(); unpackHandlers{gen);
unpackLineMumbers(gen); unpacklLocals(gen);

}
assertGoodBody ():
}

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods,

qublic abstract void foo();

public native void bar{);

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an ohject successfully. In other words, a RuntimeException should not
Lre thrown.

Q. Based on the abuve description, write a change contract for the above constructor. You can
use the following APIs il necessary.

boolean isMative() of class Method, i.e., the class of the first formal parameter of the LazyMethodGen
constructor:
e This method determines whether the method is declared as native or not.

i ﬂ,,\,ﬁgg'l (Runbirme E,’yl(_vrl-{ﬁ\)

s (Rum'wm E““f‘"‘e") f‘ﬂ"‘i

3. Comsider (e Sllowing program changes where the previous version at the top is changed to the new

TS e S bottom according to the change contract in the middle. Notice that the new version
Ses s sdStonal field droppingBack ToFullBuild.

[The previous version|

suslic class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private beolean reportedErrors:

public wvoid heforeCompiling{[Compifatiunl_;lnit[] sourcellnits) {
resultsPendingWeave = now ArrayList();
reportedErrors = false:

}

/* the rest of the code is omitted «f

¥

[Change contract for beforeCompiling and the other methods]

new field droppingBackToFullBuild - boolean;
matches droppingBackToFullBuild ZLQ‘LQM

|

' \/ |

[The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
| List resultsPendingWeave = new ArrayList ();

| private boolean reportedErrars -
private boolean droppingBackToFullBuild: /i a new field

public void befereCompiling (ICompilationUnit] sourcelnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

droppingBackToFullBuild = false: J/ a new statement

{* the rest of the code is omitted wf

}

Depending on the boolean value of the new feld droppingBackToFullBuild, the behaviors of the methods
n AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. Il its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the above change contract.

